JPS59123021A - Solar electric power generator - Google Patents

Solar electric power generator

Info

Publication number
JPS59123021A
JPS59123021A JP57233550A JP23355082A JPS59123021A JP S59123021 A JPS59123021 A JP S59123021A JP 57233550 A JP57233550 A JP 57233550A JP 23355082 A JP23355082 A JP 23355082A JP S59123021 A JPS59123021 A JP S59123021A
Authority
JP
Japan
Prior art keywords
circuit
error voltage
current
solar cell
shunt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57233550A
Other languages
Japanese (ja)
Inventor
Haruo Naka
仲 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57233550A priority Critical patent/JPS59123021A/en
Publication of JPS59123021A publication Critical patent/JPS59123021A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce the electric power supplied to an error voltage detecting amplifier and therefore to reduce a heating value by providing a current limiter at the input part of a shunt circuit. CONSTITUTION:A current limiter 7 is provided between the input part of a shunt circuit 5a, for example, and a diode 6a. The output current of the circuit 7 increases as the output current, i.e., the driving current of an error voltage detecting amplifier which supplied via the diode 6a increases gradually. When the driving current reaches the saturated region of the circuit 5a, the current is held at a fixed level by the circuit 7. Therefore the electric power supplied to the error voltage detecting amplifier can be reduced. This device can reduce the heating value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は例えば人工衛星や無人設備の電源装置として
使用されるソーラ電力発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solar power generation device used, for example, as a power supply device for artificial satellites and unmanned equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は従来のソーラ電力発生装置を示すものである。 FIG. 1 shows a conventional solar power generation device.

即ち、太陽電池素子2が複数個直列に接続されて太陽電
池回路28〜2dが構成される。各回路23〜2dで発
生された電力はブロッキングダイオード18〜1dをそ
れぞれ通してパスラインLに導びかれ負荷3に供給され
る。前記ブロッキングダイオード1 a −%−1dは
太陽電池回路28〜2dに破損、短絡等が生じた場合、
他の太陽電池回路で発生された電流がパスラインLを通
してその回路に流れ込まないようにするだめのものであ
る。
That is, a plurality of solar cell elements 2 are connected in series to constitute solar cell circuits 28 to 2d. The power generated in each of the circuits 23 to 2d is led to the pass line L through blocking diodes 18 to 1d, respectively, and is supplied to the load 3. The blocking diode 1a-%-1d is used when damage or short circuit occurs in the solar cell circuits 28 to 2d.
This is to prevent current generated in other solar cell circuits from flowing into that circuit through the pass line L.

一方、前記パスラインLの電圧Vは、太陽電池回路28
〜2dの発生電力の変化および負荷3の変動によって変
化することになる。この負荷3に供給される電圧を一定
値に保つため、負荷3の電圧Vは基準電圧■。とともに
誤差電圧検出増幅器4に供給され、これらが比較、増幅
される。この誤差電圧検出増幅器4より出力される誤差
電圧ΔVは前記太陽電池回路2a〜2Cの発生電力を制
御するシャント回路58〜5Cにそれぞれダイオード6
a〜6cを通して供給される。このダイオード68〜6
Cは直列数がそれぞれ違うため、前記誤差電圧ΔVが低
いときはダイオード6aを通してシャント回路5aが駆
動され、太陽電池回路2aの発生電力が制御される。ま
た、誤差電圧ΔVが高くなるとダイオード6b、6cを
通してシャント回路5b。
On the other hand, the voltage V of the pass line L is
It will change depending on the change in the generated power of ~2d and the fluctuation of the load 3. In order to keep the voltage supplied to this load 3 at a constant value, the voltage V of the load 3 is the reference voltage ■. The error voltage is also supplied to the error voltage detection amplifier 4, where they are compared and amplified. The error voltage ΔV output from the error voltage detection amplifier 4 is applied to shunt circuits 58 to 5C that control the power generated by the solar cell circuits 2a to 2C, respectively, through diodes 6.
Supplied through a to 6c. This diode 68~6
Since the number of Cs connected in series is different, when the error voltage ΔV is low, the shunt circuit 5a is driven through the diode 6a, and the power generated by the solar cell circuit 2a is controlled. Moreover, when the error voltage ΔV becomes high, the shunt circuit 5b passes through the diodes 6b and 6c.

