JPS59122137A - Digital signal regenerating circuit - Google Patents

Digital signal regenerating circuit

Info

Publication number
JPS59122137A
JPS59122137A JP22944982A JP22944982A JPS59122137A JP S59122137 A JPS59122137 A JP S59122137A JP 22944982 A JP22944982 A JP 22944982A JP 22944982 A JP22944982 A JP 22944982A JP S59122137 A JPS59122137 A JP S59122137A
Authority
JP
Japan
Prior art keywords
output
voltage
capacitor
envelope
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22944982A
Other languages
Japanese (ja)
Other versions
JPH0422054B2 (en
Inventor
Hidemasa Kitagawa
北川 秀雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22944982A priority Critical patent/JPS59122137A/en
Publication of JPS59122137A publication Critical patent/JPS59122137A/en
Publication of JPH0422054B2 publication Critical patent/JPH0422054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/062Setting decision thresholds using feedforward techniques only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To regenerate accurately a digital signal by eliminating the effect of a low frequency noise component, preventing an envelope from being zero-crossed and performing accurate envelope detection to regenerate a DC component. CONSTITUTION:An input signal is divided into three. A DC voltage of +E is added at an adder 12 and the result passes through a time constant circuit comprising a rectifier 16, capacitor C1 and a resistor R1. A DC voltage of -E is added at an adder 13 and the result passes through a time constant circuit comprising a rectifier 17, the capacitor C1 and the resistor R1. After these two outputs are added, the result is attenuated into 1/2 by a subtractor 23, and the attenuated result is subtracted from the input signal to have an envelope made nearly flat. The output of the subtractor 24 is divided further into four, the discharge of a capacitor C2 is controlled by the output of a differentiating device 37 to detect the positive and negative envelopes, allowing to regenerate the DC component with suppressed low frequency noise by adding the envelopes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、符号変調を受けたディジタル信号の記録再生
又は通信等、周波数帯域の制限を受け、しかも雑音の混
入が著しい系を通過したディジタル信号の波形等化に関
するもので、特に周波数スペクトルが低域周波数帯まで
広がったディジタル信号が低域周波数帯を制限した系を
通過し、しかもこの時低域雑音の著しい混入を受けるた
めに生する波形歪を補正できるディジタル信号再生回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to the recording and reproduction of digital signals subjected to code modulation, communication, etc., which are subject to frequency band limitations and which have passed through systems with significant noise contamination. It relates to waveform equalization, and is particularly the waveform distortion that occurs when a digital signal whose frequency spectrum has expanded to the low frequency band passes through a system that limits the low frequency band, and at this time, it is contaminated with significant low-frequency noise. The present invention relates to a digital signal reproducing circuit that can correct for.

従来の構成とその問題点 ディジタル信号は、周知の通り、0と1又は−1と1の
2値を扱う場合がほとんどである。今簡単のため、扱う
信号が2値のNRZ変調のディジタル信号を考えると、
信号の0,1又は−1,1の並び方には無数の組み合わ
せの可能性がある。−例として、その中で特定の3種類
の並びを考えてみると、第1図(a) (b) (c)
の様なツマターンが考えられる。
Conventional configuration and its problems As is well known, most digital signals handle binary values of 0 and 1 or -1 and 1. For simplicity's sake, let's consider a binary NRZ modulated digital signal.
There are countless possible combinations of 0, 1 or -1, 1 signals. -As an example, if we consider three specific types of arrangement, Figure 1 (a) (b) (c)
A Tsuma turn like this can be considered.

