JPS59122984A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS59122984A
JPS59122984A JP22856182A JP22856182A JPS59122984A JP S59122984 A JPS59122984 A JP S59122984A JP 22856182 A JP22856182 A JP 22856182A JP 22856182 A JP22856182 A JP 22856182A JP S59122984 A JPS59122984 A JP S59122984A
Authority
JP
Japan
Prior art keywords
multipliers
display position
light emitting
emitting display
square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22856182A
Other languages
Japanese (ja)
Other versions
JPH0423231B2 (en
Inventor
Shiyouichi Nakaoka
中岡 圧一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP22856182A priority Critical patent/JPS59122984A/en
Publication of JPS59122984A publication Critical patent/JPS59122984A/en
Publication of JPH0423231B2 publication Critical patent/JPH0423231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations

Abstract

PURPOSE:To contrive to enlarge an effective visual field, by determining a light emitting display position, by performing operation for satisfying a predetermined condition based on the outputs of four adjacent rectangular or square photoelectronic multipliers arranged in a grating configuration. CONSTITUTION:Four rectangular or square photoelectronic multipliers P1-P4 are arranged in a grating configuration so as to position the photoelectronic multipliers P1, P3 and P2, P4 on diagonal lines. When predetermined two outputs S1, S2 and S3, S4 among outputs S1-S4 due to light emission and reception from the scintillators of these multipliers are respectively added and treated with operation amplifiers 3, 4 and a dividing device 7, a light emitting display position X is determined by operation for satisfying the condition of the formula I . Similarily, light emitting display position Y for satisfying the condition of the formula II is determined. By these operations, the effective visual field in light emitting display is not a region determined at the center of the multipliers P1-P4 but comes to the region externally contacted with said region and the enlargement of the effective visual field is attained. Moreover, it is similar when many photoelectronic multipliers are used as units each comprising four.

Description

【発明の詳細な説明】 この発明はシンチレーションカメラの有効視野を拡大す
るための光電子増倍管の配列およびその出力の演算方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an arrangement of photomultiplier tubes for enlarging the effective field of view of a scintillation camera and a method of calculating the output thereof.

従来シンチレーションカメラにおいてγ線の入射位置に
対して表示装置上における表示位置を算出する方式(以
下位置計算回路と称す)として広く用いられているもの
は抵抗マトリクス方式と称されるもので、これは光電子
増倍管(以下PMTと称す)Pl、P21・・・、PM
の出力+11.112+・・・18NおよびこれらのX
方向位置座標kl、 k2.・・・、kN、y方向位置
座標1+ 、 +2 、・・・、lNを用いて、γ線入
射に対する表示装置上における表示位置か により演算される。この方式ではPMTの配置面積に比
較して画像となる面積(以下有効視野と称す)か狭い1
例えば直径501111のPMTを六角形状品配置した
場合、配置には直径350Hの円形領域が必要であるが
、有効視野は高々直径260fiである。
Conventionally, the method widely used in scintillation cameras to calculate the display position on the display device with respect to the incident position of gamma rays (hereinafter referred to as position calculation circuit) is called the resistance matrix method. Photomultiplier tube (hereinafter referred to as PMT) Pl, P21..., PM
output +11.112+...18N and these X
Direction position coordinates kl, k2. ..., kN, and the y-direction position coordinates 1+, +2, ..., lN, it is calculated based on the display position on the display device with respect to the incidence of γ-rays. In this method, the area that becomes the image (hereinafter referred to as the effective field of view) is narrow compared to the arrangement area of the PMT.
For example, when a hexagonal PMT with a diameter of 501111 is arranged, a circular area with a diameter of 350H is required for the arrangement, but the effective field of view is at most a diameter of 260fi.

この原因を説明するため、−次元でPMT2本の場合を
考える。第1図は2本のP M T Ps 、 P2を
持つ一次元のシンチレータ1ンカメラであり、入射した
γ線はシンチレータ(1)で螢光となり、ライトガイド
(2)を通じてP M T P+ 、 P2に信号81
 、82を生じさせる。第2図はr’7の入射位置Xに
対する信号sl I B2の波高を示す* kl * 
k2はP M T Pl、 P2のX方向位置座椋であ
る。従来の演算方式では。
To explain the cause of this, consider the case of two PMTs in the − dimension. Figure 1 shows a one-dimensional scintillator camera with two PMT Ps, P2, and the incident γ-ray becomes fluorescent light in the scintillator (1) and passes through the light guide (2) to PMT P+, P2. Signal 81
, 82. Figure 2 shows the wave height of the signal sl I B2 with respect to the incident position X of r'7 * kl *
k2 is the position of PMT Pl, P2 in the X direction. In the conventional calculation method.

