JPS59123245A - Crystal substrate for semiconductor device - Google Patents

Crystal substrate for semiconductor device

Info

Publication number
JPS59123245A
JPS59123245A JP22903382A JP22903382A JPS59123245A JP S59123245 A JPS59123245 A JP S59123245A JP 22903382 A JP22903382 A JP 22903382A JP 22903382 A JP22903382 A JP 22903382A JP S59123245 A JPS59123245 A JP S59123245A
Authority
JP
Japan
Prior art keywords
single crystal
gas
crystal film
magnesia
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22903382A
Other languages
Japanese (ja)
Other versions
JPH0465539B2 (en
Inventor
Masao Mikami
三上 雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22903382A priority Critical patent/JPS59123245A/en
Publication of JPS59123245A publication Critical patent/JPS59123245A/en
Publication of JPH0465539B2 publication Critical patent/JPH0465539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS

Abstract

PURPOSE:To enable to form a magnesia single crystal film having an excellent crystallizing property by a method wherein a thin film of magnesia spinel single crystal is grown on a silicon single crystal substrate and a single crystal film of magnesia is formed on the thin film. CONSTITUTION:An aluminum 2 and a magnesium chloride 3 are installed in the raw material chamber 1 of a reaction tube, and hydrogen chloride gas is introduced into from a gas lead-in port 4 for producing AlCl3 gas and the produced gas is transported to a growing chamber 6 along with MgCl2 gas by nitrogen gas introduced into from the lead-in ports 4 and 5. Nitrogen gas, carbon-dioxide gas and hydrogen gas are transported to the growing chamber 6 from a gas lead-in port 7 and a single crystal film of magnesia spinel is grown on a silicon single crystal substrate 9 which is mounted on a substrate holder 8. MgCl2 gas only is transported to the growing chamber 6 from the raw material chamber 1 without intorducing HCl gas into and a single crystal film of magnesia is grown on an MgO-Al2O3 single crystal film. As a result, the titled low-cost and high- quality crystal substrate for attaining the complete separation of elements can be obtained.

Description

【発明の詳細な説明】 本発明は半導体装置に有効な結晶基板に関する。[Detailed description of the invention] The present invention relates to a crystal substrate useful for semiconductor devices.

半導体集積回路の高密度化、動作の高速化のために素子
間を絶縁分離する方法が種々試みられている。サファイ
ア単結晶基板上にシリコン単結晶膜を成長することによ
ってなるSO8(Silicon on5apphir
e )はその代表的なものとしてよく知られている。し
かし、SO8はサファイア単結晶基板が高価である仁と
、シリコンとサファイアでは結晶構造及び格子定数の違
いが大きいために、シリコン単結晶膜に高密度の欠陥が
発生し、所望の電気的特性が得られない等の欠点がある
Various methods of insulating and separating elements have been attempted in order to increase the density and speed of operation of semiconductor integrated circuits. SO8 (Silicon on Apphires) is produced by growing a silicon single crystal film on a sapphire single crystal substrate.
e) is well known as a typical example. However, in SO8, the sapphire single crystal substrate is expensive, and the large difference in crystal structure and lattice constant between silicon and sapphire causes a high density of defects to occur in the silicon single crystal film, making it difficult to achieve the desired electrical characteristics. There are disadvantages such as not being able to obtain