第1図で(a)のパターンの信号の平均値すなわち直流
成分はゼロ、(b)の直流成分は+0.5、(C)の直
流成分は−0,5となる。従って、今これらの/NOタ
ーンカ≦縦続に接続された信号がDCまで平坦【こ通過
できる系を通ると、第2図(a)の様に正しく波形が再
現されるが、その直流成分は(a)の破線の様に変動す
るため、低域の帯域が制限された系を通過した場合には
、直流成分が通過できず、第2図(b)の様ζこエンベ
ロープの変動がその直流成分に対応して生ずる。この時
、高域の周波数帯域が制限されなし)場合には、信号の
立ち上がり、立ち下がりの傾斜は極めて急俊になるため
、ゼロクロスポイントの位置情報は保持され、ディジタ
ル信号の再生には誤りを生じない。しかし、実際には高
域の帯域も制限されるため、最適高M等化を行なった状
態でも、信号の立ち上がりはゆるやかになり、正しいゼ
ロクロス位置が@2図(C)の様にシフトしてしまい、
誤りの原因となっていた。
In FIG. 1, the average value of the signal in pattern (a), that is, the DC component, is zero, the DC component in pattern (b) is +0.5, and the DC component in pattern (C) is -0.5. Therefore, if these /NO turners ≦ cascaded signals pass through a system that can pass flatly up to DC, the waveform will be reproduced correctly as shown in Figure 2 (a), but the DC component will be ( As shown in the broken line in a), when passing through a system in which the low frequency band is restricted, the DC component cannot pass through, and the fluctuation in the envelope as shown in Figure 2 (b) It occurs in response to the ingredients. At this time, if the high frequency band is not limited), the rising and falling slopes of the signal will be extremely rapid, so the position information of the zero crossing point will be retained, and there will be no error in the reproduction of the digital signal. Does not occur. However, in reality, the high frequency band is also limited, so even with optimal high M equalization, the signal rises slowly and the correct zero-crossing position shifts as shown in Figure 2 (C). Sisters,
It was causing an error.

従来、この様な誤りの発生に対処するために、大きく分
けて次の2つの方法が講じられていた。
Conventionally, the following two methods have been used to deal with the occurrence of such errors.

第1の方法は、信号の直流成分が生じない、又は低域の
スペクトルを極力押えたパターンとなる変調を行う。第
2の方法は、信号の包絡線から直流成分を再生するとい
う方法である。本発明は後者の方法に関するもので、従
来は文献(中用他“NRZ記録における積分検出方式の
検討 電子通信学会磁気記録研究会MR77−4619
78−3)に見られる様に第8図の様な構成をとってい
た。第3図で(1) (2)はダイオード、(3r−(
4ンはコンデンサ、(5) C6)は抵抗、(7)は加
算器、(8)は減算器である。この構成の中で、ダイオ
ード(1)とコンデンサ(3)と抵抗(5)で構成され
る部分は入力の負電圧側の包路線検波を行なうもので、
第3図中のA点、B点、0点、D点の出力波形は第4図
(a)の曲線p。* q o 、r o+ 8 (1の
様に、又第3し18点の出力波形は第4図(blの様に
なシ、直流成分は再生される。
The first method is to perform modulation that produces a pattern in which no direct current component of the signal occurs or in which the low-frequency spectrum is suppressed as much as possible. The second method is to reproduce the DC component from the signal envelope. The present invention relates to the latter method, and has been previously published in the literature (Chuyo et al. "Study of integral detection method in NRZ recording, Institute of Electronics and Communication Engineers Magnetic Recording Study Group MR77-4619
78-3), it had a configuration as shown in Figure 8. In Figure 3, (1) and (2) are diodes, (3r-(
4 is a capacitor, (5) C6) is a resistor, (7) is an adder, and (8) is a subtracter. In this configuration, the part consisting of the diode (1), capacitor (3), and resistor (5) performs envelope detection on the negative voltage side of the input.
The output waveforms at points A, B, 0, and D in FIG. 3 are the curve p in FIG. 4(a). * q o , r o+ 8 (As in 1, the output waveforms of the 3rd and 18th points are as shown in FIG. 4 (bl), and the DC component is regenerated.

