JPS59122914A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPS59122914A
JPS59122914A JP23350882A JP23350882A JPS59122914A JP S59122914 A JPS59122914 A JP S59122914A JP 23350882 A JP23350882 A JP 23350882A JP 23350882 A JP23350882 A JP 23350882A JP S59122914 A JPS59122914 A JP S59122914A
Authority
JP
Japan
Prior art keywords
electrodes
pair
signal
electromagnetic flowmeter
deposits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23350882A
Other languages
Japanese (ja)
Other versions
JPH0216976B2 (en
Inventor
Ichiro Wada
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23350882A priority Critical patent/JPS59122914A/en
Publication of JPS59122914A publication Critical patent/JPS59122914A/en
Publication of JPH0216976B2 publication Critical patent/JPH0216976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Abstract

PURPOSE:To find cleaning timing without removing the main body of a flowmeter, by separating a pair of electrodes from a signal conversion part, connecting the electrodes to a DC power source, applying DC power across said pair of the electrodes, and measuring the change in transient phenomenon. CONSTITUTION:When the presence or absence of attached material is detected by an electromagnetic flowmeter shown in the Figure, switches 32a-32c in a switching part 40 are switched to the sides of an attached material diagnosing part 50 from the flow rate measuring state shown in the Figure. At the same time, a clock signal is imparted to a hold circuit 61 and the attached material diagnosing part 50 from a clock signal source 62. As a result, a signal converting part 20 holds a value before DC power is applied. Meanwhile, a battery power source 31 is applied to a pair of electrodes 2a and 2b from a measuring part 17 of the attached material diagnosing part 50. A hold circuit 51 holds the signal voltage. After a specified period is elapsed, a second hold circuit 52 holds the signal voltage across the pair of the electrodes 2a and 2b. Based on both hold values and a preset value SV, attaching degree, i.e., the cleaning timing on the inner surface of a pipe to be measured is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は測定管の内面に電極間のインピーダンスを変化
させる特性を有する付着物が付着されたか否かを検出し
、付着物の除去対策および指示計の指示補償対策等を打
てるようにする電磁流量計に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention detects whether or not deposits that have a characteristic of changing the impedance between electrodes are attached to the inner surface of a measuring tube, and provides measures and instructions for removing the deposits. This article relates to an electromagnetic flowmeter that allows measures to be taken to compensate for the meter's indication.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電磁流量計は、一対の電極を設けた測定管、およびこの
測定管内を流通する流体に対して磁束を作用させる励磁
コイルを持った流量計本体部と、この測量計重体部から
出力された信号を所要の信号に変換して指示計に流量信
号とじて指示する信号変換部とから構成されているが、
前記測定管の内面に一対の電極間のインピーダンスを変
化させる特性を持った付着物が付着すると、指示計の指
示値が流量計と異なってしまう。しかし、電極間のイン
ピーダンスを測定するだけでは、電極表面に付着物が付
着しているツカ、或イは測定管の内壁にインビーダyス
’1変化させるような付着物が付着しているのがチェッ
クすることができない。
An electromagnetic flowmeter consists of a measuring tube with a pair of electrodes, an excitation coil that applies magnetic flux to the fluid flowing inside the measuring tube, and a signal output from the weight of the meter. It consists of a signal converter that converts the flow rate into the required signal and instructs the indicator as a flow rate signal.
If a deposit that has a characteristic of changing the impedance between the pair of electrodes adheres to the inner surface of the measuring tube, the indicated value of the indicator will differ from that of the flow meter. However, simply measuring the impedance between the electrodes cannot detect the presence of deposits on the surface of the electrodes, or deposits on the inner wall of the measurement tube that may cause a change in the impedance. Unable to check.

そこで、従来、流量計の出刃が余りにも小さすぎるとき
には、プラントから電磁流量計を取シ外してチェックを
行なっている。
Conventionally, when the flowmeter's cutting edge is too small, the electromagnetic flowmeter is removed from the plant and checked.

しかし、電磁流量計の測定管の口径が1mを越える場合
、その取り外し作業は非常に大変である。現に、このよ
うな手段によって見つかった出力減少のトラブルは数1
0%にも及ぶことを考えれば重大問題でもある。また、
反対に異常がなかった場合には取り外し等に伴なう重大
な工数、プラント停止等による損害が発生し、その解決
が望まれてhた。
However, when the diameter of the measurement tube of the electromagnetic flowmeter exceeds 1 m, the removal work is extremely difficult. In fact, there are only a few problems with output reduction found using this method.
This is a serious problem considering that the percentage is as high as 0%. Also,
On the other hand, if there were no abnormalities, significant man-hours associated with removal, etc., and damage due to plant stoppages would occur, and a solution to this problem was desired.