表示装置上における表示位置Xは、(1ン式よりとなる
。r線入対位置Xが変化したときの表示位置X。の変化
は第3図の曲線gsのようになり、入射位11xかに、
とに2の間にあるときは表示位置Xは入射位置Xの変−
化により大きく変化するが、に1とに2の間にないとき
は表示位置Xの変化が小さい、これは、入射位置Xかに
、とに2の間にないときは、Xが変化してもその変化を
表示装置上で識別することができないことを意味し、結
局有効視野はklとに2の間に制限されることになる。
The display position X on the display device is determined by the formula (1).When the r-ray incident position X changes, the display position X changes as shown by the curve gs in Fig. To,
When the display position is between 2 and 2, the display position
However, when it is not between 1 and 2, the change in display position X is small. This means that when the incident position is not between This means that the change cannot be discerned on the display device, and the effective field of view is eventually limited to between kl and 2.

本発明は有効視野を拡大する目的で、上記の抵抗マトリ
クス方式とは異なる演算方式を与えるもので1次式(3
)の演算を行なうものである。
The present invention provides an arithmetic method different from the resistance matrix method described above for the purpose of expanding the effective field of view, and uses the linear equation (3
).

x = −!!−’−一 ・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
 (3)γ線入対位置Xが変化したときの表示位置Xの
変化は第3図の曲線g2のようになり、入射位置Xが変
化したときの表示位置Xの変化は0曲A!igtと異な
り。入射位置Xかに1とに2の間にないときも大きく、
入射位置Xの変化を表示位1i1Xの変化として識別で
きる範囲は、PMT配置の左右の外端の間にほぼ等しく
なる。従って、有効視野は従来の方式に比較して約2倍
に拡大される。
x = -! ! −'−1 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
(3) The change in display position X when the γ-ray incident position X changes is as shown by curve g2 in Figure 3, and the change in display position X when the incident position X changes is 0 song A! Unlike igt. It is also large when the incident position X is not between 1 and 2,
The range in which a change in the incident position X can be identified as a change in the display position 1i1X is approximately equal between the left and right outer ends of the PMT arrangement. Therefore, the effective field of view is expanded approximately twice as compared to the conventional method.

以上は一次元の例であり、実際に使用されているシンチ
レーションカメラは二次元の検出器であるが、事情は全
く同一である。PMT4本を正方形状に配置した場合に
ついて以下に述べる。第4図は検出器をシンチレータ側
から見た図であり。
The above is a one-dimensional example, and the scintillation camera actually used is a two-dimensional detector, but the situation is exactly the same. A case where four PMTs are arranged in a square shape will be described below. FIG. 4 is a diagram of the detector viewed from the scintillator side.

PMTの1.7各方向位置は、 P M T P+ 、
 P2− PsP4に対し、X方向がkl * k2 
* tcs l k4で与えられ・y方向がb 、 +
2 、13.14で与えられる。正方形状の配置より、
kx= kz、ki=に4.11==14+ h=1g
の関係がある。前記の一次元の演算方式(式(3))は
二次元の場合には9次式のように拡張できる。
The position of PMT in each direction is P M T P+ ,
For P2- PsP4, the X direction is kl * k2
* Given by tcs l k4・Y direction is b, +
2, given by 13.14. From the square arrangement,
kx= kz, ki=4.11==14+ h=1g
There is a relationship between The one-dimensional calculation method (formula (3)) described above can be extended to a nine-dimensional equation in the case of two dimensions.

