JPS5912288A - Heat-transferring device - Google Patents
Heat-transferring deviceInfo
- Publication number
- JPS5912288A JPS5912288A JP12239982A JP12239982A JPS5912288A JP S5912288 A JPS5912288 A JP S5912288A JP 12239982 A JP12239982 A JP 12239982A JP 12239982 A JP12239982 A JP 12239982A JP S5912288 A JPS5912288 A JP S5912288A
- Authority
- JP
- Japan
- Prior art keywords
- pfh
- working fluid
- heat
- heat transfer
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は作動流体を加熱して蒸発させる再生部梵
と作動流体を冷却して液化さ蔦る凝縮部とを循環する作
動流体の密閉循環系を形成し、再生部で作動流体に与え
られた熱エネルギーを凝縮部から密閉循環系外へ送り出
すようにした熱移動装置に関するもので、例えば暖房装
置として利用できるものである。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is directed to a sealing method for a working fluid that circulates between a regeneration section that heats and evaporates the working fluid and a condensation section that cools and liquefies the working fluid. The present invention relates to a heat transfer device that forms a circulation system and sends thermal energy given to a working fluid in a regeneration section to the outside of the closed circulation system from a condensation section, and can be used, for example, as a heating device.
(ロ)背景技術
此種の熱移動装置には、例えばヒートパイプやサーモサ
イフオンがその代表的なものとして知られており、又そ
の作動流体においても水、エタノール、フロン等の種々
の物質が従来知られている。(b) Background Art Heat pipes and thermosiphons are known as representative examples of this type of heat transfer device, and their working fluids also contain various substances such as water, ethanol, and fluorocarbons. Conventionally known.
しかし乍ら、水、エタノール、フロン、水銀、ナトリウ
ム、セシウム、ペンタン、ヘプタン等を作動流体とした
従来の熱移動装置においては、その作動流体の種類によ
り、高温条件下の熱安定性の悪いもの、装置の構造材(
主として鉄、銅、アルミニウム等の金属材)に対する腐
食性の高いもの、人体に対する毒性や爆発の危険性を有
するもの、凍結点が高(寒冷気候での使用が不適なもの
、或いは高価なものとなる等の様々の欠点がある。However, conventional heat transfer devices using water, ethanol, CFCs, mercury, sodium, cesium, pentane, heptane, etc. as working fluids have poor thermal stability under high temperature conditions depending on the type of working fluid. , equipment structural materials (
Items that are highly corrosive to metal materials (primarily iron, copper, aluminum, etc.), items that are toxic to the human body or have a risk of explosion, items that have a high freezing point (items that are unsuitable for use in cold climates, or items that are expensive) There are various drawbacks such as:
また、此種熱移動装置の再生部への熱供給方式には電気
ヒーターによるもの、スチームによるもの、石油バーナ
ーおよびガスバーナーなどによるものがあるが、その中
で効率が良(装置を単純でコンパクトにし得る直火方式
が一般に採用され、この直火方式においては、特に作動
流体の高温条件下での熱安定性、装置の構造材に対する
腐食性および安全性が問題となる。In addition, heat supply methods to the regeneration section of this type of heat transfer equipment include those using electric heaters, steam, oil burners, and gas burners, but among these, the most efficient (the equipment is simple and compact) is used. Generally, a direct flame method is employed, which can be used in a direct fire manner, and in this direct fire method, problems arise particularly in terms of thermal stability of the working fluid under high temperature conditions, corrosiveness to the structural materials of the device, and safety.
(ハ)発明の目的
本発明は上述した従来技術の問題点を解消すべくなされ
たものであり、此種熱移動装置の作動流体として、高温
領域においても熱安定性が良(、装置の構造材(鉄、銅
等の金属)に対する腐蝕力が少ない等の物性を有する新
規なものを使用し、直火方式のような高温条件下でも安
定かつ安全に負荷への熱供給を行なうことのできる熱移
動装置を提供するものである。(c) Purpose of the Invention The present invention has been made to solve the above-mentioned problems of the prior art. By using a new material with physical properties such as low corrosivity to materials (metals such as iron and copper), it is possible to stably and safely supply heat to the load even under high-temperature conditions such as an open flame method. A heat transfer device is provided.