しかし、従来のかかる方法は、次の様な2つの欠点がめ
った。第1の欠点は、雑音成分の振幅が信号レベルと同
じかさらに大きい場合、第5図の様に包路線qがゼロレ
ベルを割ってしまい、第3図の様な従来の構成ではこの
ゼロレベルを割った部分については包絡線の検出ができ
なくなり、テータ再現に誤りを生じていた。特に低域周
波数が比較的高い周波数から制限を受けている場合には
信号の包絡線の変化圏期が信号の0.1又は1゜−1の
変化の周期に近すくため、第6図(a)の曲線q′、r
′の様に1樺な包路線が抽出できなくなるが、これを防
止するため、ある程度、低域周波数を補償し、第6図(
blの曲線q″I  の様に包絡線の周期と信号の周期
がNf、れる様に構成するのが一般的である。このため
微少信号を扱う系では第7図(b)の様に低域の雑音の
増大をきたしていた。すなわち、@6図(b)の曲線p
“に低域雑音が加算され、包絡線は第8図のqM、 、
srの様になり、Xの区間で正の包絡線出力、つまり第
3図B点の出力はゼロとなり、正しい包絡線は得られな
かった。次に第2の欠点は、低域の雑音が比較的少ない
第6図の様な場合でも、点り、E、Fに見られる様に、
第3図放電抵抗(5) (6)とコンデンサ(3) (
4)で定まる時定数(曲線q′、r″の下降傾斜を決め
ている)より、信号のピーク同を結ぶ線(包絡線)の傾
斜が大きい場合には正確な包絡線は得られなかった1、
、これに対して第8図の放電抵抗(5) (6)を小さ
くし、すなわち時定数を小さくし、第6図(b)の破線
の様に下降傾斜を急俊にする方法が考えられるが、例え
ばG点の様に信号の立ち上がりとの交点が下がり過ぎ、
包絡線検出に誤差を生じていた。
However, such conventional methods often suffer from the following two drawbacks. The first drawback is that when the amplitude of the noise component is the same as or even larger than the signal level, the envelope q divides the zero level as shown in Figure 5, and in the conventional configuration as shown in Figure 3, this zero level It was no longer possible to detect the envelope in the area where the value was divided, resulting in errors in theta reproduction. In particular, when the low frequency is limited by a relatively high frequency, the period of change of the signal envelope approaches the period of change of 0.1 or 1°-1 of the signal, as shown in Fig. 6 ( a) curve q′, r
In order to prevent this, we compensate for the low frequency to some extent and use the method shown in Figure 6 (
Generally, the configuration is such that the period of the envelope and the period of the signal are Nf, as shown by the curve q''I of bl.For this reason, in a system that handles minute signals, the low In other words, the curve p in Figure 6 (b)
Low-frequency noise is added to “, and the envelope is qM in Fig. 8, ,
sr, and the positive envelope output in the section X, that is, the output at point B in Figure 3, was zero, and a correct envelope could not be obtained. Next, the second drawback is that even in cases like the one shown in Figure 6, where there is relatively little noise in the low range, as seen in lights, E, and F,
Figure 3 Discharge resistor (5) (6) and capacitor (3) (
If the slope of the line (envelope) connecting the signal peaks is greater than the time constant determined by 4) (which determines the downward slope of the curves q' and r''), an accurate envelope could not be obtained. 1,
To deal with this, a possible method is to reduce the discharge resistances (5) and (6) in Figure 8, that is, to decrease the time constant, and to make the downward slope steeper, as shown by the broken line in Figure 6(b). However, for example, the intersection point with the rising edge of the signal, such as point G, is too low,
An error occurred in envelope detection.