〔発明の目的〕 本発明は、流体を止めたり、或いはプラントから流量計
本体部を取り外すことなく、測定管の内面に電極間のイ
ンピーダンスを変化させる付着物の付着の有無を検出し
え、よって速やかに付着物除去対策および指示計の指示
補償手段を打てるようにする電磁流量計を提供すること
にある。
[Object of the Invention] The present invention is capable of detecting the presence or absence of deposits that change the impedance between electrodes on the inner surface of a measuring tube without stopping the fluid or removing the flow meter main body from the plant. To provide an electromagnetic flowmeter that enables prompt removal of deposits and indication compensation means of an indicator.

〔発明の概要〕[Summary of the invention]

本発明は、一対の電極間に直流電力を印加し、その過渡
現象の時間的変化から電極間のインピーダンスを変化さ
せる付着物の付着の有無を検出し、適宜な補償を講する
電磁流量計である。
The present invention is an electromagnetic flowmeter that applies DC power between a pair of electrodes, detects the presence or absence of deposits that change the impedance between the electrodes from temporal changes in the transient phenomenon, and takes appropriate compensation. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明するに際し、先ず、第1図な
いし第7図にて流量計本体部および流量計本体部を含む
電磁流量計の概略構成を説明する。流量計本体部は、励
磁コイルを除けば第1図のように略図化できる。図中1
は流体の流通する測定管、2m、2bは測定管1に対し
絶縁して設けた一対の電極、Jan3bは一対の電極2
 a r 21)間の信号電圧を取り出す信号取出線で
ある。測定管1としては、例えば第2図のように導電性
導管1aの内側にライニング1bを施したもの、或いは
第3図のように絶縁性導管1cを用いたものがある。
In explaining the present invention in detail below, first, the schematic structure of an electromagnetic flowmeter including a flowmeter main body and a flowmeter main body will be explained with reference to FIGS. 1 to 7. The main body of the flowmeter can be schematically illustrated as shown in FIG. 1, except for the excitation coil. 1 in the diagram
is a measuring tube through which fluid flows, 2m and 2b are a pair of electrodes provided insulated from the measuring tube 1, and Jan3b is a pair of electrodes 2.
This is a signal output line that takes out the signal voltage between a and r 21). The measuring tube 1 may be, for example, a conductive conduit 1a with a lining 1b as shown in FIG. 2, or an insulating conduit 1c as shown in FIG.

また、第4図のように導電性導管1aに絶縁物4を介し
て一対の電極2a、2bを取着するとともに、その一対
の電極2a、2bとこの一対の電極2g、2b近傍の導
管1a外表面に接触させた電位電極5a、5bとの電位
分布をそれぞれオペアンプ6a、6bで増幅して電流供
給電極7・・・によシ導管1a外表面に与える構成のも
のがある。つまシ、第4図は導電性導省1aに電位分布
をもたせることによって絶縁性壁(ライニング)を持っ
た測定管と同等の機能をもたせたものである。2oは差
動増幅器21を持った信号変換部である。
In addition, as shown in FIG. 4, a pair of electrodes 2a, 2b are attached to the conductive conduit 1a via an insulator 4, and the conduit 1a near the pair of electrodes 2a, 2b and the pair of electrodes 2g, 2b. There is a configuration in which the potential distribution between potential electrodes 5a and 5b in contact with the outer surface is amplified by operational amplifiers 6a and 6b, respectively, and applied to the outer surface of the conduit 1a by the current supply electrodes 7... The tube shown in FIG. 4 has the same function as a measuring tube with an insulating wall (lining) by providing a potential distribution to the conductive tube 1a. 2o is a signal converter having a differential amplifier 21;

次に、第5図ないし、第7図は信号電圧を考慮したとき
の概略構成およびその等価回路を示している。先ず、第
5図(、)のように一対の電極2a、2bf結ぶ線およ
び流体の流れ方向と直交する方向に図示しない磁束発生
部よシ磁束を与えた場合、第5図(b)のような等価回
路をもって表わすことができる。図中10は流量に応じ
た信号(ノイズを含む)、1ノは流体抵抗を示す。第6
図(a)は測定管1がらアース線3eを取り出し、信号
取出線3a + 3bと共に信号変換部20に導入した
もので、その等価回路は同図(b)に示す通シである。
Next, FIGS. 5 to 7 show a schematic configuration and its equivalent circuit when the signal voltage is considered. First, when a magnetic flux generator (not shown) applies magnetic flux in a direction perpendicular to the line connecting the pair of electrodes 2a and 2bf and the fluid flow direction as shown in FIG. 5(,), the magnetic flux as shown in FIG. 5(b) is applied. It can be expressed by an equivalent circuit. In the figure, 10 indicates a signal (including noise) according to the flow rate, and 1 indicates fluid resistance. 6th
In Figure (a), the ground wire 3e is taken out of the measuring tube 1 and introduced into the signal converter 20 together with the signal output lines 3a + 3b, and its equivalent circuit is shown in Figure (b).

図中10a、10bは測定管1と各電極2a、2b間の
流量に応じた信号、ll&+11bは流体抵抗である。
In the figure, 10a and 10b are signals corresponding to the flow rate between the measuring tube 1 and each electrode 2a and 2b, and ll&+11b is a fluid resistance.