5Cが駆動され、太陽電池回路2b、2cの発生電力が
制御されて負荷3に供給される電圧Vがvo に近づく
よう制御される。
5C is driven, and the power generated by the solar cell circuits 2b and 2c is controlled so that the voltage V supplied to the load 3 approaches vo.

第2図(a) 、 (b)は太陽電池回路2aの動作を
説明するために示す図である。即ち、誤差電圧検出増幅
器4からの誤差電圧ΔVが増大すると、太陽電池回路2
aの上部に流れる電流Iυは減少し、シャント回路5a
のトランジスタ12に流入する電流工。、は増加する。
FIGS. 2(a) and 2(b) are diagrams shown to explain the operation of the solar cell circuit 2a. That is, when the error voltage ΔV from the error voltage detection amplifier 4 increases, the solar cell circuit 2
The current Iυ flowing in the upper part of a decreases, and the shunt circuit 5a
The current flowing into the transistor 12 of . , increases.

誤差電圧Δ■がVlに達すると、工υ=0となシ、負荷
3に供給される電圧の制御能力がなくなり、ΔV>Vl
となるとVυ+■Lは急激に減少を始める。このため、
ブロッキングダイオード1aにかかる正方向バイアス電
圧vDは小さくなり、ブロッキングダイオード1aは非
導通となる。したがって、太陽電池回路2aは負荷3へ
の電圧制御ループから完全に切シ離される。この状態に
おいては太陽電池回路2bが太陽電池回路2aに代って
シャント回路5bによシ制御される。この動作は前記太
陽電池回路2aと同様である。また、誤;差電圧Δ■が
さらに大きくなると太陽電池回路2″bから2Cへと電
圧制御の機能が順次移って行く。
When the error voltage Δ■ reaches Vl, the power υ=0 and the ability to control the voltage supplied to the load 3 is lost, and ΔV>Vl
Then, Vυ+■L begins to decrease rapidly. For this reason,
The forward bias voltage vD applied to the blocking diode 1a becomes small, and the blocking diode 1a becomes non-conductive. Therefore, the solar cell circuit 2a is completely disconnected from the voltage control loop to the load 3. In this state, the solar cell circuit 2b is controlled by the shunt circuit 5b instead of the solar cell circuit 2a. This operation is similar to that of the solar cell circuit 2a. Furthermore, when the error voltage difference Δ■ becomes even larger, the voltage control function is sequentially transferred from the solar cell circuit 2″b to the solar cell circuit 2C.

ところで、前記各シャント回路58〜5bを駆動する電
流は第3図に実線で示す如く回路が飽和した後もさらに
誤差電圧が供給されるだめ駆動電流は急激に増大する。
Incidentally, as shown by the solid line in FIG. 3, the current driving the shunt circuits 58 to 5b increases rapidly even after the circuits are saturated because the error voltage is further supplied.

このだめ、誤差電圧検出増幅器4は大きな出力が要求さ
れ、その発熱量も増大することとなる。したがって、温
度上昇を低く抑えるために放熱構造を大きくする必要が
あシ、機器全体が大型化するという欠点を有していた。
Therefore, the error voltage detection amplifier 4 is required to have a large output, and the amount of heat generated therefrom also increases. Therefore, in order to keep the temperature rise low, it is necessary to enlarge the heat dissipation structure, which has the drawback of increasing the size of the entire device.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に基づいてなされたもので、その目
的とするところはシャント回路が飽和領域に達したあと
では誤差電圧がさらに増大しても駆動電流を一定値に保
持することによシ、誤差電圧検出増幅器に要求される供
給電力を軽減して発熱量を抑えることができるとともに
、機器の大型化を抑え得るソーラ電力発生装置を提供し
ようとするものである。
This invention was made based on the above circumstances, and its purpose is to maintain the drive current at a constant value even if the error voltage further increases after the shunt circuit reaches the saturation region. The present invention aims to provide a solar power generation device that can reduce the amount of heat generated by reducing the power required to be supplied to an error voltage detection amplifier, and can also suppress the increase in size of the device.

