JPS5912254A - Solar heat collector - Google Patents

Solar heat collector

Info

Publication number
JPS5912254A
JPS5912254A JP57121559A JP12155982A JPS5912254A JP S5912254 A JPS5912254 A JP S5912254A JP 57121559 A JP57121559 A JP 57121559A JP 12155982 A JP12155982 A JP 12155982A JP S5912254 A JPS5912254 A JP S5912254A
Authority
JP
Japan
Prior art keywords
heat
flow rate
row
joint
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57121559A
Other languages
Japanese (ja)
Inventor
Kunimori Sekigami
邦衛 関上
Morio Ishii
石井 盛郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57121559A priority Critical patent/JPS5912254A/en
Publication of JPS5912254A publication Critical patent/JPS5912254A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To substantially equalize fluid resistances in each row easily and speedily, by a method wherein a pipe joint for a heat collector and a heat-transmitting medium pipe is provided with a threaded hole communicated with a passage provided in the joint, and a flow rate regulating plug for changing the cross-sectional area of the passage in the joint is engaged into the hole. CONSTITUTION:A union 8 of the pipe joint 6 for connecting a header 7 for the heat collectors 4 and the heat-transmitting medium pipe 5 to each other is provided with the threaded hole 10 communicated with the passage 9 provided in the union 8, the flow rate regulating plug 11 for changing the cross-sectional area of the passage 9 is engaged into the hole 10. The plug 11 is provided with a pressure-measureing hole 12 into which a pressure gage can be fitted. Flow rate regulating plugs 11 of various different lengths are provided, and one of them is selected in accordance with the working situation. Namely, one of the plugs 11 which does not substantially change the cross-sectional area of the passage in the union 8 is used for the joints 6 for connecting parts B1', B2', and other appropriate plugs 11 are used for connecting parts B3', B4' and B5' so that a fluid resistance corresponding to one heat exchanger 4 is imparted to the part B3' while a fluid resistance corresponding to two heat exchangers 4 is imparted to each of the parts B4' and B5', whereby the fluid resistance in each row can be substantially equalized. When desired, the fluid pressure in each row is measured by utilizing the pressure- measuring holes 12 to confirm whether or not the fluid resistance is uniform and to inspect the performance of the heat exchanger 4 in each row.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は複数個の集熱器を2列以上に配置し、これら各
列を熱媒配管により蓄熱槽と連結した往主管と戻り主管
との間に並列接続し、熱媒体の循環系を形成して太陽熱
の集熱な行なう太陽熱集熱装置に関するもので、特に各
列の流体抵抗を略等しくして集熱効率を向上させるよう
にしたものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Industrial Application Field The present invention is directed to a method in which a plurality of heat collectors are arranged in two or more rows, and each of these rows is connected to a heat storage tank by a heat medium piping, an outgoing main pipe and a return main pipe. This relates to a solar heat collector that collects solar heat by connecting in parallel with the heat carrier and forming a circulation system for the heat medium.In particular, the fluid resistance of each row is approximately equal to improve heat collection efficiency. It is something.

(ロ)背景技術 太陽熱集熱装置に於いて、集熱器各列への分流を均一に
することは重要な課題である。分流が不均一に行なわれ
ると、集熱器各列での温度上昇勾配が大きくばらつき、
流量の少ないところの出口′) 温度がよ※高く昇温するのに対し、流量の多いところの
出口温度はあまり昇温せず、集熱効率が低下する。また
、分流不良により集熱管内の流速が極端に低下すると管
内熱伝達率が低下して集熱効率に影響し、逆に流速の大
きくなる部分は管内の腐触の進行が促進されるものであ
る。さらに最低流量が確保されない場合はスムーズなエ
ア抜きができないとともに、熱媒体が沸騰蒸発して危険
な状態となる。
(B) Background Art In solar heat collectors, it is an important issue to make the distribution of water uniform to each row of heat collectors. If the flow is divided unevenly, the temperature rise gradient in each row of heat collectors will vary greatly.
While the temperature at the outlet where the flow rate is low rises very high, the temperature at the outlet where the flow rate is high does not rise much, resulting in a decrease in heat collection efficiency. In addition, if the flow velocity in the heat collecting pipe is extremely reduced due to poor diversion, the heat transfer coefficient within the pipe will decrease, affecting the heat collection efficiency, and conversely, areas where the flow velocity is high will accelerate the progress of corrosion within the pipe. . Furthermore, if the minimum flow rate is not ensured, smooth air removal will not be possible and the heat medium will boil and evaporate, resulting in a dangerous situation.