8+ +112    11I +84X=〜    
”=L−扁一 ・・・・・・・・・・・・・・・(4)
811 十114 上の式のx、Yの演算を実現する演算回路の一例を第5
図に示す。第5図(a)はXの演算回路であり、 P 
M T Pl、 P2の出力at e 82は抵抗器R
を通り演算増幅器<33により加算され、 P M T
 Ps 、 P4の出力83,114は抵抗器Rを通り
演算増幅器(4)により加算され、演算増幅器(3)お
よび(4)の出力は除算器(7)の入力となり、演算増
幅器(3)の出力は演算増幅器(4)の出力で除され、
その結果を表示位置信号Xとして出力する。第5図(b
)は表示位置信号Yの演算回路であり、その動作は第5
図(IL)と同様であり。
8+ +112 11I +84X=~
”=L-Bianichi ・・・・・・・・・・・・・・・(4)
811 1114 An example of an arithmetic circuit that realizes the calculation of x and Y in the above equation is shown in the fifth section.
As shown in the figure. Figure 5(a) is an arithmetic circuit for X, and P
The output of M T Pl, P2 at e 82 is resistor R
P M T
The outputs 83 and 114 of Ps and P4 are added by the operational amplifier (4) through the resistor R, and the outputs of the operational amplifiers (3) and (4) become the inputs of the divider (7), and the outputs of the operational amplifier (3) The output is divided by the output of the operational amplifier (4),
The result is output as a display position signal X. Figure 5 (b
) is an arithmetic circuit for the display position signal Y, and its operation is the fifth
It is similar to the figure (IL).

演算回路の入力となるPMTの信号@11 I121 
sl 184の入力位置が第5図(a)と異なっている
ほかは。
PMT signal that is input to the arithmetic circuit @11 I121
The only difference is that the input position of sl 184 is different from that in FIG. 5(a).

回路構成は全く同一である。The circuit configuration is exactly the same.

次に数多くのPMTを珀いる場合について述べる。この
ような場合、PMT配列を4本1組とした小部分の集合
と見なして演算回路を構成することができる。その−例
として。第6図のように。
Next, we will discuss the case where a large number of PMTs are included. In such a case, an arithmetic circuit can be constructed by regarding the PMT array as a set of four small parts. As an example. As shown in Figure 6.

1.7各方向4列9合計16本のPMTを正方形格子状
に配置した場合は、4本1組の4つの小部分の集まりと
考え、γ紛入射位1i x 、 yに対する表示位置x
、Yの演算を例えば次の2つの段階に分けて行なうこと
ができる。
1.7 When a total of 16 PMTs are arranged in a square grid with 4 rows in each direction, they are considered to be a collection of 4 small parts of 1 set of 4, and the display position x for the gamma particle incident position 1i x, y
, Y can be performed, for example, in the following two steps.

囚 4つの小部分のいずれに入射したかを演算する。Calculate which of the four small parts the light has entered.

(B)  入射した小部分の内で(4)式の演算を行な
い。
(B) Calculate equation (4) within the incident small portion.

表示位iiX、Yを定める。Display position ii X, Y are determined.

以下、この演算について詳しく述べる。第6図は検出器
をシンチレータ側から見た図であるが。
This calculation will be described in detail below. FIG. 6 is a diagram of the detector viewed from the scintillator side.

4つの小部分を& 、 Ez 、 Ea 、 E4とし
、各小部分の中心位置のX方向位置座標を各々nil 
+ 1112 + ulB 、 1114 。
The four small parts are &, Ez, Ea, E4, and the X-direction position coordinate of the center position of each small part is nil.
+ 1112 + ulB, 1114.

7方向位置座標を各々01 * B2 + n11 @
 lI4とする。その配置より、 1111:012 
e ull”in41111””I141 J=ム8の
関係がある。小部分Bi(iは1.2.3.4のいずれ
かを表わす)は、 P M T Pix 、 Pl2.
Pis  、 Pl4で構成され、それらのPMTの中
心位置はX座標がkil、 kiz 、 kis  、
 ki4y座碩がlil、 fiz 、 l1i1i4
であり、 kit =ki2. kis =ki4. 
lit = li4 。
The position coordinates in 7 directions are each 01 * B2 + n11 @
Let it be lI4. From that arrangement, 1111:012
e ull"in41111""I141 There is a relationship of J=mu8. The small part Bi (i represents one of 1.2.3.4) is P M T Pix , Pl2.
It is composed of Pis, Pl4, and the center position of those PMTs has the X coordinates kil, kiz, kis,
ki4y zasek is lil, fiz, l1i1i4
and kit = ki2. kis=ki4.
lit = li4.

fiz == li3の関係がある。第7図は表示位置
を求める演算回路の一例である。γ線が入射したとき。
There is a relationship fiz == li3. FIG. 7 is an example of an arithmetic circuit for determining the display position. When gamma rays are incident.

