JPH04265294A - Production of semiconductor crystal - Google Patents

Production of semiconductor crystal

Info

Publication number
JPH04265294A
JPH04265294A JP2425791A JP2425791A JPH04265294A JP H04265294 A JPH04265294 A JP H04265294A JP 2425791 A JP2425791 A JP 2425791A JP 2425791 A JP2425791 A JP 2425791A JP H04265294 A JPH04265294 A JP H04265294A
Authority
JP
Japan
Prior art keywords
crystal
type
sic
crucible
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2425791A
Other languages
Japanese (ja)
Inventor
Tsutomu Uemoto
勉 上本
Takashi Fujii
高志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2425791A priority Critical patent/JPH04265294A/en
Publication of JPH04265294A publication Critical patent/JPH04265294A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-purity and large-diameter semiconductor crystal having a desired crystal type by carrying out the transformation into a desired crystal type, removal of impurities and vapor growth of the crystal in the same closed vessel out of contact with the external air. CONSTITUTION:The raw gases 3 such as SiH4 and C3H8 are passed through a CVD device with its vessel 1 enclosed by a heater 2 to form a beta-type SiC polycrystal powder 4. The powder 4 is placed in a crucible 11 arranged in a closed vessel. The crucible 11 is then high-frequency heated in an inert gas to transform the powder 4 into 6H-type SiC 51. The closed vessel is then evacuated and heated to remove the impurities 6 in the SiC 51. The crucible 11 is then heated to a high temp., vapor deposition is performed with the 6H-type SiC 52 freed of impurities as the raw material, and an SiC crystal 8 is vapor- grown on the surface of a seed-crystal substrate 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、可視発光素子、高温用
MOSFET等に用いる半導体結晶の製造方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing semiconductor crystals used in visible light emitting devices, high temperature MOSFETs, etc.

【0002】0002

【従来の技術】SiCはきわめて安定であることから耐
環境素子材料として研究が進められているのみならず、
禁制帯幅が2.39〜3.33eVまでと広い幅の多様
な結晶構造をとり、またpn接合が製作可能であるため
、青色及び紫色発光ダイオード材料として注目されてい
る。
[Prior Art] Because SiC is extremely stable, it is not only being researched as an environmentally resistant element material, but also
It is attracting attention as a material for blue and violet light emitting diodes because it has various crystal structures with a wide forbidden band width of 2.39 to 3.33 eV and can be used to form pn junctions.

【0003】SiCはα(ヘキサーゴナール)型とβ(
キュービック)型の結晶構造をとるが再現性よく大型結
晶を成長することができるのはα型の6H型結晶であり
、最も実用化が進んでいる。
[0003] SiC has α (hexagonal) type and β (
Although it has a cubic (cubic) type crystal structure, it is the α type 6H type crystal that can grow large crystals with good reproducibility, and is the one that is most in practical use.

【0004】この6H型結晶の作成方法を図4に示す。 この図に示すように容器32に珪砂31とカーボン粉末
33を混合し加熱する方法または図示しないがSiC粉
末を昇華してつくる方法があった。しかしこれらの方法
には問題があった。前者ではあまり大きな結晶が作成で
きなかった。また、後者では大きな結晶はできるものの
原料の特性によってできる結晶の特性が大きく異なった
。このことは例えばUSP486605に示されている
ように原料結晶の結晶型、粒型により大きく依存し、ま
た、原料結晶の不純物ができた結晶の不純物の特性を決
めるといった欠点があった。このため用いる材料として
は図4の方法で作成した結晶の粒型を選別して使用する
といった方法がとられていた。しかし、この方法では原
料の粉末に空気中の水分が製造工程の途中で含まれてし
まい、そのため基本的に純度の良い結晶が作れず、従っ
てできた結晶の純度もあまり良いものはできなかった。 即ち、SiCは空気中のO2 やH2 Oとこの結晶中
のSiが反応してSiO2 に成り易く、これがSiC
結晶の純度及び大型化を困難なものにしていた。
A method for producing this 6H type crystal is shown in FIG. As shown in this figure, there is a method of mixing silica sand 31 and carbon powder 33 in a container 32 and heating it, or a method of sublimating SiC powder (not shown). However, these methods had problems. In the former case, very large crystals could not be created. Although the latter produced large crystals, the characteristics of the resulting crystals varied greatly depending on the characteristics of the raw materials. This has the disadvantage that, as shown in US Pat. No. 4,866,05, it depends largely on the crystal type and grain type of the raw material crystal, and impurities in the raw material crystal determine the characteristics of the impurities in the resulting crystal. For this purpose, a method has been adopted in which the grain types of the crystals produced by the method shown in FIG. 4 are selected and used as the materials used. However, with this method, the raw material powder contained moisture from the air during the manufacturing process, so it was basically impossible to produce crystals with good purity, and the resulting crystals were not very pure. . In other words, SiC tends to react with O2 and H2O in the air and Si in this crystal to form SiO2, which becomes SiC.
This made it difficult to obtain crystal purity and increase its size.