これらのSO8の欠点を改良する方法として、シリコン
単結晶基板上にサファイアやマグネシアアルシネートス
ビネルMho −Allqoz (以下、マグネシアス
ピネルと称する)、酸化マグネシウムMyO(以下マグ
ネシアという)等の絶縁体単結晶膜を気相エピタキシャ
ル法で成長し、その上にシリコン、ガリウム砒素々どの
半導体単結晶膜を成長することが試みられている。この
方法はシリコン単結晶基板を用いるために安価で良質の
シリコン活性層を得る可能性がある。しかし、シリコン
単結晶基板に良質の絶縁体単結晶膜を成長させることが
むつかしく、そのためにその上に成長する半導体単結晶
膜の結晶性も良くならず問題を残している。とくにサフ
ァイア(α−Al、o、)の場合、シリコンとの格子定
数ミスマツチが約15%と太キ<、その上ガンマアルミ
ナ(γ−A11 q Os )への相変態もあシ、良質
のサファイア単結晶膜を再現性良く得ることがむつかし
い。マグ砂シアスピネルはシリコンと同じ立方晶形であ
シ、その格子定数8.08Aを2倍した16.16Aが
シリコンの格子定数の5.43Aの3倍の値16.29
Aと0.8%程度の格子定数ミスマツチであり、サファ
イアよシは結晶性のよい単結晶膜を得ることができる。
As a method to improve these shortcomings of SO8, insulator single crystals such as sapphire, magnesia alsinate spinel Mho-Allqoz (hereinafter referred to as magnesia spinel), and magnesium oxide MyO (hereinafter referred to as magnesia) are deposited on a silicon single crystal substrate. Attempts have been made to grow a film by a vapor phase epitaxial method, and then grow a semiconductor single crystal film of silicon, gallium arsenide, etc. thereon. Since this method uses a silicon single crystal substrate, it is possible to obtain a silicon active layer of high quality at low cost. However, it is difficult to grow a high-quality insulating single crystal film on a silicon single crystal substrate, and as a result, the crystallinity of the semiconductor single crystal film grown thereon is not improved either, which remains a problem. In particular, in the case of sapphire (α-Al, o,), the lattice constant mismatch with silicon is about 15%, which is very large.In addition, the phase transformation to gamma alumina (γ-A11 qOs) is easy, making it a good quality sapphire. It is difficult to obtain single crystal films with good reproducibility. Mag sand shear spinel has the same cubic crystal shape as silicon, and its lattice constant of 8.08A is doubled to 16.16A, which is 16.29, which is three times the lattice constant of silicon, 5.43A.
There is a lattice constant mismatch with A of about 0.8%, and a single crystal film with good crystallinity can be obtained with sapphire.

一方、マグネシアも立方晶形であるが、その格子定数は
4.213Aであり、これを4倍した16.852Aと
シリコンの格子定数の3倍の値16.29Aとの格子定
数ミスマツチは33%でマグネシアスピネルよ如は悪い
。その結果、結晶性はマグネシアスピネルよシも一般に
は悪くなる。本発明はよ)結晶性のよいマグネシア単結
晶膜の形成を目的としたものである。本発明者は気相成
長法によるマグネシア単結晶膜の形成技術を鋭意探求し
た結果、シリコン単結晶基板上にマグネシアスピネル単
結晶の薄膜を成長し、その上にマグネシアの単結晶膜を
形成すると、結晶性がマグネシアスピネルよシも良いマ
グネシア単結晶膜が得られること及びこのマグネシア単
結晶膜上に結晶性の良いシリコン、ガリウム砒素などの
半導体の単結晶膜が形成できることを発見した。
On the other hand, magnesia is also cubic, but its lattice constant is 4.213A, and the lattice constant mismatch between 16.852A, which is four times this, and 16.29A, which is three times the lattice constant of silicon, is 33%. Magnesia Spinel, you're bad. As a result, crystallinity is generally poorer than that of magnesia spinel. The object of the present invention is to form a magnesia single crystal film with good crystallinity. As a result of intensive research into a technique for forming a magnesia single crystal film using a vapor phase growth method, the inventors of the present invention have grown a thin film of magnesia spinel single crystal on a silicon single crystal substrate, and formed a magnesia single crystal film on top of the thin film. We have discovered that a magnesia single crystal film with better crystallinity than magnesia spinel can be obtained and that a single crystal film of semiconductors such as silicon and gallium arsenide with good crystallinity can be formed on this magnesia single crystal film.