第7図はアース線3eのアース点13が流体14に接触
させた場合の具体例である。
FIG. 7 shows a specific example where the ground point 13 of the ground wire 3e is brought into contact with the fluid 14.

次に、測定管1内に電極間インピーダンスの変化させる
付着物が付着した場合の検出原理およびその等価回路に
ついて第8図ないし第12図を参照して説明する。なお
、本発明の電磁流量計は両電極間の直゛流電力を印加す
ることにょシ、測定管内の付着物の有無を検出するもの
で、その1つの原理構成は第8図に示す通9である。
Next, the detection principle and its equivalent circuit when a deposit that changes the interelectrode impedance is attached to the measuring tube 1 will be explained with reference to FIGS. 8 to 12. The electromagnetic flowmeter of the present invention detects the presence or absence of deposits in the measuring tube by applying DC power between both electrodes, and one of its basic configurations is as shown in FIG. It is.

第8図は信号取出線Ja 、、9bの端部に信号変換部
20および電池電源31を手動的又は自動的に切換え選
択する連動動作する第1および第2のスイッチ32a、
32bf設け、本来の流量測定時には第1および第2の
スイッチ32a。
FIG. 8 shows first and second switches 32a that operate in conjunction to manually or automatically switch and select the signal converter 20 and battery power source 31 at the ends of the signal take-out lines Ja, 9b;
32bf is provided, and the first and second switches 32a are provided during actual flow rate measurement.

32bを信号変換部20側に接続し、測定管1内に導電
性又は絶縁性付着物15が付着しているか否かをチェッ
クするときには電池電源(直流電源)30側に接続する
。そして、一対の電極間に直流電力を与えた後、例えば
電圧計33にて一対の電極2a、2bから出力された電
流の大きさ又はその電流の大きさの時間的変化を見るも
のである。この付着物15の検出時には第3のスイッチ
31cによシ信号変換部20の入力端間に所要の抵抗3
4を挿入しておく。
32b is connected to the signal converter 20 side, and when checking whether conductive or insulating deposits 15 are attached to the inside of the measuring tube 1, it is connected to the battery power source (DC power source) 30 side. After DC power is applied between the pair of electrodes, the magnitude of the current output from the pair of electrodes 2a, 2b or the temporal change in the magnitude of the current is observed using, for example, a voltmeter 33. When detecting this deposit 15, the third switch 31c is activated to connect a required resistor 3 between the input terminals of the signal converter 20.
Insert 4.

第9図は同じく原理構成を示す図であって、これは信号
取出線Ja 、3bにスイッチ32を介して電池電源3
1を挿入する構成とするとともに、信号変換部20にお
いて信号取出線3 a。
FIG. 9 is a diagram showing the same principle configuration, in which a battery power source 3 is connected to signal take-out lines Ja and 3b via a switch 32.
1 is inserted, and a signal output line 3a is inserted in the signal converter 20.

3bの各出力端にカップリングコンデンサ32a。Coupling capacitor 32a at each output terminal of 3b.

32bを設けておく。この場合、スイッチ31を閉成す
れば、一対の電極間に電池電源31よシ直流電力が与え
られるが、この電池電源31の直流電力はカップリング
コンデンサ32a。
32b is provided. In this case, when the switch 31 is closed, DC power is applied between the pair of electrodes from the battery power source 31, and the DC power from the battery power source 31 is supplied to the coupling capacitor 32a.

32bによって阻止されるので、信号変換部20には何
ら影響を与えるものではない。そして、一対の電極間に
直流電力を与えた後、スイッチ31を開放すれば、一対
の電極2ae2b間よシ信号変化を取り出すことができ
る。
32b, it does not affect the signal converter 20 in any way. Then, by opening the switch 31 after applying DC power between the pair of electrodes, it is possible to extract signal changes between the pair of electrodes 2ae2b.

また、第10図は、同じく原理構成を示す図であって、
これは流量測定時には一対の電極2a、2bによって得
た流量に応じた信号をそのまま信号変換部20に供給し
、付着物15の付着有無の検出時にはスイッチ32a、
32bを切換えて一対の電極2h、2bf待った測定管
1をブリッジ回路16の一辺に挿入し、一対の電極2 
a 、 2.b間のインピーダンスの変化を測定部17
で測定す、るようにしてもよい。z1〜z3は既知イン
ピーダンス、31は電池電源である。
Further, FIG. 10 is a diagram similarly showing the principle configuration,
When measuring the flow rate, a signal corresponding to the flow rate obtained by the pair of electrodes 2a and 2b is directly supplied to the signal converter 20, and when detecting the presence or absence of deposits 15, the switch 32a,
32b and wait for the pair of electrodes 2h and 2bf, insert the measuring tube 1 into one side of the bridge circuit 16,
a, 2. The measurement unit 17 measures the change in impedance between
You can also measure it as follows. z1 to z3 are known impedances, and 31 is a battery power source.