【0005】[0005]

【発明が解決しようとする課題】このように従来のSi
C結晶作成技術では、純度の高い、大口径の結晶を作成
することはできなかった。本発明は前記問題点に鑑みて
なされたもので、大口径で高純度かつ所望の結晶型の半
導体結晶の製造方法を提供することを目的とする。 [発明の構成]
[Problem to be solved by the invention] In this way, conventional Si
With the C crystal production technique, it was not possible to produce a crystal with high purity and a large diameter. The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor crystal having a large diameter, high purity, and a desired crystal type. [Structure of the invention]

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は第1結晶型の半導体結晶を加熱することによ
り第2結晶型の半導体結晶に変換する第1の工程と、そ
の後減圧状態で加熱することにより前記第2結晶型の半
導体結晶内の不純物を除去する第2の工程と、続けて前
記第2結晶型の半導体結晶を原料にして種結晶表面に気
相成長層を形成する第3の工程とを備え、前記第1乃至
第3の工程を密閉容器内で行う事を特徴とする半導体結
晶の製造方法を提供するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a first step of converting a first crystal type semiconductor crystal into a second crystal type semiconductor crystal by heating, and then a reduced pressure state. a second step of removing impurities in the second crystal type semiconductor crystal by heating, and subsequently forming a vapor phase growth layer on the surface of the seed crystal using the second crystal type semiconductor crystal as a raw material; The present invention provides a method for manufacturing a semiconductor crystal, characterized in that the first to third steps are performed in a closed container.

【0007】[0007]

【作用】上記構成により、所望の結晶型への変換→不純
物除去→結晶の気相成長の一連の工程を外気に材料を触
れさせることなく同一の密閉容器内で行う様にしている
ため、所望の結晶型に変換した後の結晶内に空気中の水
分が含まれる心配がなくなり、従って極めて純度の高い
大型の単結晶が形成できる。
[Operation] With the above configuration, the series of steps of conversion to the desired crystal type → impurity removal → crystal vapor phase growth are performed in the same sealed container without exposing the material to the outside air. After conversion to the crystal form, there is no need to worry about moisture in the air being included in the crystal, and therefore a large single crystal with extremely high purity can be formed.

【0008】[0008]

【実施例】本発明の詳細を実施例に沿って説明する。図
1は本発明の第1の実施例に係る半導体結晶の製造方法
を示す。また図2には、この製造方法に使用する製造装
置を示す。先ずグラファイト製の容器1の周囲に、加熱
用ヒーター2を備えたCVD装置を用意し、これに原料
ガス例えばSiH4 及びC3 H8 3を流すことに
より壁面にβ型SiC多結晶粉末を付着させる。β型S
iCはα型に比べこの方法によって容易に得られる(図
1(a))。
[Examples] The details of the present invention will be explained based on examples. FIG. 1 shows a method for manufacturing a semiconductor crystal according to a first embodiment of the present invention. Further, FIG. 2 shows a manufacturing apparatus used in this manufacturing method. First, a CVD apparatus equipped with a heating heater 2 is prepared around a graphite container 1, and a raw material gas such as SiH4 and C3 H8 3 is flowed through the CVD apparatus, thereby depositing β-type SiC polycrystalline powder on the wall surface. β type S
iC is more easily obtained by this method than α-type (FIG. 1(a)).