第1図、第2図は夫々従来の太陽熱集熱装置を示すもの
で、(1)及び(2)は夫々蓄熱槽(3)に連結される
往主管及び戻り主管、(4)は集熱器、(5)は熱媒配
管である。
Figures 1 and 2 show conventional solar heat collectors, where (1) and (2) are the forward and return main pipes connected to the heat storage tank (3), respectively, and (4) is the heat collector. (5) is a heat medium pipe.

第1図に示すものは各列の集熱器(4)の個数が等しい
ので、各列の流量に大きな差はないが、蓄熱槽(3)か
らみた各列の配管長さを均一にするために戻り主管(2
)を往主管(1)に対してリバースリターン配管しなげ
ればならず、管径の太い主管長さが余分に必要になって
コストが高くなる欠点があった。
In the case shown in Figure 1, the number of heat collectors (4) in each row is the same, so there is no big difference in the flow rate in each row, but the length of the piping in each row as seen from the heat storage tank (3) is made uniform. Return to main (2)
) to the outgoing main pipe (1), which requires an extra length of the main pipe with a large diameter, resulting in an increase in cost.

第2図に示すものは各列の集熱器(4)の個数が設置場
所の条件により制限されて異なる例であり、この場合、
各列の流体抵抗が大きく異なり分流不良を生じる虞れが
ある。そこで、リバースリターン配管を行ないつつ、A
1、A2、A3の部分に流量調節パルプ(図示せず)を
取り付けて流量調整を行なっていたが、この方法におい
ては流量調整パルプが極めて高価であるとともに、流量
の正確な調整が困難であり、極めて手間のかかる欠点が
あった。すなわち、1つのパルプで流量の調整をおこな
っている間に他の列の流量が変わってしまうのである。
What is shown in Fig. 2 is an example in which the number of heat collectors (4) in each row is limited depending on the conditions of the installation location, and in this case,
The fluid resistance of each column is significantly different, and there is a possibility that a shunt failure may occur. Therefore, while performing reverse return piping,
Flow rate adjustment pulp (not shown) was attached to parts 1, A2, and A3 to adjust the flow rate, but in this method, the flow rate adjustment pulp was extremely expensive and it was difficult to accurately adjust the flow rate. , which had the drawback of being extremely time-consuming. That is, while the flow rate is being adjusted for one pulp, the flow rate for other columns changes.

又、流量調整パルプの代りに、予め所定の流体抵抗を有
するオリフィス等の部品な熱媒配管(5)に挿入するも
のが提案されているが、この方法にしても部品と熱媒配
管(5)とのロー付は作業を伴なったり、部品を配管継
手を用いて取付けなければならず、コストが高くなると
ともに、手間のかかるものであった。
In addition, instead of the flow rate adjusting pulp, it has been proposed to insert a component such as an orifice having a predetermined fluid resistance into the heat medium pipe (5), but even with this method, the parts and the heat medium pipe (5) are inserted into the heat medium pipe (5). ), which involved work and required parts to be attached using piping joints, which increased costs and was time-consuming.

(ハ)発明の技術的課題 本発明は上述した従来技術の欠点を一挙に解消すべ(な
されたものであり、極めて簡単且つ迅速るものである。
(C) Technical Problems of the Invention The present invention is intended to eliminate the above-mentioned drawbacks of the prior art at once, and is extremely simple and quick.

に)発明の要点 本発明の特徴とするところは各列の集熱器と熱媒配管と
の配管継手のうち、少な(とも一部に継手内部の流路に
連通する螺子穴を設け、該螺子穴に継手内部の流路面積
を変える流量調整プラグを螺合して設け、各列の流体抵
抗を略等しくしたことにあり、予め集熱器の1個ないし
数個分の流体抵抗或いは配管抵抗に相当する流体抵抗を
付与できる流量調整プラグを種々設けておき、現場の施
工状況に応じて流量調整プラグを適宜選択して配管継手
の螺子穴に螺合することにより、各列の流体抵抗の均一
化が図れるようにする。
B) Main Points of the Invention The present invention is characterized by providing screw holes that communicate with the flow passages inside the joints in a small number of the piping joints between the heat collector and the heat medium piping in each row. A flow rate adjustment plug that changes the flow path area inside the joint is screwed into the screw hole to make the fluid resistance of each row approximately equal. By preparing various flow rate adjustment plugs that can provide fluid resistance equivalent to the resistance, and selecting the appropriate flow rate adjustment plug according to the construction situation at the site and screwing it into the screw hole of the piping joint, the fluid resistance of each row can be adjusted. To ensure uniformity of