第11図は第8図ないし第10図の原理構成に基づく等
価回路図である。同図においてRoは一対の電極2 a
 * 2bと導電性礁体との間の抵抗、R2は導電性流
体の両電極2a、2b間の抵抗、R3は測定管1内面の
一対の電極2 a。
FIG. 11 is an equivalent circuit diagram based on the principle configuration shown in FIGS. 8 to 10. In the figure, Ro is a pair of electrodes 2 a
*Resistance between 2b and the conductive reef body, R2 is the resistance between both electrodes 2a and 2b of the conductive fluid, and R3 is the resistance between the pair of electrodes 2a on the inner surface of the measuring tube 1.

2b間をショートするショート抵抗である。This is a short resistor that shorts between 2b.

1l−i3は回路に流れる電流である。Cはコンデンサ
である。
1l-i3 is the current flowing through the circuit. C is a capacitor.

第12図はインピーダンス測定回路を示す図であって、
17aは測定部17の指示計である。
FIG. 12 is a diagram showing an impedance measurement circuit,
17a is an indicator of the measuring section 17.

なお、第11図および第12図において抵抗R2にコン
デンサCを接続したのは、次の理由による。今、電気化
学的に考えると、導電性液体中の水が電離して、R20
→H” + OHになっているとする。今、電池電源E
bから電圧を両電極2a、2bに印加すると、片方の電
極ではe−が沢山E、から供給され 2忙+2C−+H2 となり、電極表面にR2の無数な微小気泡が付着し、電
流が流れなくなる。いわゆる分極が発生する。
The reason why the capacitor C is connected to the resistor R2 in FIGS. 11 and 12 is as follows. Now, if we consider electrochemically, the water in the conductive liquid is ionized and R20
→H” + OH.Now, the battery power source E
When voltage is applied from b to both electrodes 2a and 2b, a large amount of e- is supplied from E to one electrode, resulting in 2+2C-+H2, and countless microbubbles of R2 adhere to the electrode surface, and current no longer flows. . So-called polarization occurs.

次に、電゛池電源E、の極性を変えて、再印加すると電
流は良く流れやがて分極するいわゆるコンデンサCと機
能するためである。
Next, when the polarity of the battery power source E is changed and the voltage is reapplied, the current flows well and eventually functions as a so-called capacitor C which becomes polarized.

而して、本発明は、次の具体的な現象によって発見した
。第2図のような測定管1を持った電磁流量計を用いて
、金属水酸化物や酸化物を含有する排水の流量を測定し
ていたところ、約1年間で指示値は捧程度に徐々に下っ
た。両電極2a + 2 b間を市販のテスタで計った
ところ、両電極2a、2b間の抵抗は普通の固定抵抗の
ように安定指示で計れた。測定管1内を清掃してから両
電極2 a * 2b間の抵抗を計ったところ2にΩを
示し、数秒後に6にΩまで上がって、指示変化スピード
がのろくなった。電池電源Ebの極性を反対にしたとこ
ろ2にΩより下に急速に指示が下がシ数秒後に6にΩま
で上が9指示変化スピードがのろくならた。このことか
ら、第2図、第3図の場合に導電性付着物15が付けば
指示の振れがのろく(時定数大)指示変化幅が小さくな
る。つまシ、コンデンサCが、長時間小型気量を与えら
れコンデンサに光電するのでテスタの指示変化幅が小さ
いまま充電を完了し、電気化学的な分極の場合でも指示
変化幅が小さい状態で長時間かかって分極を完了する。
The present invention was discovered through the following specific phenomenon. When I was measuring the flow rate of wastewater containing metal hydroxides and oxides using an electromagnetic flowmeter with a measuring tube 1 as shown in Figure 2, I noticed that the indicated value gradually decreased to about the same level over a period of about one year. I went down to When the resistance between both electrodes 2a + 2b was measured with a commercially available tester, the resistance between both electrodes 2a and 2b was measured with a stable indication like a normal fixed resistance. After cleaning the inside of the measuring tube 1, the resistance between the electrodes 2a*2b was measured and showed 2 Ω, which rose to 6 Ω after a few seconds, and the speed of indication change became slow. When the polarity of the battery power supply Eb was reversed, the indication rapidly decreased below 2Ω, and after a few seconds, the indication changed slowly to 6Ω and up to 9. From this, in the case of FIGS. 2 and 3, if the conductive deposit 15 is attached, the fluctuation of the indication becomes slow (the time constant is large) and the width of the indication change becomes small. Since capacitor C is given a small amount of air for a long time and is photoelectrically charged to the capacitor, charging is completed while the range of change in the tester's indication is small, and even in the case of electrochemical polarization, the range of change in indication is small for a long time. to complete polarization.