【0009】次いで、このβ型SiC多結晶粉末を坩堝
11に一旦収納する。この坩堝11は図2に示した結晶
成長装置の一部となっている。この装置は熱処理炉と気
相成長装置を兼ねた構造になっており、内部に収納した
原料を外気に一切触れさせることなく処理することがで
きる様になっている。この粉末結晶10を坩堝11にい
れた際、SiCの種結晶12は坩堝11表面からずれた
位置に置き、不純物が表面に被着しない様にする。この
ために本結晶成長装置では横方向の移動装置13を使用
した。次いで、チャンバー151 ,152 内を10
−5torr程度の真空にし、その後、Arガスを導入
する。その後、坩堝11を誘導加熱装置16により高周
波加熱する。このとき、温度は1600℃、雰囲気ガス
の圧力としては1気圧である。この状態で6時間程度加
熱を行うと、ソース部の原料4はすべて6H型SiC5
1 に転移する。その後、チャンバー内を減圧し数To
rrにする。その後2時間そのままで放置し、高純度化
を行う。これにより6H型SiC内の不純物6が除去さ
れた(図1(b))。
Next, this β-type SiC polycrystalline powder is temporarily placed in a crucible 11. This crucible 11 is part of the crystal growth apparatus shown in FIG. This device has a structure that serves as both a heat treatment furnace and a vapor phase growth device, so that the raw materials stored inside can be processed without exposing them to outside air at all. When this powder crystal 10 is placed in a crucible 11, the SiC seed crystal 12 is placed at a position offset from the surface of the crucible 11 to prevent impurities from adhering to the surface. For this purpose, a lateral movement device 13 was used in this crystal growth apparatus. Then, inside the chambers 151 and 152, 10
A vacuum of about -5 torr is created, and then Ar gas is introduced. Thereafter, the crucible 11 is subjected to high frequency heating using the induction heating device 16. At this time, the temperature was 1600° C. and the pressure of the atmospheric gas was 1 atm. When heating is performed in this state for about 6 hours, all the raw materials 4 in the source part are 6H type SiC5
Transfer to 1. After that, the pressure inside the chamber is reduced to several To
Make it rr. After that, it is left as it is for 2 hours to perform high purification. As a result, the impurity 6 in the 6H type SiC was removed (FIG. 1(b)).

【0010】次いで種基板12をスライドさせソース部
の上にセットする。さらに、種基板12を2300℃、
ソース部である坩堝11を2400℃まで加熱する。そ
の後、この6H型SiC52 を原料にして12時間蒸
着を行うと、種結晶12上にSiC結晶8が数cm成長
する(図1(c))。
Next, the seed substrate 12 is slid and set on the source section. Furthermore, the seed substrate 12 was heated to 2300°C.
The crucible 11, which is the source part, is heated to 2400°C. Thereafter, when vapor deposition is performed for 12 hours using this 6H type SiC52 as a raw material, SiC crystal 8 grows several cm on seed crystal 12 (FIG. 1(c)).

【0011】このようにして成長した結晶は、高純度の
6H型の結晶がえられた。本実施例の製造方法では、β
型SiC原料は熱処理により、まずα型に変換される。 このときできる結晶型により最終的にできる結晶の品質
を決定することができる。また、熱処理の雰囲気、圧力
と温度により、結晶型の制御を行うことができる。この
条件として、6H型を作成するには1500℃で不活性
ガス中で行うことにより達成できる。原料はCVD法に
より作成されるため、純度よく作成できる。この原料を
用い昇華法で結晶を作成することにより、大口径で高純
度な6H型結晶を作成できるのである。一方従来の製造
方法では6H型以外に4H型または15R型の結晶が混
在することがおおかったが本発明を用いることにより、
他の結晶型が混じることが少なくなった。
The crystal grown in this manner was a highly pure 6H type crystal. In the manufacturing method of this example, β
The type SiC raw material is first converted into the α type by heat treatment. The quality of the final crystal can be determined by the crystal type formed at this time. Further, the crystal type can be controlled by the atmosphere, pressure and temperature of the heat treatment. This condition can be achieved by performing the process at 1500° C. in an inert gas to create the 6H type. Since the raw material is produced by the CVD method, it can be produced with high purity. By using this raw material to create crystals using the sublimation method, it is possible to create 6H type crystals with a large diameter and high purity. On the other hand, in conventional manufacturing methods, 4H type or 15R type crystals were often present in addition to 6H type crystals, but by using the present invention,
Other crystal types are less likely to be mixed.