発明の目的 本発明は従来方式のかかる2つの欠点に鑑みてなされた
もので、先ず、低域の雑音成分の影響を除去し、包路線
がゼロクロスしない様にしておいた上で、正確な包結線
検出を行ない、直流成分の再生をすることによりディジ
タル信号の正確な再現を図るようになし、低域周波数帯
域が制限され、しかも低域雑音を多く含む系を通じてデ
ィジタル信号を伝送する場合にも十分に正確に原信号を
再生する回路を提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the two drawbacks of the conventional method. First, the influence of low-frequency noise components is removed, and the envelope line is prevented from zero-crossing, and then an accurate envelope is obtained. By detecting the connection and regenerating the DC component, it is possible to accurately reproduce the digital signal, and it is also useful when transmitting the digital signal through a system that has a limited low frequency band and contains a lot of low frequency noise. The purpose of this invention is to provide a circuit that reproduces the original signal with sufficient accuracy.

発明の構成 上記目的を達成するために、本発明は次の2つの部分か
ら構成されるものであり、1つは、主として低域雑音を
除去し、信号の包絡線がゼロクロスしない様にする部分
、他の・1つは、その出力の正確な包絡線を検出し、包
絡線変動を除去する部分である一1包絡線がゼロクロス
する程直流成分の変動と低域雑音が大きい場合、前述の
様に従来回路では誤りを生じていたが、本発明では、第
1段階として正の包絡線を検出する部分では、信号に正
の直流電圧を印加した信号の包絡線を、負の包絡線を検
出する部分では負の直流電圧を印加した信号の包絡線を
それぞれ得、この正負の包絡線を加算す′ることにより
得た信号を入力信号から減算し、これにより入力信号の
包絡鼓動を包絡線がゼロクロスしない程度に押さえてお
き、第2段階として、さらにその出力信号を同様の包絡
線検出によって正確な直流成分を得て、包絡線変動を十
分に押え様とするものである。この場合、@2段階の直
流成分検出は、信号パルスの立ち上がりで第8図(3)
 (4)のコンデンサ内の電荷を短時間で放出し、再度
パルスのピーク値まで充電することにより、前のパルス
のピーク電圧の影響を除く様に構成されており、より正
確な包絡線を検出できるものである。
Structure of the Invention In order to achieve the above object, the present invention consists of the following two parts. One part is a part that mainly removes low-frequency noise and prevents the signal envelope from crossing zero. The other part is to detect the accurate envelope of the output and remove envelope fluctuations.If the DC component fluctuations and low-frequency noise are large enough to cause the envelope to cross zero, the above-mentioned However, in the present invention, in the first step where the positive envelope is detected, the envelope of the signal to which a positive DC voltage is applied is detected, and the negative envelope is In the detection part, the envelope of each signal is obtained by applying a negative DC voltage, and the signal obtained by adding these positive and negative envelopes is subtracted from the input signal, thereby detecting the envelope heartbeat of the input signal. The line is suppressed to such an extent that it does not cross zero, and as a second step, the output signal is further subjected to similar envelope detection to obtain an accurate DC component in order to sufficiently suppress envelope fluctuations. In this case, @2-stage DC component detection is performed as shown in Figure 8 (3) at the rising edge of the signal pulse.
By discharging the charge in the capacitor (4) in a short time and charging it again to the peak value of the pulse, it is configured to remove the influence of the peak voltage of the previous pulse, allowing more accurate envelope detection. It is possible.

実施例の説明 以下本発明の実施例を図面に基づいて説明する。Description of examples Embodiments of the present invention will be described below based on the drawings.

第9図は本発明の一具体実施例を示す。第7図で、0υ
は入力端子、0z03は加算器、(Jtl QSは直流
電圧源、OGαカは整流器(ダイオード)、0119 
(11はコンデンサ、(イ)Q◇は抵抗、(財)は加算
器、(ハ)は1/2の減衰器、(24Iは減算器、縛弼
は整流器(ダイオード)、@(財)はコンデンサ、G!
1111は抵抗、@110ηはスイッチング素子、(3
31(341はダイオード、3FAは加算器、(ト)は
波形整形器、(3ηは微分器、(3樽は1/2の減衰器
、(39)は減算器、顛は出力端子である。
FIG. 9 shows a specific embodiment of the present invention. In Figure 7, 0υ
is an input terminal, 0z03 is an adder, (Jtl QS is a DC voltage source, OGα is a rectifier (diode), 0119
(11 is a capacitor, (a) Q◇ is a resistor, (a) is an adder, (c) is a 1/2 attenuator, (24I is a subtractor, is a rectifier (diode), @ (a) is a Capacitor, G!
1111 is a resistor, @110η is a switching element, (3
31 (341 is a diode, 3FA is an adder, (G) is a waveform shaper, (3η is a differentiator, (3 barrel is a 1/2 attenuator, (39) is a subtracter, and (3) is an output terminal.