本発明は上記発見に基づくもので、シリコン単結晶基板
上に代表組成式としてMl’0−Aj?、O,で表示さ
れるマグネシアスピネルの単結晶膜が形成され、該マグ
ネシアスピネル上に酸化マグネシウムの単結晶膜が形成
されていることを特徴とする半導体装置用の結晶基板、
及びシリコン単結晶基板上に二酸化シリコンが形成され
、該二酸化シリコン上に代表組成式としてMg0−A#
、0.で表示されるマグネシアスピネルの単結晶膜が形
成され、該マグネシアスピネル上に酸化マグネシウムの
単結晶膜が形成されてなることを特徴とする半導体装置
用の結晶基板、及びシリコン単結晶基板上に代表組成式
としてM 90−AJ t Osで表示されるマグネシ
アスピネルの単結晶膜が形成され、該マグネシアスピネ
ル上に酸化マグネシウムの単結晶膜が形成され、さらに
該酸化マグネシウム上にシリコン単結晶膜が形成されて
なることを特徴とする半導体装置用の結晶基板、及びシ
リコン単結晶基板上に二酸化シリコンが形成され、該二
酸化シリコン上・に代表組成式としてMqO−Aら03
で表示されるマグネシアスピネルの単結晶膜が形成され
、該マグネシアスピネル上に酸化マグネシウムの単結晶
膜が形成され、さらに該酸化マグネシウム上に周期律表
第1族から選ばれた1種以上の元素と第■族から選ばれ
た1種以上の元素からなる化合物半導体単結晶膜が形成
されてなることを特徴とする半導体装置用の結晶基板を
提供するものである。
The present invention is based on the above discovery, and is based on the representative composition formula Ml'0-Aj? on a silicon single crystal substrate. A crystal substrate for a semiconductor device, characterized in that a single crystal film of magnesia spinel represented by , O, is formed, and a single crystal film of magnesium oxide is formed on the magnesia spinel.
And silicon dioxide is formed on the silicon single crystal substrate, and Mg0-A# as a representative composition formula is formed on the silicon dioxide.
,0. A crystal substrate for a semiconductor device, characterized in that a single crystal film of magnesia spinel is formed on the magnesia spinel, and a single crystal film of magnesium oxide is formed on the magnesia spinel, and a silicon single crystal substrate is typically used. A single crystal film of magnesia spinel whose composition formula is M 90-AJ t Os is formed, a single crystal film of magnesium oxide is formed on the magnesia spinel, and a single crystal silicon film is further formed on the magnesium oxide. A crystal substrate for a semiconductor device, characterized in that silicon dioxide is formed on a silicon single crystal substrate, and a representative composition formula of MqO-A et al. 03 is formed on the silicon dioxide.
A single crystal film of magnesia spinel represented by is formed, a single crystal film of magnesium oxide is formed on the magnesia spinel, and one or more elements selected from Group 1 of the periodic table are further formed on the magnesium oxide. The present invention provides a crystal substrate for a semiconductor device, characterized in that a compound semiconductor single crystal film made of one or more elements selected from group (1) and (3) is formed.

以下、実施例によって、本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 面方位(100)のシリコン単結晶基板上にマグネシア
スピネル単結晶膜、マグネシア単結晶J漠及びシリコン
単結晶膜を順次形成した。第1図はマグネシアスピネル
及びマグネシア単結晶膜を成長した気相成長装置の反応
管の7概略断面図である。
Example 1 A magnesia spinel single crystal film, a magnesia single crystal film, and a silicon single crystal film were sequentially formed on a silicon single crystal substrate with a plane orientation (100). FIG. 1 is a schematic cross-sectional view of a reaction tube of a vapor phase growth apparatus in which magnesia spinel and magnesia single crystal films were grown.

先ず、シリコン単結晶基板上にマグネシアスピネル単結
晶膜を成長しだが、反応管の原料室1にアルミニウムA
ll 2と塩化マグネシクムMfC/2 、3を設置し
、それぞれの温度を600°Cと950°Cとした。ガ
ス導入口4から塩化水素ガスを導入しAl+HC6−弓
6C63なる反応でAAIC18ガスを生成し、950
℃で蒸発したMりC6,ガスとともに導入口4゜5から
導入した窒素ガスによって成長室6に輸送した。一方ガ
ス導入ロアから窒素ガスとともに、炭酸ガスCO,及び
水素ガスH2を成長室に桶送した。
First, a magnesia spinel single crystal film was grown on a silicon single crystal substrate, and aluminum A was placed in the raw material chamber 1 of the reaction tube.
ll2 and magnesium chloride MfC/2,3 were installed, and the respective temperatures were set to 600°C and 950°C. Hydrogen chloride gas is introduced from the gas inlet 4, and AAIC18 gas is generated by the reaction Al + HC6 - bow 6C63, and 950
The mercury C6 evaporated at 0.degree. C. was transported to the growth chamber 6 by nitrogen gas introduced from the inlet 4.degree. On the other hand, along with nitrogen gas, carbon dioxide gas CO and hydrogen gas H2 were fed into the growth chamber from the gas introduction lower.