このことから付着物15の有無、測定管1内面の掃除の
時期を知るには、第11図中の電気諸元の変化(特に過
渡現象)、第2図中のごとき抵抗測定部17による指示
変化等によって知ることができる。
From this, in order to know the presence or absence of deposits 15 and the timing of cleaning the inner surface of the measuring tube 1, it is necessary to check the changes in electrical specifications (especially transient phenomena) shown in FIG. It can be known by changes etc.

従って、第1図ないし第12図から以下のようなことが
理解することができる。測定管1の内面に付着物15が
付着すると、両電極2a。
Therefore, the following can be understood from FIGS. 1 to 12. When deposits 15 adhere to the inner surface of the measuring tube 1, both electrodes 2a.

2b間のインピーダンスが変化し、直流電力を両電極2
m、2b間に印加した時に流れる電流の大きさが時間と
ともに変化する。この時間的変化から付着物15の有無
、ひいては測定管内の掃除時期を知ることができる。
The impedance between 2b changes and direct current power is transferred to both electrodes 2.
The magnitude of the current flowing when applied between m and 2b changes over time. From this temporal change, the presence or absence of deposits 15 and, in turn, the timing of cleaning the inside of the measuring tube can be known.

例えば第2図および第3図に示す測定管1の内面に導電
性付着物15が付着すると、第11図の等価回路に示す
抵抗R1、Rs(一般にはRs>R1)が著しく変化す
る。また、第4図の例では、導電性導管1aの導電率の
異々るものであれば、導電性付着物でも絶縁性付着物1
5でも抵抗R3は変化する。
For example, when a conductive deposit 15 adheres to the inner surface of the measuring tube 1 shown in FIGS. 2 and 3, the resistances R1 and Rs (generally Rs>R1) shown in the equivalent circuit of FIG. 11 change significantly. In the example shown in FIG. 4, if the conductivity of the conductive conduit 1a is different, even if the conductive conduit 1a has a conductive deposit, the insulating deposit 1
5, the resistance R3 changes.

次に第6図の等価回路のCR直並列回路においても1=
0に直流電力を印加したとき回路を流れる電流を求め、
時定数を算出する。ただし、容量に残留電荷はないもの
とする。
Next, in the CR series/parallel circuit of the equivalent circuit in Figure 6, 1=
Find the current flowing through the circuit when DC power is applied to 0,
Calculate the time constant. However, it is assumed that there is no residual charge in the capacitor.

RI L1+R3is = E     ・・曲・・曲
□曲(すR2,2+弓j2dt=R・2・   (2)
11=i2+i3        ・・・・・・・・・
・・・・・・・・−(3)(1) 、 (3)式からi
sを消去すると(J 十Rs )jx  R312=B
・・四囲・曲(4)(2) 、 (3)式からisを消
去すると° ひ (R2+R3) zz+2 dt  R311=0 ・
・・・・・(5) C (4) 、 (5)式からilを消去するとここで、a
=RIR2+R2R3+RsRII Q2は電荷、Kは
定数である。
RI L1+R3is = E...song...song□song (sR2,2+bow j2dt=R・2・ (2)
11=i2+i3 ・・・・・・・・・
・・・・・・・・・−(3)(1), From equation (3), i
Eliminating s (J +Rs)jx R312=B
・If you delete is from equations (4) (2) and (3), ° hi(R2+R3) zz+2 dt R311=0 ・
・・・・・・(5) C (4) If il is deleted from equation (5), here, a
=RIR2+R2R3+RsRII Q2 is a charge and K is a constant.

初期条件1=0で q==Qより よって(2)式から よって、時定数Tは となる。この式に測定結果を入れてみると、付着物15
の付着傾向がよく分る。
Since the initial condition 1=0 and q==Q, from equation (2), the time constant T becomes. When we insert the measurement results into this formula, we find that deposits 15
The adhesion tendency is clearly visible.

次に、本発明の第1ないし第3の実施例について説明す
る。第13図は本発明に係る電磁流景計の第1の実施例
を示す図であって、図中40は信号取出線Ja 、3b
を信号変換部2゜および付着物診断部5oの伺れかに接
続する切換部であって、付着物診断部5oは、電池電源
31を含む第11図および第12図の諸元の変化を測定
する測足部17と、一対の電極2a。
Next, first to third embodiments of the present invention will be described. FIG. 13 is a diagram showing a first embodiment of the electromagnetic flow meter according to the present invention, in which 40 denotes signal output lines Ja, 3b.
is connected to the signal converter 2° and the deposit diagnosis unit 5o, and the deposit diagnosis unit 5o detects changes in the specifications shown in FIG. 11 and FIG. A foot measuring section 17 for measurement and a pair of electrodes 2a.