〔発明の概要〕[Summary of the invention]

この発明はシャント回路の入力部分に電流制限回路を設
け、この回路によってシャント回路が飽和領域に達した
あとでは、シャント回路の駆動電流を所定値に保持する
ものである。
This invention provides a current limiting circuit at the input portion of the shunt circuit, and this circuit maintains the drive current of the shunt circuit at a predetermined value after the shunt circuit reaches a saturation region.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照して説明
する。尚、第4図において第1図と同一部分には同一符
号を付す。ま尼、この実施例はシャント回路5a〜5C
について同様であるため、シャント回路5aについての
み説明する。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 4, the same parts as in FIG. 1 are given the same reference numerals. Mani, this embodiment uses shunt circuits 5a to 5C.
Since the circuits are the same, only the shunt circuit 5a will be described.

第4図において、シャント回路5aの入力部分およびダ
イオード6aの間には電流制限回路7が設けられる。即
ち、前記ダイオード6aのカソードは電流制限回路7を
構成するトランジスタTrのコレクタに接続されるとと
もに、抵抗R1を介して前記トランジスタTrのペース
に接続される。このトランジスタTrのエミッタは抵抗
R,を介してシャント回路5aの入力部分に接続される
とともに、ツェナーダイオードDZを介してトランジス
タ゛Trのペースに接続される。
In FIG. 4, a current limiting circuit 7 is provided between the input portion of the shunt circuit 5a and the diode 6a. That is, the cathode of the diode 6a is connected to the collector of the transistor Tr constituting the current limiting circuit 7, and is also connected to the pace of the transistor Tr via the resistor R1. The emitter of this transistor Tr is connected to the input portion of the shunt circuit 5a via a resistor R, and is also connected to the pace of the transistor Tr via a Zener diode DZ.

上記構成において、ダイオード6aを介して供給される
誤差電圧検出増幅器4の出力電流、即ち、駆動電流が第
5図に示す如く徐々に増加すると、電流制限回路7の出
力電流もこれに従って増加され、シャント回路5aは線
形制御される。そして、駆動電流が第5図に示すIo(
シャント回路5aの飽和領域)に達すると、ツェナーダ
イオードDzによってトランジスタTrのペース電圧が
一定値に保持される。このため、誤差電圧が第5図に示
す378以上となってもシャント回路5aの駆動電流は
一定に保持される。
In the above configuration, when the output current, that is, the drive current, of the error voltage detection amplifier 4 supplied via the diode 6a gradually increases as shown in FIG. 5, the output current of the current limiting circuit 7 also increases accordingly. The shunt circuit 5a is linearly controlled. Then, the driving current is Io (
When the saturation region of the shunt circuit 5a is reached, the pace voltage of the transistor Tr is maintained at a constant value by the Zener diode Dz. Therefore, even if the error voltage exceeds 378 as shown in FIG. 5, the drive current of the shunt circuit 5a is held constant.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したようにこの発明によれば、シャント回路
が飽和領域に達したあとは電流制限回路によって駆動電
流を一定値に保持している。
As described in detail above, according to the present invention, after the shunt circuit reaches the saturation region, the drive current is held at a constant value by the current limiting circuit.

したがって、誤差電圧検出増幅器の供給電力は低くてよ
く、従って発熱量を低く抑えることができるとともに、
機器の大型化を抑え得るソー1\ 2電力発生装置を提供できる。
Therefore, the power supplied to the error voltage detection amplifier can be low, and therefore the amount of heat generated can be kept low.
It is possible to provide a saw 1\2 power generation device that can suppress the increase in size of equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のソーラ電力発生装置を示す回路構成図、
第2図(、) 、 (b)および第3図は第1図の動作
を説明するために示す図、第4図はこの発明に係わるソ
ーラ電力発生装置の一実施例を示す要部の回路構成図、
第5図は第4図の動作を説明するために示す図である。 2・・・太陽電池、2a〜2d・・・太陽電池回路、1
a〜1d・・・ブロッキングダイオード、3・・・負荷
、4・・・誤差電圧検出増幅器、5 a r 5 b5
C・・・シャント回路、7・・・電流制限回路。 出願人代理人  弁理士 鈴 江 武 彦第2図 (a) □Δy Vl 第4図 第5図 □鉄大V斤
Figure 1 is a circuit diagram showing a conventional solar power generation device.
FIGS. 2(,), (b) and 3 are diagrams shown to explain the operation of FIG. 1, and FIG. 4 is a main circuit diagram showing an embodiment of the solar power generation device according to the present invention. Diagram,
FIG. 5 is a diagram shown to explain the operation of FIG. 4. 2...Solar cell, 2a-2d...Solar cell circuit, 1
a to 1d...Blocking diode, 3...Load, 4...Error voltage detection amplifier, 5 a r 5 b5
C... Shunt circuit, 7... Current limiting circuit. Applicant's representative Patent attorney Takehiko Suzue Figure 2 (a) □Δy Vl Figure 4 Figure 5 □ Tetsudai V