小部分E1のPMT信号81’l m g+2 + 8
18 m 814 は抵抗Rf!:通じて、演算増幅器
(9)により加算され、信号Ulとなる。Ulは池の小
部分E2 、 E4 、 hE4からの信号U2 、 
U3 、 Uaと比較器101 、 (111、(6)
で比較され、各比較器の出力はアンドゲート13の入力
となる。γ線が小部分E1に入射した場合は信号Ulが
他の信号U2゜Ua 、 U4のいずれよりも大きくな
るので比較器uO)。
PMT signal of small part E1 81'l m g+2 + 8
18 m 814 is the resistance Rf! : are added by the operational amplifier (9) to become the signal Ul. Ul is the signal U2 from the small parts of the pond E2, E4, hE4,
U3, Ua and comparator 101, (111, (6)
The output of each comparator becomes the input of the AND gate 13. When the γ rays are incident on the small portion E1, the signal Ul becomes larger than any of the other signals U2°Ua and U4, so the comparator uO).

αu 、 (12+の出力は全てハイ・レベルとなり、
アンドゲート13の出力FNlはハイレベルとなる。逆
にγ線か小部分E!以外に入射した″場合は、器1はロ
ーレベルとなる。同様の回路は小部分E2 * Ea 
DE4にで第5図と同様の回路により、X、Y信号かそ
れぞれ算出される。各小部分0例えばE、のX信号は。
αu, (all outputs of 12+ are high level,
The output FNl of the AND gate 13 becomes high level. On the other hand, gamma rays or small part E! If the input signal is input to a source other than Ea, device 1 becomes low level.A similar circuit is constructed using the subsection E2
In DE4, the X and Y signals are each calculated by a circuit similar to that shown in FIG. The X signal of each subsection 0, for example E, is.

加算器−で定電圧信号VXIと加算される。VXIはあ
らかじめ決められた小部分E+の中心位置座標mlK比
例する値を持つ電圧信号で、これはγ線の入射位置Xか
小部分E4の右端から小部分E1に変化したとき9表示
座標が連続してなめらかに変化するようにあらかじめ行
なう試駐により定められる。
The adder adds it to the constant voltage signal VXI. VXI is a voltage signal having a value proportional to the center position coordinate mlK of the predetermined small part E+, and this means that when the γ-ray incident position X or the right end of the small part E4 changes to the small part E1, the 9 display coordinates are continuous. It is determined by a trial test conducted in advance so that it changes smoothly.

加算器−の出力X1はゲート(141を通る。ゲート0
4)の出力Xlは、アンドゲート[131の出力F、N
lが/%イレベルのときはX、と等しく 、 EN、が
ローレベルのときは零となる。同様にして小部分E2 
+ E3 * Ei4に対し。
The output X1 of the adder passes through the gate (141. Gate 0
4) Output Xl of AND gate [131 output F, N
When l is /% low level, it is equal to X, and when EN is low level, it becomes zero. Similarly, small part E2
+ E3 * For Ei4.

信号心、X3.淘か作られる1次にX+ 、 X2 、
 Xs 、 X4は加算器116)で加算され1表示装
置上における位置信号X′を発生する。全く同様にして
6位1a信号Y′が得られる。
Signal heart, X3. The first order X+ , X2 ,
Xs and X4 are added by an adder 116) to generate a position signal X' on one display device. The 6th place 1a signal Y' is obtained in exactly the same manner.

本発明のような検出器で一般に問題となる非直線性は1
例えば第8図に示すような位置補正回路を1例えば第7
図の加算器ti41の前段に設けることKより解消でき
る。第8図の補正回路を説明すると、X、Y信号はti
l、 囮のA/D変換器(例えば各8ビツトの精度を持
つ)によりデジタル値となり。
The nonlinearity that is generally a problem with detectors like the present invention is 1
For example, a position correction circuit as shown in FIG.
This problem can be solved by providing K at the stage before the adder ti41 shown in the figure. To explain the correction circuit in FIG. 8, the X and Y signals are ti
l. A decoy A/D converter (for example, each with 8-bit accuracy) converts it into a digital value.