成長室でガスは混合されて、基板ホルダー8に塔載した
シリコン単結晶基板上にマグネシアスピネルの単結晶膜
が生成される。このときの反応は次式と考えられる。
The gases are mixed in the growth chamber, and a single crystal film of magnesia spinel is produced on the silicon single crystal substrate mounted on the substrate holder 8. The reaction at this time is thought to be as follows.

MQCl、+ 2An(J3−!−4CO,+ 4.H
,−+ Mg0−Al、03+CO+8HC6(1) 成長温度は980°Cで、045μm/hrの成長速度
で成長した。
MQCl, + 2An(J3-!-4CO, + 4.H
, -+ Mg0-Al, 03+CO+8HC6 (1) The growth temperature was 980°C and the growth was performed at a growth rate of 045 μm/hr.

次にM2OAlqOs単結晶膜上にマグネシアの単結晶
膜を成長しだが、それは第1図の反応管を用いて、マグ
ネシアスピネルの成長の場合に、ガス導入口から導入し
たHCIガスを導入せずに原料室からはM’iC4,ガ
スのみを成長室に輸送した。他の条件はマグネシアスピ
ネルを成長した場合と同じにすることによってMgOの
単結晶膜を成長することができた。第2図は膜厚o、4
5μmのマグネシアスピネル上に膜厚0.4μmのマグ
ネシアを成長した場合のX線粉末回折法の回折パターン
で20中45°のMgo Al*Os、(400)ピー
クに隣接してMダ0(200)回折の強い回折ピークが
あり、(100)方位以外の回折は観測されなかった。
Next, a magnesia single crystal film was grown on the M2OAlqOs single crystal film, but this was done using the reaction tube shown in Figure 1, without introducing the HCI gas that was introduced from the gas inlet in the case of magnesia spinel growth. Only M'iC4 and gas were transported from the raw material chamber to the growth chamber. By keeping the other conditions the same as those for growing magnesia spinel, it was possible to grow a single crystal film of MgO. Figure 2 shows the film thickness o, 4
In the diffraction pattern of X-ray powder diffraction when magnesia with a film thickness of 0.4 μm is grown on a magnesia spinel with a thickness of 5 μm, Mgo Al*Os at 45° in 20, adjacent to the (400) peak, ) There was a strong diffraction peak, and no diffraction in directions other than the (100) direction was observed.

第3図は膜厚4ooXのマグネシアスピネル上にマグネ
シアMgoを〜0.2pm成長したとき(7)MgO(
200>回折のX線ロッキングカーブでその半値幅は2
900秒であった。しかるにマグネシアスピネル単結晶
膜だけでは0.2pm(D膜厚テM404620g (
400)回折の半値幅は4500秒程度であった。一般
に単結晶膜の結晶性はX線ロッキング回折法の半値幅で
評価でき、半値幅が小さい方が結晶性は良いとされる。
Figure 3 shows when ~0.2 pm of magnesia Mgo is grown on magnesia spinel with a film thickness of 4ooX (7) MgO (
200>Diffraction X-ray rocking curve whose half width is 2
It was 900 seconds. However, the magnesia spinel single crystal film alone has a thickness of 0.2 pm (D film thickness: 404,620 g (
400) The half width of diffraction was about 4500 seconds. Generally, the crystallinity of a single crystal film can be evaluated by the half-width of X-ray rocking diffraction, and it is said that the smaller the half-width, the better the crystallinity.

そして半値幅は単結晶膜のカ味厚に依存し、膜厚が小さ
くなるほど半値幅は大きくなる。従って、上述の結果よ
シマグネシアスビネル単結晶膜上に成長したマグネシア
単結晶膜はマグネシアスピネルよシも結晶性が著しく良
いと言える。
The half-value width depends on the thickness of the single crystal film, and the smaller the film thickness, the larger the half-value width becomes. Therefore, from the above results, it can be said that the magnesia single crystal film grown on the magnesia asbinel single crystal film has significantly better crystallinity than magnesia spinel.