に)発明の特徴
本発明の特徴とするところは此種熱移動装置の作動流体
としてn−バーフルオロヘキザン(以下n −P F
Hと略称する。)を採用したことにある。B) Features of the Invention The feature of the present invention is that n-barfluorohexane (hereinafter referred to as n-PF) is used as the working fluid of this type of heat transfer device.
It is abbreviated as H. ).
(ホ)発明の開示
第1図は本発明が適用される熱移動装置の概略系統図、
第2図、第3図及び第4図は夫々n −PFHの温度に
対する蒸気圧、蒸発潜熱及び液密度の特性図を示す。(E) Disclosure of the Invention FIG. 1 is a schematic diagram of a heat transfer device to which the present invention is applied;
FIG. 2, FIG. 3, and FIG. 4 show characteristic diagrams of vapor pressure, latent heat of vaporization, and liquid density with respect to temperature of n-PFH, respectively.
熱移動装置の作動流体として使用するn−PF■(の物
性については表1に示される。Table 1 shows the physical properties of n-PF (used as the working fluid of the heat transfer device).
〈表1〉
n−PFHは不燃性の物質に属するものであり直火方式
による熱移動装置の作動流体が系外に万−漏れても火炎
となる危険性の少ブよい作動液である。また、n −P
F Hは、その凝固点が一86°Gで寒冷気候地にお
いても作動流体の凍結の心配がない。その上、常温で液
体であるから熱移動装置の作動流体循環系への充填も容
易である。<Table 1> n-PFH belongs to nonflammable substances, and is a working fluid with little danger of causing a flame even if the working fluid of a heat transfer device using an open flame method leaks out of the system. Also, n −P
FH has a freezing point of 186°G, so there is no fear of the working fluid freezing even in cold climates. Moreover, since it is a liquid at room temperature, it is easy to fill it into the working fluid circulation system of the heat transfer device.
次にn −P F Hの銅、鉄、油共存状態における作
動流体としての長時間運転可能な最高使用温度をフロン
−22等の弗化炭化水素系作動流体との比較実験で得た
データを表2に示す。Next, the maximum operating temperature at which n-P F H can be operated as a working fluid in the coexistence of copper, iron, and oil for a long time is determined by data obtained from a comparative experiment with fluorocarbon-based working fluids such as Freon-22. It is shown in Table 2.
〈表2〉
弗化炭化水素系作動流体は他の有機化合物に比較し、安
定性に優れているので、サーモサイフオンやヒートバイ
ブの作動流体として用いられている。しかしながら、銅
、鉄、油などの共存する条件下で長時間運転可能な最高
温度は表2から明らかなように弗化炭化水素系作動流体
ではフロン=22が最高で、150℃未満であるのに対
し、本発明で使用するn −P F Hは250℃と良
好であり、かつ、n −P F Hの純度変化も認めら
れなかった。また、n−PFHと共存させた金属の腐触
量も少なく(銅で約0.0O1ii/年、積400°G
)、弗化水素の発生も実験の結果、生じなかった。<Table 2> Since fluorinated hydrocarbon-based working fluids have superior stability compared to other organic compounds, they are used as working fluids for thermosiphons and heat vibrators. However, as is clear from Table 2, the maximum temperature that can be operated for a long time under conditions where copper, iron, oil, etc. coexist is the highest for fluorocarbon-based working fluids, and is less than 150°C. On the other hand, n-P F H used in the present invention had a good temperature of 250° C., and no change in the purity of n-P F H was observed. In addition, the amount of corrosion of metals that coexist with n-PFH is small (approximately 0.0O1ii/year for copper, a product of 40°G
), no hydrogen fluoride was generated as a result of the experiment.
以上のようなn−PFHの物性並びに実験による測定デ
ータから此種熱移動装置としてローPFHが好適な作動
流体であることに着目し、第1図に示す熱移動装置(サ
ーモサイフオン)により実験したところ、作動流体は直
火式で安定した密閉循環サイクルを形成し、従来のもの
より高い(数%)熱移動の向上を達成し得た。Based on the physical properties of n-PFH and experimental measurement data as described above, we focused on the fact that low PFH is a suitable working fluid for this type of heat transfer device, and conducted experiments using a heat transfer device (thermosiphon) shown in Figure 1. As a result, the working fluid formed a stable closed circulation cycle in the open flame type, and a higher (several percent) improvement in heat transfer was achieved than in conventional systems.