(ホ)発明の実施態様 流量調整プラグには圧力測定孔を貫通して設けておき、
これを戻り主管側の集熱器と熱媒配管とを連結する配管
継手の螺子穴に螺合させる。このようにすると、圧力測
定孔に圧力計を挿入して各列の流体圧を測定することに
より、各列の流量を圧力抵抗線図から求めることができ
、流体抵抗が均一化されているか否かの確認が容易であ
るとともに、各列の集熱器の性能(集熱量=流量×出入
口温度差)を随時点検できる。
(e) Embodiment of the invention The flow rate adjustment plug is provided with a pressure measurement hole passing through it,
This is screwed into a screw hole of a piping joint that connects the heat collector and heat medium piping on the return main pipe side. In this way, by inserting a pressure gauge into the pressure measurement hole and measuring the fluid pressure in each row, the flow rate in each row can be determined from the pressure resistance diagram, and whether the fluid resistance is equalized or not. It is easy to check the performance of each row of heat collectors (heat collection amount = flow rate x temperature difference between inlet and outlet) at any time.

(へ)発明の実施例 第3図及び第4図は夫々本発明の一実施例を示すものあ
り、第1図及び第2図に示すものと共通部分には同一符
号を符しである。第3図及び第4図に於いて、従来のも
のと異なるのは戻り主管(2)を最短距離で蓄熱槽(3
)と連結し、リバースリターン配管を廃止しであること
と、各列の戻り主管(2)側の集熱器(4)と熱媒配管
(5)との接続部(B1)ないしくB5)及び(B7)
ないしくB5<)を、第5図及び第6図に示される構造
にしであることである。
(f) Embodiment of the Invention FIGS. 3 and 4 each show an embodiment of the present invention, and parts common to those shown in FIGS. 1 and 2 are designated by the same reference numerals. In Figures 3 and 4, the difference from the conventional one is that the main return pipe (2) is connected to the heat storage tank (3) at the shortest distance.
), and the reverse return piping is abolished, and the connection part (B1) or B5) between the heat collector (4) on the return main pipe (2) side of each row and the heat medium piping (5) and (B7)
or B5<) to have the structure shown in FIGS. 5 and 6.

第5図及び第6図に於いて、(6)は集熱器(4)から
突出したヘッダー(7)と熱媒配管(5)とを接続する
配管継手であり、ユニオン(8)にユニオン(8)内の
流路(9)と連通ずる螺子穴(至)を設け、該螺子穴(
2)に流路(9)の面積を変える流量調整プラグ(ロ)
を螺合して設けである。又、流量調整プラグ(ロ)には
内部を軸方向に貫通して圧力計(図示せず)が取着可能
な圧力測定孔(6)が設けられている。圧力測定孔(6
)は上部に螺子切りが施されており、常時は盲プラグ(
至)を螺着することにより封止される。尚、流量調整プ
ラグ(11)は種々長さの異なるものが用意され、現地
での施工状況によって適宜選択される。
In Figures 5 and 6, (6) is a pipe joint that connects the header (7) protruding from the heat collector (4) and the heat medium pipe (5), and the union (8) is connected to the heat medium pipe (5). (8) is provided with a threaded hole (to) that communicates with the flow path (9), and the threaded hole (
2) Flow rate adjustment plug (b) that changes the area of the flow path (9)
It is provided by screwing them together. Further, the flow rate adjustment plug (b) is provided with a pressure measurement hole (6) that passes through the inside in the axial direction to which a pressure gauge (not shown) can be attached. Pressure measurement hole (6
) has a screw cut on the top and is always connected to a blind plug (
(to) is sealed by screwing. Note that the flow rate adjustment plug (11) is available in various lengths, and is appropriately selected depending on the construction situation at the site.