本実施例においては、前原のように形成されたマグネシ
ア単結晶膜上にシリコン単結晶膜をシランSiH4の熱
分解法によって成長した。1020°Cの成長温度で3
μrnのシリコンを成長し、(422)回折の非対称反
射のXwロッキングカーブより半値幅を測定し尼結果約
450秒であった。これはSO8の結晶性を上まわるも
のである。
In this example, a silicon single crystal film was grown on a magnesia single crystal film formed as in the previous example by a thermal decomposition method of silane SiH4. 3 at a growth temperature of 1020°C.
After growing silicon of μrn, the half-width was measured from the Xw rocking curve of the asymmetric reflection of (422) diffraction, and the result was about 450 seconds. This crystallinity exceeds that of SO8.

実施例2 シリコン単結晶基板とマグネシアスピネル単結晶膜界面
に熱酸化によって非晶質二酸化シリコン5in2を形成
し、rMgo単結晶ji/M90Al、Os単結晶膜/
Sin、/シリコン単結晶基板」構成の結晶基板を作成
した。
Example 2 Amorphous silicon dioxide 5in2 was formed by thermal oxidation at the interface between a silicon single crystal substrate and a magnesia spinel single crystal film, and rMgo single crystal ji/M90Al, Os single crystal film/
A crystal substrate having a configuration of "Sin,/silicon single crystal substrate" was created.

本発明者はすでにシリコン単結晶基板上にマグネシアス
ピネル単結晶膜を形成した後、熱酸化膠囲気で焼鈍する
ことによってマグネシアスピネル単結晶膜を通してシリ
コン単結晶を熱酸化し、マグネシアスピネルとシリコン
単結晶基板の境界にSin、を形成することができ、そ
れによって絶縁層の電気的特性を著しく改善できること
を提示した。本実施例はSin、を形成後に、マグネシ
アスピネル単結晶膜上にマグネシアの単結晶膜を形成す
るものである。実施例1と全く同じ方法によってマグネ
シアスピネルを膜厚400A生成した後、1100°C
で水蒸気酸化し、約500OAのSin、をマグネシア
スピネルとシリコンの境界に形成した。
The present inventor has already formed a magnesia spinel single crystal film on a silicon single crystal substrate, and then thermally oxidizes the silicon single crystal through the magnesia spinel single crystal film by annealing in a thermally oxidizing atmosphere, and the magnesia spinel and silicon single crystal It has been proposed that Sin can be formed at the boundary of the substrate, thereby significantly improving the electrical properties of the insulating layer. In this example, after forming Sin, a magnesia single crystal film is formed on a magnesia spinel single crystal film. After producing a film of magnesia spinel with a thickness of 400A using the same method as in Example 1, the film was heated at 1100°C.
Steam oxidation was performed to form about 500 OA of Sin at the boundary between magnesia spinel and silicon.

その後、実施例1と同じ条件でJ膜厚02μmの単結晶
膜を形成した結果、マグネシアの(200)回折のx5
40ッキングカーブの半値幅は2800秒であった。
Thereafter, a single crystal film with a J film thickness of 02 μm was formed under the same conditions as in Example 1. As a result, the (200) diffraction of magnesia was
The half width of the 40-king curve was 2800 seconds.

実施例3 実施例2で作成されたrMqO単結晶/M q O・A
l1qOs単結晶膜/S io2/Si単結晶基板」の
最上層のマグネシア単結晶上にガリウム砒素G a A
 sの単結晶膜を成長させた。G a A sの単結晶
膜はトリメチルガリウム(CH,) 8Gaとアルシン
Ash8を原料ガスとした有機金属気相成長法(MO・
CVD)によって成長した。
Example 3 rMqO single crystal prepared in Example 2/M q O・A
11qOs single crystal film/Sio2/Si single crystal substrate"Gallium arsenide G a A
A single crystal film of s was grown. A single crystal film of GaAs is produced by metal organic vapor phase epitaxy (MO.
grown by CVD).