今入力端子Oηに第10図の様な包絡変動を含むディジ
タル信号が入力されたとすると、信号は3つに分配され
、加算器Q諺(至)と減算u Z’lに入力される。
If a digital signal including an envelope fluctuation as shown in FIG. 10 is input to the input terminal Oη, the signal is divided into three parts and input to the adder Q and the subtracter uZ'l.

まず加算器(6)に入力された信号は+Eff)の直流
電圧源04によって発生した電圧が加算、重畳され、加
算器(2)からは第10図曲線a、の電圧波形が出力さ
れ、整流器αQを通してコンデンサO尋に充電される。
First, the signal input to the adder (6) is added with the voltage generated by the DC voltage source 04 (+Eff), and the adder (2) outputs the voltage waveform of curve a in Figure 10, and the rectifier The capacitor is charged to O fat through αQ.

整流器θQの入力波形がピークを過ぎるとコンデンサ(
ト)の電圧より、整流器aQの入力の方が下がり、整流
器06が出力から入力への逆流を阻止され、ピーク値が
保持されるが、ピーク値のある程度の変動に対応するた
め、放電抵抗に)により放電時定数CRで放電される。
When the input waveform of the rectifier θQ passes the peak, the capacitor (
The input voltage of the rectifier aQ is lower than the voltage of the rectifier 06 (g), and the rectifier 06 is prevented from flowing backwards from the output to the input, and the peak value is maintained. ), the battery is discharged with a discharge time constant CR.

従ってコンデンサ0楽両端の電圧波形は第10図の曲線
d1の様になる。次に加算器(至)に分配された信号も
同様の動作により、加算器0擾の出力は第10図の曲線
CいコンデンサCllの出力の曲線はelとなり、曲線
dl+ eHはそれぞれ加算器(イ)で加算され、第1
0図の曲線す、が出力される。入力端子(ロ)の入力信
号の直流成分及び低域ノ・fズは正の包路線と負の包路
線の平均値であるから、加算器磐の出力はさらに減衰器
(至)で1/2に減衰されて第10図の曲線b1′とな
り、減算器(支))で、入力信号から減算されて、第1
1図の様に包絡線は略平坦化される。
Therefore, the voltage waveform across the capacitor 0 becomes like the curve d1 in FIG. Next, the signals distributed to the adders (to) undergo the same operation, so that the output of adder 0 becomes curve C in Fig. 10, the curve of the output of capacitor Cll becomes el, and the curve dl+eH becomes the adder (to), respectively. b), and the first
The curve of Figure 0 is output. Since the DC component and low-frequency f/s of the input signal at the input terminal (b) are the average value of the positive envelope line and the negative envelope line, the output of the adder is further reduced to 1/1 by the attenuator (to). 2, resulting in curve b1' in Figure 10, which is subtracted from the input signal by the subtractor (support), and the first
As shown in Figure 1, the envelope is approximately flattened.