而して、本実施例に依れば、第3図のように各列の集熱
器(4)の個数が等しい場合、蓄熱槽(3)に近い方の
接続部(B1)の配管継手(6)に長目の流量調整プラ
グ0→を装着し、接続部(B2)ないしくB5)の流量
調整プラグQl)に順次短いものを選択することにより
、各列の流体抵抗な略均−化することができる。一方、
第4図のように各列の集熱器(4)の個数が異なる場合
、接続部(B1)、(B2)の配管継手にはユニオン内
の流路面積を殆ど変えない流量調整プラグを使用し、接
続部(B3)には集熱器1個分、接続部(B4)及び(
B5)には集熱器2個分の流体抵抗を夫々付与するよう
に流量調整プラグを適宜選択して使用することにより、
各列の流体抵抗を略均−化することができる。流量調整
プラグ(ロ)には圧力測定孔(6)を設けであるため、
随時、各列の流体圧を測定し、圧力抵抗線図(図示せず
)を利用して流量を求めることができ、流体抵抗が均一
されているか否かの確認と各列の集熱器の性能の点検と
がなされる。
According to this embodiment, when the number of heat collectors (4) in each row is equal as shown in FIG. By attaching a longer flow rate adjustment plug 0→ to (6) and selecting shorter flow rate adjustment plugs Ql) at the connection part (B2) or B5), the fluid resistance of each row can be approximately equalized. can be converted into on the other hand,
If the number of heat collectors (4) in each row is different as shown in Figure 4, use flow adjustment plugs for the piping joints of connections (B1) and (B2) that hardly change the flow path area in the union. However, the connection part (B3) has one heat collector, the connection part (B4) and (
For B5), by appropriately selecting and using flow rate adjustment plugs to provide fluid resistance equivalent to two heat collectors,
The fluid resistance of each row can be approximately equalized. Since the flow rate adjustment plug (b) is equipped with a pressure measurement hole (6),
At any time, the fluid pressure in each row can be measured and the flow rate can be determined using a pressure-resistance diagram (not shown). This allows you to check whether the fluid resistance is uniform and check the flow rate of the heat collectors in each row. A performance check will be carried out.

流量調整プラグ(1])を螺合して設けるようにしたが
、圧力測定孔(イ)を流量調整プラグ0ηに設けない場
合には集熱器と熱媒配管との配管継手は戻り主管側のも
のでなくとも良い。又、各利金ての配管継手に流量調整
プラグを装着する必要はな(、要は流量調整の必要な列
の配管継手に装着すれば良い。
Although the flow rate adjustment plug (1]) is screwed together, if the pressure measurement hole (A) is not installed in the flow rate adjustment plug 0η, the piping joint between the heat collector and heat medium piping should be installed on the return main pipe side. It doesn't have to be from . Also, there is no need to attach a flow rate adjustment plug to each piping joint (in short, it is sufficient to attach it to the piping joint of the row in which flow rate adjustment is required).

(ト)発明の効果 本発明は以上説明したように集熱器と熱媒配管との配管
継手に継手内部の流路と連通ずる螺子穴を設け、該螺子
穴に継手内部の流路面積を変える流量調整プラグを螺合
して設けるようにしたので、各列の流体抵抗を略等しく
でき、従来のパルプ操作やオリフィス等の部品を配管接
続するものに比べて極めて簡単、且つ迅速に調整作業を
行なうことができ、使用部品が安価となり、主管長の短
縮も可能であり、装置の低廉化が図れるなど、極めて有
用なものである。
(G) Effects of the Invention As explained above, the present invention provides a pipe joint between a heat collector and a heat medium pipe with a screw hole that communicates with the flow path inside the joint, and the flow path area inside the joint is set in the screw hole. Since the variable flow rate adjustment plugs are screwed together, the fluid resistance of each row can be made approximately equal, making adjustment work much easier and faster than with conventional pulp operation or connecting parts such as orifices with piping. It is extremely useful because the parts used are inexpensive, the length of the main pipe can be shortened, and the cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は夫々従来の太陽熱集熱装置の一例を示
す系統図、第3図、第4図は夫々本発明装置の一実施例
を示す系統図、第5図は本発明装置の一実施例の要部斜
視図、第6図は第5図の配管継手の縦断面図である。 (1)・・・往主管、(2)・・・戻り主管、(3)・
・・蓄熱槽、(4)・・・集熱器、(5)・・・熱媒配
管、(6)・・・配管継手、(9)・・・流路、(ト)
・・・螺子穴、(11)・・・流量調整プラグ、(1匂
・・・圧力測定孔。 第1図 第2図 第3図 3 第4図 第5図 第6図
Figures 1 and 2 are system diagrams showing an example of a conventional solar heat collector, Figures 3 and 4 are system diagrams each showing an embodiment of the device of the present invention, and Figure 5 is a system diagram of the device of the present invention. FIG. 6 is a perspective view of essential parts of one embodiment, and FIG. 6 is a longitudinal cross-sectional view of the piping joint shown in FIG. 5. (1)... Outgoing main pipe, (2)... Return main pipe, (3)...
... Heat storage tank, (4) ... Heat collector, (5) ... Heat medium piping, (6) ... Piping joint, (9) ... Flow path, (g)
...Screw hole, (11)...Flow rate adjustment plug, (1)...Pressure measurement hole. Fig. 1 Fig. 2 Fig. 3 Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (2)