トリメチルガリウムとアルシンを水素ガスをキャリアガ
スとして、高周波加熱炉で720°Cに加熱された基板
上で熱分解して成長した。その結果鏡面を有する冒品質
のG a A s単結晶膜が成長できた。
The growth was performed by thermally decomposing trimethylgallium and arsine on a substrate heated to 720°C in a high-frequency heating furnace using hydrogen gas as a carrier gas. As a result, a GaAs single crystal film of poor quality with a mirror surface was grown.

本実施例において、GaAs以外にGaAlAs 、G
aPなどの■−■化合物の単結晶膜を成長することがで
きる。
In this example, in addition to GaAs, GaAlAs, G
A single crystal film of a ■-■ compound such as aP can be grown.

以上、実施例によって不発明を説明したが、半導体集積
回路の素子間を絶縁体で分離することは高集積化、素子
動作の高速化にきわめて重要なことであシ、本発明はシ
リコン単結晶基板上に形成した絶縁体単結晶膜によって
素子の完全分離を達成するだめの安価で扁品質の半導体
装置用の結晶基板を提供するもので、その工業的価値は
大きい。
The invention has been explained above with reference to embodiments. However, separating the elements of a semiconductor integrated circuit with an insulator is extremely important for achieving high integration and speeding up the operation of the elements. The present invention provides an inexpensive, flat-quality crystal substrate for a semiconductor device that achieves complete isolation of elements by means of an insulating single crystal film formed on the substrate, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いたマグネシアスピネル及びマグネ
シアの単結晶膜の気相成長装置の概略図。 第2図は面方位(100)のシリコン単結晶基板上にマ
グネシアスピネルとマグネシアの単結晶膜が積層した試
料の粉末X線回折ノζターンを示す図。 第3図はマグネシア単結晶膜の(20OE面のX線回折
ロッキングカーブを示す図。 1−原料室、2・・・アルミニウム、3・・・塩化マグ
ネシワム、4,5.7・・・ガス導入管、6・・・成長
室、8・−・基板ホルダー、9・・・結晶基板。 \ン′ 第2図 鷲 記 よ 20(度)
FIG. 1 is a schematic diagram of a vapor phase growth apparatus for magnesia spinel and magnesia single crystal films used in Examples. FIG. 2 shows the powder X-ray diffraction ζ-turn of a sample in which magnesia spinel and magnesia single crystal films are laminated on a silicon single crystal substrate with a plane orientation of (100). Figure 3 is a diagram showing the X-ray diffraction rocking curve of the (20OE plane) of the magnesia single crystal film. 1- Raw material chamber, 2... Aluminum, 3... Magnesium chloride, 4, 5.7... Gas introduction Tube, 6...Growth chamber, 8...Substrate holder, 9...Crystal substrate.

Claims (1)