【0012】図3は熱処理温度による原料中の多型の発
生確率を示したものである。縦軸は4H型SiCに対す
る6H型SiCの割合を示す。この様に1400℃を超
えて6H型SiCが急増し、1500℃以上では殆ど6
H型に転化する事が判る。従って結晶型変換のための熱
処理温度は1400℃以上、好ましくは1500℃以上
である方が良い。 これにより作成後の結晶の歩留りを向上できる。この様
にして得たSiC結晶を用いて、発光素子例えば青色発
光ダイオードを形成したところ高輝度のものを得た。
FIG. 3 shows the probability of occurrence of polymorphism in raw materials depending on the heat treatment temperature. The vertical axis indicates the ratio of 6H type SiC to 4H type SiC. In this way, 6H-type SiC rapidly increases above 1400℃, and above 1500℃, almost 6H type SiC increases.
It can be seen that it transforms into H type. Therefore, the heat treatment temperature for crystal type conversion is preferably 1400°C or higher, preferably 1500°C or higher. This makes it possible to improve the yield of crystals after production. Using the SiC crystal thus obtained, a light-emitting element, for example, a blue light-emitting diode, was formed and a high-luminance one was obtained.

【0013】次ぎに、本発明の第2の実施例を説明する
。本実施例が先の実施例と異なる点は、昇華法の代わり
にガス輸送法を用いて気相成長膜を形成した事及び、種
結晶の表面を気相成長法によって成膜する前に塩素系ガ
スでエッチングした事にある。真空中で行う熱処理によ
る不純物除去までは先の実施例と全く同じ様に行う。 次ぎに、輸送ガスとしてH2 又は不活性気体のいずれ
か単体または混合ガスを原料粉末から種結晶の方向に流
す。この様にすることによりSiCの蒸発気体は、輸送
ガスにより上流側から下流側に輸送される。その後、種
結晶上にSiC結晶として成長する。成長温度としては
種基板、ソース部は昇華法と同じである。この様にする
ことによりソース部と種結晶の距離を離すことができる
。このためソースの容量に制限がなくなり成長できる結
晶の大きさを大きくすることができる様になった。この
様な方法によっても先の実施例と同様の効果を奏する。 さらに、本発明の第3の実施例を説明する。この実施例
が先の第1の実施例と大きく異なる点は、SiCの代わ
りにZnSを原料に使用した事である。
Next, a second embodiment of the present invention will be explained. This example differs from the previous example in that the vapor phase growth film was formed using a gas transport method instead of the sublimation method, and that the surface of the seed crystal was chlorinated before forming the film by the vapor growth method. This is because it was etched with a type of gas. The process up to the removal of impurities by heat treatment in vacuum is carried out in exactly the same manner as in the previous embodiment. Next, as a transport gas, H2 or an inert gas, either alone or in combination, is flowed from the raw material powder toward the seed crystal. By doing so, the evaporated gas of SiC is transported from the upstream side to the downstream side by the transport gas. Thereafter, a SiC crystal is grown on the seed crystal. The growth temperature for the seed substrate and source part is the same as in the sublimation method. By doing so, the distance between the source section and the seed crystal can be increased. Therefore, there is no limit to the capacity of the source, and the size of the crystal that can be grown can now be increased. This method also produces the same effects as the previous embodiment. Furthermore, a third embodiment of the present invention will be described. This embodiment differs greatly from the first embodiment in that ZnS is used as a raw material instead of SiC.

【0014】ZnSには高温域でCVD法により成長し
た場合、立方晶型と六方晶型の結晶が混在するという欠
点があった。図1(a)と同様の炉中にジメチル亜鉛と
ジメチルイオウを混合し500 ℃以上の高温で加熱す
ると多結晶ZnSが成長することができる。この時炉の
温度を高くすることにより多結晶中にイオウ単体を含ま
ない多結晶を作製することが可能となる。しかし、低温
では立方晶しか生成しないが高温では六方晶の結晶が混
合する。そこで800 ℃程度の温度でまず多結晶の作
製を行った後、図1(b)と同様にるつぼに入れArと
H2 Sガスの混合ガス中で900 ℃程度で加熱する
。この時、雰囲気ガスの圧力を数十Torrまで減圧す
ることにより、立方晶型結晶が得られやすくなる。その
後、同一チャンバー中でさらに減圧し、真空中で110
0℃で、まず不純物を除去し、その後ルツボ上部の低温
部に立方晶型ZnSの種結晶を置き、数日程度で結晶を
成長することができる。 この様な方法によっても第1の実施例と同様の効果を奏
する。本発明は先の実施例に限定されるものではなく、
以下の様にしても良い。
ZnS has a drawback in that cubic and hexagonal crystals coexist when grown by CVD in a high temperature range. Polycrystalline ZnS can be grown by mixing dimethylzinc and dimethylsulfur in a furnace similar to that shown in FIG. 1(a) and heating the mixture at a high temperature of 500° C. or higher. At this time, by increasing the temperature of the furnace, it becomes possible to produce polycrystals that do not contain sulfur alone. However, at low temperatures only cubic crystals are formed, but at high temperatures hexagonal crystals are mixed. Therefore, a polycrystal is first prepared at a temperature of about 800°C, and then placed in a crucible and heated at about 900°C in a mixed gas of Ar and H2S gas, as in FIG. 1(b). At this time, by reducing the pressure of the atmospheric gas to several tens of Torr, it becomes easier to obtain cubic crystals. After that, the pressure was further reduced in the same chamber to 110 °C in vacuum.
First, impurities are removed at 0° C., and then a cubic ZnS seed crystal is placed in the low-temperature part of the upper part of the crucible, and the crystal can be grown in about a few days. Such a method also produces the same effects as the first embodiment. The present invention is not limited to the previous embodiments, but
It may be done as follows.