この値でメモリ叫の番地を指定する。メモリ(1!ll
の指定された番地にはx、Yの正しい位置(すなわち入
射位置x、y)が記録されている。これは前もって点状
線源などを用いた測定により、記録されている。この正
しい位置信号がメモリ091より出力される。このよう
にし゛て非直線性は補正されるので1本発明における問
題点とはならない。
This value specifies the memory address. Memory (1!ll
The correct positions of x and Y (that is, the incident positions x and y) are recorded at the specified address. This has been previously recorded by measurements using point sources and the like. This correct position signal is output from memory 091. Since non-linearity is corrected in this way, it does not pose a problem in the present invention.

次に本発明の効果を述べる。PMTd本の場合について
は、従来の演算方式ではPMTの中心位置を結ぶ四角形
かほぼ有効視野になるのに対し1本発明ではPMTに外
接する四角形が有効視野になるので、有効視野の面積は
約4倍になる。また。
Next, the effects of the present invention will be described. In the case of d PMTs, in the conventional calculation method, the effective field of view is a rectangle connecting the center positions of the PMTs, or almost an effective field of view, whereas in the present invention, the effective field of view is a rectangle circumscribing the PMTs, so the area of the effective field of view is approximately It becomes 4 times. Also.

PMTが4本より多い場合1例えば16本の場合は、従
来は最も外側のPMTの中心を結ぶ四角形が有効視野で
あったのに対し一9本発明では外接する四角形が有効視
野となるのて1面積は約1.8倍(16/9倍)となる
When there are more than four PMTs, for example 16, conventionally the rectangle connecting the centers of the outermost PMTs was the effective field of view, but in the present invention the circumscribed rectangle becomes the effective field of view. One area is approximately 1.8 times (16/9 times).

以上詳述したように1本発明は有効視野の広いすぐれた
シンチレーシ替ンカメラを提供できるものである。
As detailed above, the present invention can provide an excellent scintillation camera with a wide effective field of view.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本の光電子増倍管を有する一次元シンチレー
シ暫ンカメラ、第2図はr線入射位置XK対する2本の
光電子増倍管の出力分布、第3図はγ線入対位置xK対
する表示位置Xのグラフ。 第4図は4本の光電子増倍管を有するシンチレーシ璽ン
カメラの配置図、第5図は第4図の場合の位置演算回路
例、第6図は16本の光電子増倍管を有するシンチレー
シッンカメラの配置図、第7図は第6図の場合の位置演
算回路例、第8図は非直線性補正回路の、それぞれ−例
を表わす。 (υ・・・シンチレータ  (2)・・・ライトガイド
(3)・(4J 、 <5) 、 (6) ・・・演算
増幅器R・・・抵抗器     (7)、(8)・・・
割算器(9)・・・演算増幅器   (101、U1)
、αの・・・比較器[131・・・アンドゲート圓・・
・加算器α5・・・ゲート     (161・・・加
算器面、0段・・・A/D変換器 叩・・・メモ!J(
ROM)Y1図         第2図 第40 (久) 尺 (1)) 第 5 図 惰 乙 図 惰 7 凹
Figure 1 shows a one-dimensional scintillation temporary camera with two photomultiplier tubes, Figure 2 shows the output distribution of the two photomultipliers relative to the r-ray incident position XK, and Figure 3 shows the gamma-ray incident position xK. Graph of display position X against. Figure 4 is a layout diagram of a scintillation camera with four photomultiplier tubes, Figure 5 is an example of a position calculation circuit in the case of Figure 4, and Figure 6 is a scintillation camera with 16 photomultiplier tubes. 7 shows an example of the position calculation circuit in the case of FIG. 6, and FIG. 8 shows an example of the nonlinearity correction circuit. (υ...Scintillator (2)...Light guide (3), (4J, <5), (6)...Operation amplifier R...Resistor (7), (8)...
Divider (9)...Operation amplifier (101, U1)
, α... comparator [131... and gate circle...
・Adder α5...Gate (161...Adder surface, 0 stage...A/D converter Hit...Memo! J(
ROM) Y1 Figure 2 Figure 40 (ku) Shaku (1)) Figure 5 Inasu Otsu Figure Inasa 7 Concave