【特許請求の範囲】[Claims] (1)複数個の集熱器を2列以上に配置し、これら各列
を熱媒配管により蓄熱槽と連結した往主管と戻り主管と
の間に並列接続し、熱媒体の循環系を形成してなるもの
に於いて、各列の集熱器と熱媒配管との配管継手のうち
、少なくとも一部に継手内部の流路に連通ずる螺子穴を
設け、該螺子穴に継手内部の流路面積を変える流量調整
プラグを螺合して設け、各列の流体抵抗を略等しくした
ことを特徴とする太陽熱集熱装置。
(1) A plurality of heat collectors are arranged in two or more rows, and each row is connected in parallel between an outgoing main pipe and a return main pipe connected to a heat storage tank by heat medium piping to form a heat medium circulation system. In the piping joint between the heat collector and the heat medium piping in each row, at least a part thereof is provided with a screw hole that communicates with the flow path inside the joint, and the screw hole communicates with the flow path inside the joint. A solar heat collecting device characterized in that flow rate adjustment plugs that change the road area are screwed together to make the fluid resistance of each row approximately equal.
(2)流量調整プラグは圧力測定孔を貫通して設けであ
るものとし、該流量調整プラグを戻り主管側の集熱器と
熱媒配管とを連結する配管継手の螺子穴に螺合させであ
ることを特徴とする特許請求の範囲第1項記載の太陽熱
集熱装置。
(2) The flow rate adjustment plug shall be provided through the pressure measurement hole, and the flow rate adjustment plug shall be screwed into the screw hole of the pipe joint that connects the heat collector and heat medium pipe on the return main pipe side. A solar heat collecting device according to claim 1, characterized in that:
JP57121559A 1982-07-12 1982-07-12 Solar heat collector Pending JPS5912254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121559A JPS5912254A (en) 1982-07-12 1982-07-12 Solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121559A JPS5912254A (en) 1982-07-12 1982-07-12 Solar heat collector

Publications (1)

Publication Number Publication Date
JPS5912254A true JPS5912254A (en) 1984-01-21

Family

ID=14814230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121559A Pending JPS5912254A (en) 1982-07-12 1982-07-12 Solar heat collector

Country Status (1)

Country Link
JP (1) JPS5912254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043615A1 (en) * 1996-05-10 1997-11-20 Corneal Industrie Device for measuring the pressure of a fluid flowing into or out of the human body through a tubing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043615A1 (en) * 1996-05-10 1997-11-20 Corneal Industrie Device for measuring the pressure of a fluid flowing into or out of the human body through a tubing
JP2000510239A (en) * 1996-05-10 2000-08-08 コルネアル・インデユストリ Pressure measuring device for fluid entering and exiting human body through pipe
US6272930B1 (en) 1996-05-10 2001-08-14 Corneal Industrie Tube assembly including a pressure measuring device

Similar Documents

Publication Publication Date Title
Achaichia et al. Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces
ES2002789A6 (en) Condenser with small hydraulic diameter flow path.
CN105135406A (en) Intelligent measurement and control boiler system dynamically calculating water loss according to drum water level
CN105008846B (en) Cooling triangle for dry cooling systems
CN105222119A (en) Based on the boiler blow-out system of cloud computing according to blowdown Water-quality control
CN205825522U (en) A kind of air energy heat pump water chiller-heater unit with automatic temp controller
CN110806017B (en) Pressure monitoring groove type solar heat collector system
JPS5912254A (en) Solar heat collector
RU2353863C2 (en) Radiator with thermostatic valve
JPS6138058Y2 (en)
JPS6371625A (en) Measuring device for heat absortion quantity of heat conduction pipe
JPS6017647Y2 (en) Evaporator
CN218035282U (en) Pipeline temperature maintaining structure of ultrasonic water meter calibration device
JPH0136104Y2 (en)
CN1283781A (en) Method for counting consumed calories of user with hot water flowmeter for centralized heating system
CN109945517B (en) Trough type solar heat collection system for heating liquid medicine
CN206176320U (en) Pressure -bearing flue formula exhaust -heat boiler
CN112113354B (en) Heat collector constant-pressure pipe diameter optimization design method
SU1188506A1 (en) Device for automatic regulation of working medium temperature at heat exchanger apparatus outlet
JPH0241543Y2 (en)
CN110806024B (en) Trough type solar heat collector system with size of stabilizing device
CN107247068A (en) The core body device of aluminum plate-fin heat exchanger performance test
Gotovsky et al. Thermal effectiveness of heat exchangers: Effect of manufacturing inaccuracies and deformation of tube bundles
SU1578665A1 (en) Apparatus for measuring r.f.power
SU391543A1 (en) AIR TEMPERATURE STABILIZER IN BUILDING