【0015】1  SiC,ZnSに限らず他の化合物
半導体例えばGaNやII−IV族化合物半導体のCd
Se,CdTe等の多型構造を有する結晶の製造にも本
発明は適用できる。 2  ここでは青色発光ダイオードとしてn型SiC結
晶上にAlNを含んだn型SiC結晶、さらにその上に
高濃度P型SiC結晶を液層エピタキシャル法で成長し
た素子に適用することにより高光度青色発光素子が達成
できるが、他の発光素子例えば緑色発光素子にもその他
高温素子にも本発明で形成した結晶を利用できる。また
CdTe,CdSは放射線検出器、可視光検出器にも適
用できる。 3  ここでは、気相成長時に不純物を添加しなかった
が、この段階で不純物を加えてP型或いはN型層を形成
する様にして発光素子を得ても良い。その他、本発明は
、その主旨を逸脱しない範囲で種々変形して使用するこ
とができる。
1 Not only SiC and ZnS but also other compound semiconductors such as GaN and Cd of II-IV compound semiconductors.
The present invention can also be applied to the production of crystals having polymorphic structures such as Se and CdTe. 2 Here, a blue light emitting diode is applied to a device grown by a liquid layer epitaxial method on an n-type SiC crystal containing AlN on an n-type SiC crystal, and on top of which a high-concentration P-type SiC crystal is grown using a liquid layer epitaxial method. However, other light emitting devices such as green light emitting devices and other high temperature devices can also utilize the crystals formed according to the present invention. CdTe and CdS can also be applied to radiation detectors and visible light detectors. 3 Here, impurities were not added during vapor phase growth, but a light emitting element may be obtained by adding impurities at this stage to form a P-type or N-type layer. In addition, the present invention can be modified and used in various ways without departing from the spirit thereof.

【0016】[0016]

【発明の効果】以上説明してきたように、本発明によれ
ば、所望の結晶型で、高純度、大口径の半導体結晶を歩
留りよく作成することができる。また、本発明により、
結晶を高純度にできるので従来より高抵抗の基板を作成
することができる。これにより、高耐圧素子などの作成
が容易になった。
As described above, according to the present invention, a semiconductor crystal of a desired crystal type, high purity, and large diameter can be produced with high yield. Further, according to the present invention,
Since the crystal can be made highly pure, it is possible to create a substrate with higher resistance than before. This has made it easier to create high-voltage devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の第1の実施例を示す断面図[Fig. 1] Cross-sectional view showing the first embodiment of the present invention

【図2
】  本発明の第1の実施例を示す断面図
[Figure 2
] Cross-sectional view showing the first embodiment of the present invention

【図3】  
本発明の第1の実施例を説明する図
[Figure 3]
Diagram explaining the first embodiment of the present invention

【図4】  従来例
を示す図
[Figure 4] Diagram showing a conventional example

【符号の説明】[Explanation of symbols]