Claims (1)

【特許請求の範囲】[Claims] 複数の太陽電池よシなる太陽電池回路と、この太陽電池
回路の発生電力がブロッキングダイオードを介して供給
される負荷と、この負荷の電圧変動を検出する誤差電圧
検出増幅器と、゛この誤差電圧検出増幅器よシ出力され
゛る誤差電圧によりて駆動され前記太陽電池回路の発生
電力を制御するシャント回路と、このシャント回路の入
力部分に設けられシャント回路の駆動電流を所定値以下
に制限する電流制限回路とを具備したことを特徴とする
ソーラ電力発生装置。
A solar cell circuit such as a plurality of solar cells, a load to which the power generated by the solar cell circuit is supplied via a blocking diode, an error voltage detection amplifier that detects voltage fluctuations of this load, a shunt circuit that is driven by the error voltage output from the amplifier and controls the power generated by the solar cell circuit; and a current limiter that is provided at the input portion of the shunt circuit and that limits the drive current of the shunt circuit to a predetermined value or less. A solar power generation device characterized by comprising a circuit.
JP57233550A 1982-12-28 1982-12-28 Solar electric power generator Pending JPS59123021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233550A JPS59123021A (en) 1982-12-28 1982-12-28 Solar electric power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233550A JPS59123021A (en) 1982-12-28 1982-12-28 Solar electric power generator

Publications (1)

Publication Number Publication Date
JPS59123021A true JPS59123021A (en) 1984-07-16

Family

ID=16956813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233550A Pending JPS59123021A (en) 1982-12-28 1982-12-28 Solar electric power generator

Country Status (1)

Country Link
JP (1) JPS59123021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286112A (en) * 1986-06-04 1987-12-12 Mitsubishi Electric Corp Inverter controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286112A (en) * 1986-06-04 1987-12-12 Mitsubishi Electric Corp Inverter controller

Similar Documents

Publication Publication Date Title
US4745311A (en) Solid-state relay
US4056734A (en) Compensated base drive circuit to regulate saturated transistor current gain
WO2022236799A1 (en) Voltage regulator module and integrated chip
JP2004236469A (en) Instantaneous high power supply
CN107123967A (en) A kind of IGCT thermal protection circuit
CN108471231B (en) Absorption device for absorbing back electromotive force
JPS59123021A (en) Solar electric power generator
US4085358A (en) Regulated DC to DC power supply with automatic recharging capability
US7675262B2 (en) Battery voltage regulator
CN212322147U (en) Voltage regulating circuit
CN111883085B (en) Device for improving stable work of liquid crystal equipment
US3267349A (en) Low source-voltage cutoff arrangement for converters
CN108092254B (en) Battery current-limiting protection circuit and battery current-limiting protection method
US6853219B2 (en) Charging circuit
JPH01122367A (en) Switching power source circuit
US4710697A (en) Off-line series type regulating power supply
CN220401607U (en) Overvoltage and undervoltage protection circuit
JP2004194405A (en) Switching power source circuit for outputs of a plurality of systems
JPH05308733A (en) Charging circuit system and charger
CN212627673U (en) Switching power supply circuit and charger
RU40263U1 (en) VEHICLE VOLTAGE CONTROL DEVICE FOR VEHICLE DC
CN109599911B (en) Voltage-stabilizing output-adjustable rapid charging standby power supply
JPH01231660A (en) Feeding circuit
JP3083549B2 (en) Constant current charging circuit
CN111796630A (en) Voltage regulating circuit