しかし、この時点では前述した様に必ずしも正確な包絡
線は抽出されておらず、さらに(ハ)〜h+iまでの系
を通して包絡線の平坦化を行う。減算器(財)からの出
力は整流器に)噛、波形整形器側、減算器(イ)の4つ
に分配される7、ここで、わかり易くするため減算器0
尋の出力が第12図(a)の曲線りの場合を考える。整
流器(イ)に入力された信号はコンデンサ翰に正の整流
電圧を第1のピーク(第12図に])の点A)に達する
まで充電し、ピーク通過後はこのピーク電圧vPを保持
する。一方、減算器偉4)の出力信号は増幅度の十分大
きい波形整形器f淵によって第12図(b)の様に矩形
波に波形整形される。これを微分器口ηで微分し、第1
2図(C)の波形を出力する1、この微分パルスはダイ
オード131(財)によって正乏負のパルスに分離され
る。ダイオード關からの正の微分パルス出力はスイッチ
ング素子用)を閉じ、R2の抵抗シ@を通してコンデン
サ(財)に充電された電荷を放電し、第12図(a)の
点Bまで放電する。点Bまで放電すると、整流器に)の
入力(第12図(a)の曲線h)がコンデンサ(イ)の
電圧を上廻る様になり、再度充電を開始する。以上の過
程をくり返して第12図(a)の曲線jの様に正の包路
線が検出される。同様に、整流器−、コンデンサ(至)
、抵抗−とスイッチング素子(ハ)によって第12図(
a)の曲線fの様に負の包絡線が検出され、加舅器CM
、で加算される。互いに加算された信号は減衰器(ハ)
で1/2に減衰されて、減算器h<の出力信号の直流成
分(第12図(a)曲線g)が検出されたことになる。
However, at this point, as described above, an accurate envelope is not necessarily extracted, and the envelope is further flattened through the system from (c) to h+i. The output from the subtracter is distributed to four parts: the rectifier (to the rectifier), the waveform shaper, and the subtractor (A).
Consider the case where the output of the fathom is curved as shown in FIG. 12(a). The signal input to the rectifier (A) charges the capacitor with a positive rectified voltage until it reaches the first peak (in Figure 12), point A), and after passing the peak, this peak voltage vP is held. . On the other hand, the output signal of the subtractor 4) is waveform-shaped into a rectangular wave as shown in FIG. 12(b) by a waveform shaper f-fuchi with a sufficiently large degree of amplification. Differentiate this with the differentiator mouth η, and the first
This differential pulse is separated into positive and negative pulses by a diode 131, which outputs the waveform shown in FIG. 2 (C). The positive differential pulse output from the diode closes the switching element and discharges the charge stored in the capacitor through the resistor R2 to point B in FIG. 12(a). When the capacitor is discharged to point B, the input to the rectifier (curve h in FIG. 12(a)) exceeds the voltage of the capacitor (a), and charging starts again. By repeating the above process, a positive envelope line is detected as shown by curve j in FIG. 12(a). Similarly, rectifier, capacitor (to)
, the resistor and the switching element (c) in Figure 12 (
A negative envelope like the curve f in a) is detected, and the addition device CM
, is added. The signals added together are attenuated (c)
This means that the DC component (curve g in FIG. 12(a)) of the output signal of the subtracter h< is detected.

この直流成分を減算器C24)の出力信号からgW器(
至)を通して差し引くことにより、低域雑音を抑圧し、
さらに直流成分の再生を行なったディジタル信号が出力
端子〔aに出力される。
This DC component is subtracted from the output signal of the subtractor C24) by the gW unit (
) to suppress low-frequency noise,
Further, a digital signal whose DC component has been regenerated is outputted to an output terminal [a].