1  グラファイド製容器 2  ヒーター 3  原料ガス 4  原料粉末 11  坩堝 12  種基板 13  種結晶移動装置 14  断熱材 15  石英チャンバー 16  高周波コイル 1 Graphite container 2 Heater 3 Raw material gas 4 Raw material powder 11 Crucible 12 Seed substrate 13 Seed crystal transfer device 14 Insulation material 15 Quartz chamber 16 High frequency coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第1結晶型の半導体結晶を加熱するこ
とにより第2結晶型の半導体結晶に変換する第1の工程
と、その後減圧状態で加熱することにより前記第2結晶
型の半導体結晶内の不純物を除去する第2の工程と、続
けて前記第2結晶型の半導体結晶を原料にして種結晶表
面に気相成長層を形成する第3の工程とを備え、前記第
1乃至第3の工程を密閉容器内で行う事を特徴とする半
導体結晶の製造方法。
1. A first step of converting a semiconductor crystal of a first crystal type into a semiconductor crystal of a second crystal type by heating the semiconductor crystal, and then converting the inside of the semiconductor crystal of the second crystal type by heating under reduced pressure. a second step of removing impurities, and a third step of forming a vapor phase growth layer on the surface of the seed crystal using the second crystal type semiconductor crystal as a raw material; A method for manufacturing a semiconductor crystal, characterized in that the steps of (1) and (2) are performed in a closed container.
JP2425791A 1991-02-19 1991-02-19 Production of semiconductor crystal Pending JPH04265294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2425791A JPH04265294A (en) 1991-02-19 1991-02-19 Production of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2425791A JPH04265294A (en) 1991-02-19 1991-02-19 Production of semiconductor crystal

Publications (1)

Publication Number Publication Date
JPH04265294A true JPH04265294A (en) 1992-09-21

Family

ID=12133191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2425791A Pending JPH04265294A (en) 1991-02-19 1991-02-19 Production of semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH04265294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017113A1 (en) * 1994-12-01 1996-06-06 Siemens Aktiengesellschaft Process and device for sublimation growing silicon carbide monocrystals
US5989340A (en) * 1995-11-14 1999-11-23 Siemens Aktiengesellschaft Process and device for sublimation growing of silicon carbide monocrystals
FR2839730A1 (en) * 2002-05-15 2003-11-21 Centre Nat Rech Scient Device for silicon carbide single crystal formation comprises substrate between two superposed cylindrical compartments, seed crystal at top of first compartment, gas precursor input, and heater
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017113A1 (en) * 1994-12-01 1996-06-06 Siemens Aktiengesellschaft Process and device for sublimation growing silicon carbide monocrystals
US5989340A (en) * 1995-11-14 1999-11-23 Siemens Aktiengesellschaft Process and device for sublimation growing of silicon carbide monocrystals
FR2839730A1 (en) * 2002-05-15 2003-11-21 Centre Nat Rech Scient Device for silicon carbide single crystal formation comprises substrate between two superposed cylindrical compartments, seed crystal at top of first compartment, gas precursor input, and heater
WO2003097905A2 (en) * 2002-05-15 2003-11-27 Centre National De La Recherche Scientifique Formation of single-crystal silicon carbide
WO2003097905A3 (en) * 2002-05-15 2004-04-08 Centre Nat Rech Scient Formation of single-crystal silicon carbide
JP2006503781A (en) * 2002-05-15 2006-02-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Formation of single crystal silicon carbide
US7655091B2 (en) 2002-05-15 2010-02-02 Centre National De La Recherche Scientifique Formation of single-crystal silicon carbide
JP2011219295A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Apparatus for producing silicon carbide single crystal ingot

Similar Documents

Publication Publication Date Title
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
US3956032A (en) Process for fabricating SiC semiconductor devices
US4897149A (en) Method of fabricating single-crystal substrates of silicon carbide
US20060174826A1 (en) Tantalum based crucible
US5746827A (en) Method of producing large diameter silicon carbide crystals
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JPH06316499A (en) Production of sic single crystal
JPS6346039B2 (en)
EP1375423B1 (en) Use of a low nitrogen concentration carbonaceous material as a jig.
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
CN109183143B (en) Method for improving AlN single crystal purity by using reducing gas
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JP4253974B2 (en) SiC single crystal and growth method thereof
JPH04193799A (en) Production of silicon carbide single crystal
JP2002249376A (en) Low nitrogen concentration carbonaceous material and method for producing the same
JP3128179B2 (en) Method for producing n-type silicon carbide single crystal
KR20070072670A (en) Apparatus for growing single crystal and method for growing single crystal
JPH04265294A (en) Production of semiconductor crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JP2001080997A (en) SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
JPH06298600A (en) Method of growing sic single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JPH08245299A (en) Method for growing silicon carbide crystal