次にn−PFHを作動流体とした熱移動装置のシステム
を第1図について説明すると、(1)は再生部、(2)
は凝縮部、及び(3)は貯液部で、これらは配管(4)
、(5)及び(6)で接続されて作動流体の密閉循環系
(7)を形成し、作動流体としてn−PFHが使用され
ている。Next, the system of the heat transfer device using n-PFH as the working fluid will be explained with reference to Fig. 1. (1) is the regeneration section, (2)
is the condensing part, and (3) is the liquid storage part, and these are the pipes (4)
, (5) and (6) to form a closed circulation system (7) for working fluid, and n-PFH is used as the working fluid.
而して、再生部(1)で加熱された作動流体は蒸発し、
矢印イのように配管(4)内を通って凝縮部(2)に至
る。凝縮部(2)に至った作動流体はここで熱エネルギ
−(蒸発潜熱及び顕熱エネルギー)を系(7)外の負荷
側に与え、自らは凝縮液化して矢印口のように配管(5
)内を流下し、貯液部(3)及び配管(6)を経由して
再び再生部(1)に戻り、作動流体は系(7)を循環す
る。Thus, the working fluid heated in the regeneration section (1) evaporates,
It passes through the pipe (4) as indicated by arrow A and reaches the condensing section (2). The working fluid that has reached the condensing section (2) gives thermal energy (latent heat of vaporization and sensible heat energy) to the load side outside the system (7), and is condensed and liquefied to the piping (5) as shown by the arrow.
) and returns to the regeneration unit (1) via the storage unit (3) and piping (6), and the working fluid circulates through the system (7).
このようにして、作動流体の熱エネルギーが凝縮部(2
)から負荷側へ連続的に供給される。In this way, the thermal energy of the working fluid is transferred to the condensing section (2
) is continuously supplied to the load side.
以上のように、本発明は、再生部と凝縮部とを循環する
作動流体の密閉循環系を形成し、再生部で作動流体に与
えられた熱エネルギーを凝縮部から系外へ送り出すよう
にした熱移動装置において、作動流体にn −P F
Hを用いたものであるから、再生部への熱源供給方式を
直火式にしても作動流体の安定性を長期に亘って保つこ
とができ、かつ装置の構造材の腐蝕も少なく安全であり
、装置全体をコンパクトにすることができ、熱効率が高
く、熱移動特性が優れているとともに、装置の寿命を長
くすることができる。又、n −P F L(は引火し
たり、燃焼しないので、万一、液漏れが生じても火災を
起こす危険性が少なく、凝固点が−86,0°Cと低く
、極寒地での使用も可能であり、家庭用の暖房装置フヨ
とに適用して、実用上極めて有益なものである。As described above, the present invention forms a closed circulation system for the working fluid that circulates between the regeneration section and the condensation section, and sends the thermal energy given to the working fluid in the regeneration section from the condensation section to the outside of the system. In a heat transfer device, the working fluid has n −P F
Since it uses H, the stability of the working fluid can be maintained over a long period of time even if the heat source supply method to the regeneration section is a direct fire type, and there is little corrosion of the structural materials of the equipment, making it safe. , the entire device can be made compact, has high thermal efficiency, excellent heat transfer characteristics, and can extend the life of the device. In addition, since n-P F L (does not catch fire or burn, there is little risk of a fire even if liquid leaks, and its freezing point is as low as -86.0°C, making it suitable for use in extremely cold regions. It is also possible to apply this method to household heating equipment, which is extremely useful in practice.
図は何れも本発明の一実施例に関するものであり、第1
図は熱移動装置の概略系統図、第2図、第3図及び第4
図は夫々、本発明で使用するn−PFHの温度に対する
蒸気圧、蒸発潜熱及び液密度の特性図である。
(1)・・・再生部、(2)・・・凝縮部、(7)・・
・密閉循環系。Each of the figures relates to one embodiment of the present invention, and the first
The figure is a schematic system diagram of the heat transfer device, Figures 2, 3, and 4.
The figures are characteristic diagrams of vapor pressure, latent heat of vaporization, and liquid density with respect to temperature of n-PFH used in the present invention. (1)... Regeneration section, (2)... Condensation section, (7)...
- Closed circulation system.