発明の効果 以上、本発明ζこよれば、低域周波数帯域が制限され、
且つ信号と同程度以上の振幅の低域雑音を含む系を通過
したディジクル信号に対しても十分正確に元信号の再現
が可能となり、工業的に極めて有益である。
More than the effects of the invention, according to the present invention, the low frequency band is limited,
In addition, it is possible to reproduce the original signal with sufficient accuracy even for a digital signal that has passed through a system containing low-frequency noise having an amplitude equal to or higher than that of the signal, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流成分が生ずる説明図、第2図は直流成分に
よってゼロクロス位置がずれることの説明図、第8図は
従来の回路構成図、第4図は従来の回路の効果の説明図
、第5図はパルス幅が大きく変化する場合の説明図、第
6図は放電時定数のミスマツチングの例の説明図、第7
図は吐域雑音の増加の原因の説明図、第8図は従来回路
の欠点の説明図、第9図は本発明の回路構成図、第10
図、第ii図、第12肉は本発明の詳細な説明図である
。 四(ハ)・・・加算器、04 Q5・・・直流電源、O
Qaη・・・整流器、(ト)(11・・・コンデンサ、
に)Qυ・・・抵抗、(イ)・・・加算器、(至)・・
・1/2減衰器、(241・・・減算器、に)唆・・・
整流器、@に)・・・コンデンサ、四−・−・抵抗、C
l1lle12・・・スイッチング素子、03)(財)
・・・ダイオード、f3[1・・・加算器、鏝・・・波
形整形器、闘・・・微分器、(財)−・・1/2減算器
、(イ)・・−減算器 代理人  森 本 義 弘 第1図 oootooot  θ0 第2図 第3図 第4図 第5図 第7図 I7下ル 第β図 第1O図 第1/図 第1?図
Fig. 1 is an explanatory diagram of the generation of a DC component, Fig. 2 is an explanatory diagram of the shift of the zero cross position due to the DC component, Fig. 8 is a conventional circuit configuration diagram, and Fig. 4 is an explanatory diagram of the effect of the conventional circuit. Fig. 5 is an explanatory diagram of a case where the pulse width changes greatly, Fig. 6 is an explanatory diagram of an example of mismatching of the discharge time constant, and Fig. 7 is an explanatory diagram of an example of mismatching of the discharge time constant.
Fig. 8 is an explanatory diagram of the cause of the increase in discharge area noise, Fig. 8 is an explanatory diagram of the drawbacks of the conventional circuit, Fig. 9 is a circuit configuration diagram of the present invention, and Fig. 10 is an explanatory diagram of the cause of the increase in discharge area noise.
Figure, Figure ii, and Figure 12 are detailed explanatory diagrams of the present invention. 4 (c)... Adder, 04 Q5... DC power supply, O
Qaη... Rectifier, (G) (11... Capacitor,
) Qυ...resistance, (a)...adder, (to)...
・1/2 attenuator, (241...subtractor,) suggestion...
Rectifier, @)... Capacitor, 4-... Resistor, C
l1lle12...Switching element, 03) (Foundation)
...Diode, f3[1...Adder, Trowel...Waveform shaper, Fighter...Differentiator, (I)...-1/2 subtractor, (A)...-Subtractor substitute People Yoshihiro Morimoto Figure 1 ootooot θ0 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 I7 Lower Figure β Figure 1 O Figure 1/Figure 1? figure

Claims (1)