【特許請求の範囲】 1、 シリコン単結晶基板上に代表組成式としてMqO
−Al、0.で表示されるマグネシアスピネルの単結晶
膜が形成され、該マグネシアスピネル上に酸化マグネシ
ウムの単結晶膜が形成されていることを特徴とする半導
体装置用の結晶基板。 2、 シリコン単結晶基板上に二酸化シリコンが形成さ
れ、該二酸化シリコン上に代表組成式としてMg0−A
n、O,で表示されるマグネシアスピネルの単結晶膜が
形成され、該マグネシアスピネル上に酸化マグネシウム
の単結晶膜が形成されてなることを特徴とする半導体装
置用の結晶基板。 3、 シリコン単結晶基板上に代表組成式としてMgO
,−A#20.で表示されるマグネシアスピネルの単結
晶膜が形成され、該マグネシアスピネル上に酸化マグネ
シウムの単結晶膜が形成され、さらに該酸化マグネシウ
ム上にシリコン単結晶膜が形成されてなることを特徴と
する半導体装置用の結晶基板。 4、 シリコン単結晶基板上に二酸化シリコンが形成さ
れ、該二酸化シリコン上に代表組成式としてM2O−A
6,0.で表示されるマグネシアスピネルの単結晶膜が
形成され、該マグネシアスピネル上に酸化マグネシウム
の単結晶膜が形成され、さらに該酸化マグネシウム上に
周期律表第■族から選ばれた1株以上の元素と第■族か
ら選ばれた1種以上の元素と第■族から選ばれた1種以
上の元素からなる化合物半導体単結晶膜が形成されてな
ることを%徴とする半導体装置用の結晶基板。
[Claims] 1. MqO as a representative compositional formula on a silicon single crystal substrate
-Al, 0. 1. A crystal substrate for a semiconductor device, characterized in that a single crystal film of magnesia spinel represented by: is formed, and a single crystal film of magnesium oxide is formed on the magnesia spinel. 2. Silicon dioxide is formed on a silicon single crystal substrate, and Mg0-A as a representative composition formula is formed on the silicon dioxide.
1. A crystal substrate for a semiconductor device, characterized in that a single crystal film of magnesia spinel represented by n, 0, is formed, and a single crystal film of magnesium oxide is formed on the magnesia spinel. 3. MgO as a representative composition formula on a silicon single crystal substrate
,-A#20. A semiconductor characterized in that a single crystal film of magnesia spinel is formed, a single crystal film of magnesium oxide is formed on the magnesia spinel, and a single crystal film of silicon is further formed on the magnesium oxide. Crystal substrate for equipment. 4. Silicon dioxide is formed on a silicon single crystal substrate, and M2O-A is formed on the silicon dioxide as a representative compositional formula.
6.0. A single crystal film of magnesia spinel represented by is formed, a single crystal film of magnesium oxide is formed on the magnesia spinel, and one or more elements selected from Group Ⅰ of the periodic table are further formed on the magnesium oxide. A crystal substrate for a semiconductor device, characterized by forming a compound semiconductor single crystal film consisting of one or more elements selected from group (1) and one or more elements selected from group (2). .
JP22903382A 1982-12-28 1982-12-28 Crystal substrate for semiconductor device Granted JPS59123245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22903382A JPS59123245A (en) 1982-12-28 1982-12-28 Crystal substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22903382A JPS59123245A (en) 1982-12-28 1982-12-28 Crystal substrate for semiconductor device

Publications (2)

Publication Number Publication Date
JPS59123245A true JPS59123245A (en) 1984-07-17
JPH0465539B2 JPH0465539B2 (en) 1992-10-20

Family

ID=16885688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22903382A Granted JPS59123245A (en) 1982-12-28 1982-12-28 Crystal substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JPS59123245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084438A (en) * 1988-03-23 1992-01-28 Nec Corporation Electronic device substrate using silicon semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084438A (en) * 1988-03-23 1992-01-28 Nec Corporation Electronic device substrate using silicon semiconductor substrate

Also Published As

Publication number Publication date
JPH0465539B2 (en) 1992-10-20

Similar Documents

Publication Publication Date Title
US4368098A (en) Epitaxial composite and method of making
US4404265A (en) Epitaxial composite and method of making
WO2019218581A1 (en) Gallium oxide film based on sapphire substrate, method of growing the same, and use thereof
JP2704181B2 (en) Method for growing compound semiconductor single crystal thin film
US4808551A (en) Method for halide VPE of III-V compound semiconductors
KR100497262B1 (en) Epitaxy Method on Vapor Phase of Compound Semiconductor
US6936490B2 (en) Semiconductor wafer and its manufacturing method
JP2009543946A (en) Wide band gap semiconductor materials
CN111663181B (en) Preparation method and application of gallium oxide film
TWI254465B (en) Method of manufacturing III-V group compound semiconductor
JPH033233A (en) Growth method for compound semiconductor single crystal thin film
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPS59123245A (en) Crystal substrate for semiconductor device
CN114068308A (en) Substrate for silicon-based MOSFET device and preparation method thereof
JP7120598B2 (en) Aluminum nitride single crystal film and method for manufacturing semiconductor device
JPS6115150B2 (en)
US20080113202A1 (en) Process for manufacturing quartz crystal element
JPH04265294A (en) Production of semiconductor crystal
JPS63228714A (en) Manufacture of semiconductor crystal film
JPS60178620A (en) Manufacture of semiconductor substrate
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS60210837A (en) Crystal substrate for semiconductor device
JPS62132312A (en) Manufacture of semiconductor thin film
CN114420534A (en) Method for preparing GaN self-separation substrate based on strontium aluminate film
JPH01173708A (en) Semiconductor device