Claims (1)

【特許請求の範囲】 シンチレータへの放射線の入射による発光を多数の光電
子増倍管で電気信号として検出し、放射線の入射位置に
対応して表示装置上で表示するものにおいて、光電子増
倍管な正方形あるいは矩形をなす格子状に配列すると共
に、正方形あるいは矩形を構成する隣接する4本の光電
子増倍管Pl。 P2 、 P3. P4の各々の出力81 * 82 
+ s3 + 84に基づき。 発光を表示する位置を演算する演算回路を設け。 繭記演算回路は次式の演算を行なうものであることを特
徴とするシンチレータ1ンカメラ。 X=(81+82)/  (sa+s4 )Y= (8
1+84)/ (lIz+!1g )ただし、光電子増
倍管P1とP3 * P2とP4は対角線状に位置し、
且つ各光電子増倍管の配列中心に対し点対称にあるもの
とする。
[Claims] In a device that detects light emitted by radiation incident on a scintillator as an electrical signal with a number of photomultiplier tubes and displays it on a display device in accordance with the incident position of the radiation, the photomultiplier tube etc. Four adjacent photomultiplier tubes Pl are arranged in a square or rectangular grid and form a square or rectangle. P2, P3. Each output of P4 81 * 82
Based on + s3 + 84. Equipped with a calculation circuit that calculates the position where the light emission is displayed. A scintillator camera, characterized in that the Mayuko calculation circuit performs the following calculation. X=(81+82)/(sa+s4)Y=(8
1+84)/(lIz+!1g) However, photomultiplier tubes P1 and P3 * P2 and P4 are located diagonally,
In addition, it is assumed that the photomultiplier tubes are point symmetrical with respect to the array center of each photomultiplier tube.
JP22856182A 1982-12-29 1982-12-29 Scintillation camera Granted JPS59122984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22856182A JPS59122984A (en) 1982-12-29 1982-12-29 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22856182A JPS59122984A (en) 1982-12-29 1982-12-29 Scintillation camera

Publications (2)

Publication Number Publication Date
JPS59122984A true JPS59122984A (en) 1984-07-16
JPH0423231B2 JPH0423231B2 (en) 1992-04-21

Family

ID=16878295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22856182A Granted JPS59122984A (en) 1982-12-29 1982-12-29 Scintillation camera

Country Status (1)

Country Link
JP (1) JPS59122984A (en)

Also Published As

Publication number Publication date
JPH0423231B2 (en) 1992-04-21

Similar Documents

Publication Publication Date Title
Seifert et al. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution
Popov et al. A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout
US4095108A (en) Signal processing equipment for radiation imaging apparatus
JPWO2007145154A1 (en) Compton camera device
Poladyan et al. Gaussian position-weighted center of gravity algorithm for multiplexed readout
US3937964A (en) Scintillation camera with second order resolution
US7026621B2 (en) System and method for producing a detector position map
JP7453359B2 (en) Method for position and energy determination in scintillation detectors
Leitner et al. Eliminating spatial distortions in Anger-type gamma cameras
US20110192980A1 (en) System and method for compensating for anode gain non-uniformity in multi-anode position sensitive photomultiplier tube
JPS59122984A (en) Scintillation camera
Ziock et al. Real-time generation of images with pixel-by-pixel spectra for a coded aperture imager with high spectral resolution
JP3323323B2 (en) Scintillation camera
Casolino et al. Calibration and testing of a prototype of the JEM-EUSO telescope on Telescope Array site
US4999500A (en) Apparatus for radiographic imaging
Pani et al. A compact gamma ray imager for oncology
JPH0627819B2 (en) Method and device for measuring distribution of radiation dose rate
Habermann et al. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors
US6740881B2 (en) Anisotropic transfer function for event location in an imaging device
Pani et al. Recent advances and future perspectives of position sensitive PMT
CN104933681A (en) Image processing apparatus and an image processing program
JP2004361290A (en) Gamma-ray directivity detector, and method and device for monitoring radiation
US4424447A (en) Gamma camera comprising an electronic device for the correction of linearity errors
Pani et al. New devices for imaging in nuclear medicine
Zarketan et al. Barreloid Deformation Correction in Planar Imaging