【特許請求の範囲】[Claims] 1、入力信号に正の直流電圧を加算する手段と、入力信
号に負の直流電圧を加算する手段と、上記正及び負の直
流電圧を加算する手段の出力をそれぞれ整流する手段と
、この整流する手段の出力をそれぞれ充電する容量と、
この容量の正及び負の電荷をそれぞれゆるやかに放電す
る手段と、上記正の直流電圧を加算する手段の出力を整
流し容量に充電された電圧として得られる第1の信号お
よび負の直流電圧を加算する手段の出力を整流し容量に
充電された電圧として得られる第2の信号とを加算する
手段と、この第1と第2の信号と加算する手段の出力を
減衰し、この減衰出力を前記入力信号から減算する第1
の減算手段と、この第1の減算する手段からの出力の正
デE圧を整流する手段と、上記第1の減算する手段から
の出力の負電圧を整流する手段と、この整流された正及
び負の電圧をそれぞれ保持する容量と、このそれぞれの
容量に充電された電荷を短時間に放出する手段と、上記
それぞれの容量の電圧を加算する手段と、前記第1の減
算手段から、上記それぞれの容量の電圧を加算する手段
の出力を減算する第2の減算手段と、前記第1の減算手
段の出力を短形波に整形する手段と、この整形する手段
の出力を微分する手段とを具備し、この微分する手段の
出力により前記電荷を短時間に放出する手段を制御する
ようにしたディジタル信号再生回路。
1. Means for adding a positive DC voltage to an input signal, means for adding a negative DC voltage to an input signal, means for rectifying the outputs of the means for adding positive and negative DC voltages, and the rectification. a capacity for charging each of the outputs of the means for
A first signal obtained by rectifying the output of the means for slowly discharging the positive and negative charges of this capacitor and the means for adding the positive DC voltage, and a negative DC voltage obtained as a voltage charged in the capacitor. a means for adding a second signal obtained as a voltage charged in a capacitor by rectifying the output of the adding means; and attenuating the output of the means for adding the first and second signals; the first subtracted from the input signal
a means for rectifying the positive voltage output from the first subtracting means; a means for rectifying the negative voltage output from the first subtracting means; and a means for rectifying the negative voltage output from the first subtracting means; and a capacitor for holding a negative voltage, a means for quickly discharging the charge charged in each of the capacitors, a means for adding the voltages of the respective capacitors, and the first subtracting means. a second subtracting means for subtracting the output of the means for adding the voltages of the respective capacitors; a means for shaping the output of the first subtracting means into a rectangular wave; and a means for differentiating the output of the shaping means. 1. A digital signal reproducing circuit comprising: a digital signal reproducing circuit, wherein the means for releasing the charge in a short time is controlled by the output of the differentiating means.
JP22944982A 1982-12-28 1982-12-28 Digital signal regenerating circuit Granted JPS59122137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22944982A JPS59122137A (en) 1982-12-28 1982-12-28 Digital signal regenerating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22944982A JPS59122137A (en) 1982-12-28 1982-12-28 Digital signal regenerating circuit

Publications (2)

Publication Number Publication Date
JPS59122137A true JPS59122137A (en) 1984-07-14
JPH0422054B2 JPH0422054B2 (en) 1992-04-15

Family

ID=16892376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22944982A Granted JPS59122137A (en) 1982-12-28 1982-12-28 Digital signal regenerating circuit

Country Status (1)

Country Link
JP (1) JPS59122137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209782A (en) * 2001-09-13 2007-08-23 Conmed Corp Signal processing method and device for signal-to-noise ratio improvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209782A (en) * 2001-09-13 2007-08-23 Conmed Corp Signal processing method and device for signal-to-noise ratio improvement

Also Published As

Publication number Publication date
JPH0422054B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
JPH0120568B2 (en)
US4137504A (en) Digital filter
JPS5891514A (en) Signal conversion circuit
JPH08255303A (en) Waveform shaping circuit for analog signal
JPS59122137A (en) Digital signal regenerating circuit
JPS59117718A (en) Reproducing device of digital signal
JPH0373068B2 (en)
GB2137058A (en) Impulse noise reduction by linear interpolation having immunity to white noise
JPH0765503A (en) Analog/digital converting circuit in information reproducing apparatus
JPS59122138A (en) Digital signal regenerating circuit
JPS59107410A (en) Digital signal circuit
JPS5850821A (en) Differential pwm modulator
JP2806331B2 (en) Waveform equalization circuit
JPH0265408A (en) Waveform shaping circuit
JPH0469864A (en) Automatic waveform equalizing circuit
SU1520586A1 (en) Device for reproducing information from magnetic carrier
SU594520A1 (en) Method of reproducing signals amplitude-modulated by binary code
JP2588907B2 (en) Signal detection device
JPS6243246B2 (en)
JP2790460B2 (en) DC suppression device
JPS6348017A (en) Low frequency recovery circuit
KR880002694B1 (en) Signal detecting apparatus
JPS61189015A (en) Direct current restoration circuit
JPS60214125A (en) Distortion equalizing circuit
JPS63308767A (en) Digital signal processing circuit