2b間への直流電力印加時っi ’> t=n1時の電
気諸元例えば信号取出線3a 、3b間の電圧會ホール
ドする第1のホールド回路5ノと、直流電力を印加した
後所定時間t = n 2経過後の電気諸元例えば信号
取出線、9a 、3b間の電圧をホールドする第2のホ
ールド回路52と両ホールド回路51.52のホールド
値の差と予め定めた設定値SVとを比較して付着物15
の付着度合や測定管内面の掃除のタイミングを知らせる
信号S1を出力するコンパレータ53とからなる。図中
、6ノは信号ホールド回路、62はクロック信号源であ
る。
Electrical specifications when DC power is applied between 2b and i'> t=n1 For example, the first hold circuit 5 holds the voltage between signal take-out lines 3a and 3b, and the predetermined time after applying DC power. Electrical specifications after 2 lapses of t = n For example, the difference between the hold values of the second hold circuit 52 that holds the voltage between the signal output lines 9a and 3b and both hold circuits 51 and 52, and the predetermined set value SV. Compare the deposits 15
and a comparator 53 that outputs a signal S1 indicating the degree of adhesion and the timing of cleaning the inner surface of the measuring tube. In the figure, 6 is a signal hold circuit, and 62 is a clock signal source.

この第13図の電磁流量計において付着物15の有無を
検出する場合、切換部40のスイッチ13a〜13cを
図示状態(流量測定状態)から付着物診断部50側に自
動又は手動の何れかの手段によって切換える。スイッチ
138〜13cf切換えるとともにクロック信号源62
からホールド回路6ノおよび付着物診断部50にクロッ
ク信号を与える。この結果、信号変換部20は直流電力
を印加する前の値をホールドし、一方、付着物診断部5
0の測定部17から電池電源31を一対の電極2a、2
bに印加する。この電池電源31の印加後、直ちに或い
はある期間経過後に第1のホールド回路51が一対の電
極2a r 2 b間の信号電圧をホールドし、このホ
ールド後所定期間経過後に第2のホールド回路52が一
対の電極2a、2b′間の信号電圧をホールドする。そ
して、両ホールド値と設定値SVとから付着度合、測定
管内面の掃除タイミングを得るものである。
When detecting the presence or absence of deposits 15 in the electromagnetic flowmeter shown in FIG. Switch by means. When switching the switches 138 to 13cf, the clock signal source 62
A clock signal is given to the hold circuit 6 and the deposit diagnosis unit 50 from the hold circuit 6 . As a result, the signal conversion section 20 holds the value before applying DC power, while the deposit diagnosis section 5
The battery power supply 31 is connected to the pair of electrodes 2a, 2 from the measurement unit 17 of
b. Immediately or after a certain period of time has elapsed after this battery power supply 31 is applied, the first hold circuit 51 holds the signal voltage between the pair of electrodes 2a r 2 b, and after a predetermined period of time after this holding, the second hold circuit 52 The signal voltage between the pair of electrodes 2a and 2b' is held. Then, the degree of adhesion and the timing for cleaning the inner surface of the measuring tube are obtained from both hold values and the set value SV.

次に、第14図は本発明に係る電磁流量計の第2の実施
例を示す図である。これは、励磁コイル18aと励磁電
源18bとの間にスイッチ回路19を設け、付着物15
の測定時にクロック信号源62からの信号で励磁電流全
しゃ断するものである。このような構成をとれば、第1
3図に比較し測定精度を高めることができる。
Next, FIG. 14 is a diagram showing a second embodiment of the electromagnetic flowmeter according to the present invention. This is achieved by providing a switch circuit 19 between the excitation coil 18a and the excitation power supply 18b, and
During measurement, the excitation current is completely cut off by a signal from the clock signal source 62. With this configuration, the first
Compared to Figure 3, the measurement accuracy can be improved.

次に、第15図は本発明に係る電磁流量計の第3の実施
例を示す図である。これは、信号変換部20に補償回路
23を接続し、付着物診断部50の出力を補償回路23
に入力し補償するものである。従って2、この補償回路
23は付着物15による出力信号減少分を付着物診断部
50の出力S1で補償し正しい流量値Sz’c出ヵする
ものである。
Next, FIG. 15 is a diagram showing a third embodiment of the electromagnetic flowmeter according to the present invention. In this case, the compensation circuit 23 is connected to the signal conversion section 20, and the output of the deposit diagnosis section 50 is transferred to the compensation circuit 23.
This is to input and compensate. Therefore, the compensation circuit 23 compensates for the decrease in the output signal due to the deposit 15 with the output S1 of the deposit diagnosis section 50, and outputs the correct flow rate value Sz'c.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