Claims (1)
を冷却して液化させる凝縮部とを循環する作動流体の密
閉循環系を形成し、再生部で作動流体に与えられた熱エ
ネルギーを凝縮部から密閉循環系外へ送り出すようにし
た熱移動装置において、作動流体がn−パーフルオロヘ
キサンで成ることを特徴とする熱移動装置。(1) A closed circulation system for working fluid is formed that circulates between a regeneration section that heats and evaporates the working fluid and a condensation section that cools and liquefies the working fluid, and the thermal energy given to the working fluid in the regeneration section is recovered. 1. A heat transfer device configured to send heat out of a closed circulation system from a condensing section, characterized in that the working fluid is made of n-perfluorohexane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12239982A JPS5912288A (en) | 1982-07-14 | 1982-07-14 | Heat-transferring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12239982A JPS5912288A (en) | 1982-07-14 | 1982-07-14 | Heat-transferring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5912288A true JPS5912288A (en) | 1984-01-21 |
JPH054596B2 JPH054596B2 (en) | 1993-01-20 |
Family
ID=14834825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12239982A Granted JPS5912288A (en) | 1982-07-14 | 1982-07-14 | Heat-transferring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5912288A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648374U (en) * | 1987-07-01 | 1989-01-18 | ||
JPH03263592A (en) * | 1990-03-14 | 1991-11-25 | Furukawa Electric Co Ltd:The | Operating fluid for heat pipe |
JP2644372B2 (en) * | 1989-02-02 | 1997-08-25 | 古河電気工業株式会社 | Electric insulation type heat pipe cooler |
US8329057B2 (en) | 2006-04-06 | 2012-12-11 | Asahi Glass Company, Limited | Working liquid for latent heat transport apparatus and method for operating latent heat transport apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2575900Y2 (en) * | 1993-03-09 | 1998-07-02 | 山形カシオ株式会社 | Mounter nozzle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122981A (en) * | 1982-01-19 | 1983-07-21 | Sanyo Electric Co Ltd | Heat transfer equipment |
-
1982
- 1982-07-14 JP JP12239982A patent/JPS5912288A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122981A (en) * | 1982-01-19 | 1983-07-21 | Sanyo Electric Co Ltd | Heat transfer equipment |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648374U (en) * | 1987-07-01 | 1989-01-18 | ||
JP2644372B2 (en) * | 1989-02-02 | 1997-08-25 | 古河電気工業株式会社 | Electric insulation type heat pipe cooler |
JPH03263592A (en) * | 1990-03-14 | 1991-11-25 | Furukawa Electric Co Ltd:The | Operating fluid for heat pipe |
US8329057B2 (en) | 2006-04-06 | 2012-12-11 | Asahi Glass Company, Limited | Working liquid for latent heat transport apparatus and method for operating latent heat transport apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH054596B2 (en) | 1993-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017137495A (en) | Chloro- and bromo-fluoroolefin compound useful as organic rankine cycle working fluid | |
JPS5912288A (en) | Heat-transferring device | |
EP0110389B1 (en) | Working fluids for rankine cycle | |
US5524454A (en) | Waste oil fired air conditioning apparatus | |
JPH01123886A (en) | Hydraulic fluid for rankine cycle | |
US4562995A (en) | Working fluids for Rankine cycle | |
BR0213142A (en) | Method and apparatus for the efficient generation of mechanical energy, power or torque, and steam engine. | |
JPS6312505B2 (en) | ||
JPS6064190A (en) | Heat transfer device | |
JPS6312504B2 (en) | ||
JPH05279659A (en) | Working fluid for rankine cycle | |
JPS62294897A (en) | Heat accumulation type heat exchanger | |
JPH0245113B2 (en) | ||
JPH0451740B2 (en) | ||
WO2016065074A1 (en) | Green heating system | |
EP0101856B1 (en) | Working fluids for rankine cycle | |
JPS601542B2 (en) | Absorption type thermal storage heating and cooling equipment | |
JPS6356918B2 (en) | ||
MUENZEL | Compatibility tests of various heat pipe working fluids and structural materials at different temperatures | |
KR20100128488A (en) | Heating medium composition | |
JP2005009752A (en) | Heat pipe | |
JP2003119460A (en) | Heat-accumulating material, heat-accumulating body and heat accumulating tool | |
JPH0461910B2 (en) | ||
CN1056640C (en) | High-temp., efficient heat conducting medium | |
JPS5829819Y2 (en) | Absorption heat pump |