上記実施例は2つの電極2a、2bを用いたものに適用
したが、多電極用ものでも同様に適用できる。また、信
号変換部2oの出力側にタイマを有する流量変化監視回
路を設け、この監視回路で周−回又は月−回の流量安定
時を検出してクロック信号源62に付着物検出指令を与
えるようにしてもよい。また、付着物15の検出時に信
号変換部20の入力端にチェック信号を入れて同変換部
20の診断を行なうようにしてもよい。その他、本発明
はその要旨を逸、脱しない範囲で種々変形して実施でき
る。
Although the above embodiment was applied to an example using two electrodes 2a and 2b, it can be similarly applied to an example using multiple electrodes. Further, a flow rate change monitoring circuit having a timer is provided on the output side of the signal converting section 2o, and this monitoring circuit detects when the flow rate is stable in cycles or months and gives a deposit detection command to the clock signal source 62. You can do it like this. Furthermore, when the deposit 15 is detected, a check signal may be input to the input terminal of the signal converter 20 to diagnose the converter 20. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、一対の電極を信号
変換部から切シ離して直流電源に接続し、この一対の電
極間に直流電力を印加し、その過渡現象の変化から測定
管の内面の付着物の度合、測定管内面の掃除のタイミン
グを知るようにしたので、流体を止めたり或いはゾ2ン
トから流量計本体を取シ外すことなく付着物の付着有無
、掃除タイミングを知ることができる。
As described in detail above, according to the present invention, a pair of electrodes is disconnected from the signal converter and connected to a DC power source, and DC power is applied between the pair of electrodes, and from the change in the transient phenomenon, the measurement tube is Since it is possible to know the degree of deposits on the inner surface of the measuring tube and the timing for cleaning the inside of the measuring tube, it is possible to know the presence or absence of deposits and the timing for cleaning without stopping the fluid or removing the flow meter body from the sensor. be able to.

そして、付着物の度合が分ればそれに応じて例えば洗浄
ノズルから水洗或いは薬洗するとか、補償要素全付加す
るとか、付着除去対策、指示補償対策等を請することが
できる電磁流量計を提供できる。
We also provide an electromagnetic flowmeter that can request measures such as water or chemical cleaning from the cleaning nozzle, addition of all compensation elements, adhesion removal measures, indication compensation measures, etc., depending on the degree of adhesion. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は測定管の構成態様を示す図、第5
図ないし第7図は信号電圧全考慮した場合の構成図およ
び等価回路図、第8図ないし第10図はそれぞれ付着物
を検出するための原理構成を示す図、第11図はその原
理構成の等価回路図、第12図は測定回路の構成図、第
13図ないし第15図は本発明に係る電磁流量計の第1
ないし第3の実施例を示す構成図である。 1・・・測定管、2a8,2b・・・−・対の電極、3
a。 3b・・・信号取出線、18a・・・励磁コイル、18
b・・・励磁電源、19・・・スイッチ回路、20・・
・信号変換部、32a〜32c・・・スイッチ、40・
・・切換部、50・・・付着物診断部、62・・・クロ
ック信号源。 出願人代理人  弁理士 鈴 江 武 彦第9図 3] 9に11図 第10図 第121* 特許庁長官  若  紗 和  夫   殿1.事件の
表示 特願昭57−233508号 2、発明の名称 電磁流量計 3、補正をする者 事件との関係   特許出願人 (307)  東5J芝油電気株式会社4、代理人
Figures 1 to 4 are diagrams showing the configuration of the measuring tube, Figure 5
Figures 7 to 7 are block diagrams and equivalent circuit diagrams when all signal voltages are considered, Figures 8 to 10 are diagrams showing the principle configuration for detecting deposits, and Figure 11 is the principle configuration. The equivalent circuit diagram, FIG. 12 is a configuration diagram of the measurement circuit, and FIGS. 13 to 15 are the first diagrams of the electromagnetic flowmeter according to the present invention.
It is a block diagram which shows the 3rd Example. 1...Measurement tube, 2a8, 2b...--pair electrode, 3
a. 3b...Signal take-out line, 18a...Exciting coil, 18
b... Excitation power supply, 19... Switch circuit, 20...
・Signal converter, 32a to 32c...switch, 40・
...Switching unit, 50...Adherence diagnostic unit, 62...Clock signal source. Applicant's representative Patent attorney Takehiko Suzue Figure 9, Figure 9, Figure 11, Figure 10, Figure 121* Commissioner of the Patent Office Kazuo Wakasa 1. Indication of the case Japanese Patent Application No. 57-233508 2, Name of the invention Electromagnetic flowmeter 3, Person making the amendment Relationship to the case Patent applicant (307) Higashi 5J Shiba Yudenki Co., Ltd. 4, Agent

Claims (3)

【特許請求の範囲】[Claims] (1)測定管内を流通する流体に磁束を作用させて流体
の流速に比例する信号を少なくとも一対の電極によって
取9出す流量計本体部と、この流量計本体部から出力さ
れる信号を所要の信号に変換する信号変換部とを有する
電磁流量計において、前記対をなす電極と信号変換部と
の間に設けられ、常時は電極を信号変換部側に接続し、
前記測定管内の付着物検出時に信号変換部より切り離す
切換部と、この切換部による信号変換部からの切シ離し
によって接続されて前記対をなす電極に直流電力を印加
する直流電源と、この直流電源を対をなす電極に印加す
ることによって該対をなす電磁極間から得られる信号の
変化から付着物の付着状態を知る付着物診断手段とを備
えたことを特徴とする電磁流量計。
(1) A flowmeter main body that applies a magnetic flux to the fluid flowing in the measuring tube and extracts a signal proportional to the fluid flow velocity using at least one pair of electrodes, and a flowmeter main body that extracts a signal proportional to the flow velocity of the fluid through at least one pair of electrodes, and a In an electromagnetic flowmeter having a signal conversion section that converts into a signal, the electrode is provided between the pair of electrodes and the signal conversion section, and the electrode is normally connected to the signal conversion section side;
a switching unit that disconnects from the signal converting unit when detecting deposits in the measurement tube; a DC power supply that applies DC power to the pair of electrodes that are connected by disconnecting from the signal converting unit by the switching unit; 1. An electromagnetic flowmeter comprising: a deposit diagnosis means for determining the state of deposits from changes in signals obtained between a pair of electromagnetic poles by applying power to the pair of electrodes.
(2)付着物診断手段は、ある時間の間に対をなす電極
から出力される2つの12、信号をホールドし、そのホ
ールド差と設定値とから付着物の付着状態を知るもので
ある特許請求の範囲第1項記載の電磁流量計。
(2) The deposit diagnosis means holds two 12 signals output from a pair of electrodes during a certain period of time, and determines the adhesion state of deposits from the hold difference and set value. An electromagnetic flowmeter according to claim 1.
(3)付着物の検出時、測定管への磁束の供給を断とす
る特許請求の範囲第1項記載の電磁流量計。
(3) The electromagnetic flowmeter according to claim 1, wherein the supply of magnetic flux to the measuring tube is cut off when a deposit is detected.
JP23350882A 1982-12-28 1982-12-28 Electromagnetic flowmeter Granted JPS59122914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23350882A JPS59122914A (en) 1982-12-28 1982-12-28 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23350882A JPS59122914A (en) 1982-12-28 1982-12-28 Electromagnetic flowmeter

Publications (2)

Publication Number Publication Date
JPS59122914A true JPS59122914A (en) 1984-07-16
JPH0216976B2 JPH0216976B2 (en) 1990-04-19

Family

ID=16956124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23350882A Granted JPS59122914A (en) 1982-12-28 1982-12-28 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS59122914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139426U (en) * 1985-02-20 1986-08-29
EP1108988A1 (en) * 1999-12-15 2001-06-20 Endress + Hauser Flowtec AG Method and device for determining the throughput of a fluid in a measuring tube
DE10335205A1 (en) * 2003-07-30 2005-02-17 Endress + Hauser Flowtec Ag, Reinach Method for the magnetic-inductive determination of the flow rate of a medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439325B2 (en) * 2010-09-27 2014-03-12 横河電子機器株式会社 Electromagnetic log sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139426U (en) * 1985-02-20 1986-08-29
EP1108988A1 (en) * 1999-12-15 2001-06-20 Endress + Hauser Flowtec AG Method and device for determining the throughput of a fluid in a measuring tube
DE10335205A1 (en) * 2003-07-30 2005-02-17 Endress + Hauser Flowtec Ag, Reinach Method for the magnetic-inductive determination of the flow rate of a medium
US7340963B2 (en) 2003-07-30 2008-03-11 Endress + Hauser Flowtec Ag Method for magneto-inductive determination of the flow rate of a medium

Also Published As

Publication number Publication date
JPH0216976B2 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
EP1042651B1 (en) Electrode integrity checking
JP5216958B2 (en) Leakage current detection device and leakage current detection method
JPH0961505A (en) Apparatus for detecting life of sealed lead storage battery
JP5620297B2 (en) Impedance measuring device
CN105842540A (en) Method for detecting DC bus insulation resistance
CN106936181B (en) Detection circuit and detection method for contact impedance of charge and discharge loop and self-detection method thereof
JPS59122914A (en) Electromagnetic flowmeter
JPS63243767A (en) Method and apparatus for measuring conductivity from which effect of polarization is removed
JPH03182063A (en) Deteriorated condition sensing method for sealed lead-acid battery
JPH03144314A (en) Electromagnetic flowmeter
CN202393434U (en) Electromagnetic type water meter
US9121741B2 (en) Electromagnetic flow meter
JP2020186934A (en) Capacitive electromagnetic flow meter and measurement control method
JP2751269B2 (en) Electromagnetic flow meter
CN103048023B (en) Electromagnetic type water meter
JPH0367219B2 (en)
CN219490168U (en) Potential acquisition and measurement circuit of cathodic protection acquisition instrument
JP2003106879A (en) Electromagnetic flowmeter
CN106153528A (en) A kind of metal covering Corrosion monitoring instrument and measuring method thereof
JP3954523B2 (en) Damage position detector for buried coated steel pipe
JPH01288724A (en) Electrode fouling detector for electromagnetic flowmeter
JPH10319066A (en) Method and device for measuring equivalent series resistance of capacitive element
JPH0821757A (en) Electromagnetic flowmeter
JP3321750B2 (en) Electromagnetic flow meter
JP2013148502A (en) Electromagnetic flow meter