JPS591215B2 - Fluorine mica and its manufacturing method - Google Patents

Fluorine mica and its manufacturing method

Info

Publication number
JPS591215B2
JPS591215B2 JP15930780A JP15930780A JPS591215B2 JP S591215 B2 JPS591215 B2 JP S591215B2 JP 15930780 A JP15930780 A JP 15930780A JP 15930780 A JP15930780 A JP 15930780A JP S591215 B2 JPS591215 B2 JP S591215B2
Authority
JP
Japan
Prior art keywords
mica
fluorine mica
fluorine
talc
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15930780A
Other languages
Japanese (ja)
Other versions
JPS5782114A (en
Inventor
博 立山
邦夫 木村
和彦 陣内
絹江 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15930780A priority Critical patent/JPS591215B2/en
Publication of JPS5782114A publication Critical patent/JPS5782114A/en
Publication of JPS591215B2 publication Critical patent/JPS591215B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 本発明は、各種電気絶縁材料、耐熱性フィラー、耐熱塗
料、離型剤、摺動材料として有用な新規フッ素雲母及び
その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel fluorinated mica useful as various electrical insulating materials, heat-resistant fillers, heat-resistant paints, mold release agents, and sliding materials, and a method for producing the same.

従来、フッ素雲母としては、シリカ、マグネシア、アル
ミナ、フッ化物を原料として、(高温1300℃以上)
で溶融し、徐冷する方法いわゆる溶融法によるフッ素雲
母と、長石、カンラン石、石英、フッ化物等を混合して
、徐々に加熱し、1000℃以上で、2〜24時間反応
させる方法、いわゆる固体反応法によるフッ素雲母が知
られている。
Conventionally, fluorine mica has been produced using silica, magnesia, alumina, and fluoride as raw materials (at high temperatures of 1300°C or higher).
A method in which fluorine mica is mixed with feldspar, olivine, quartz, fluoride, etc. by the so-called melting method, and the mixture is gradually heated and reacted at 1000°C or higher for 2 to 24 hours. Fluorine mica produced by a solid-state reaction method is known.

しかし、このようにして得られるフッ素雲母は金雲母(
KMg3Si3AlO1oF2)組成のように必らずA
l2O3を含むものであるか、あるいはAl2O3を含
まないものは、KMg2.5Si40、。
However, the fluorine mica obtained in this way is phlogopite (
KMg3Si3AlO1oF2)
KMg2.5Si40, which contains l2O3 or does not contain Al2O3.

F2やKMg2.75(s i3.75 Mg、)、2
5 ) 010 F 2の化学構造式を有するものであ
る。
F2 or KMg2.75 (s i3.75 Mg,), 2
5) It has the chemical structural formula 010F2.

しかしながらこれらフッ素雲母の製造方法は、例えば溶
融法の場合、温度が高すぎること、また固体反応法では
、均一に反応させるために、試料の混合を充分に行なわ
なくてはならないこと、また反応時間が長すぎるなどの
欠点がある。
However, with these methods for producing fluorine mica, for example, in the case of the melting method, the temperature is too high, and in the solid-state reaction method, the sample must be sufficiently mixed in order to react uniformly, and the reaction time is too high. It has drawbacks such as being too long.

本発明は、滑石粉末に対し、その重量当り15係から2
5係のアルカリ金属フッ素化合物粉末を加えその混合物
を800〜1200℃で加熱処理してフッ素雲母を得る
ことができ、このようにすれば、従来のものに比べて極
めて短時間でフッ素雲母を製造できること、試料の混合
が、滑石とフッ化物の2種類であるため混合が容易であ
ることなどのため、本発明によれば、極めて安価に、し
かも連続的に多量にフッ素雲母を製造することができる
The present invention provides talc powder with 15 to 2 parts per weight.
Fluorine mica can be obtained by adding alkali metal fluorine compound powder of Section 5 and heat-treating the mixture at 800 to 1200°C. In this way, fluorine mica can be produced in an extremely short time compared to conventional methods. According to the present invention, it is possible to produce fluorinated mica in large quantities continuously at an extremely low cost. can.

また本発明のフッ素雲母は、従来のものと異なりAl2
O3を含まない組成式MF、3Mg0゜4Si02(M
はに、Na又はNiである)で表わされる新規な物質で
ある。
Furthermore, the fluorine mica of the present invention differs from conventional ones in that Al2
Compositional formula MF that does not contain O3, 3Mg0゜4Si02 (M
It is a new substance represented by Na, Na or Ni).

本発明方法において、原料として用いる滑石は特に純粋
な原料でなくても、フッ化雲母の製造は可能である。
In the method of the present invention, fluorinated mica can be produced even if the talc used as a raw material is not a particularly pure raw material.

これは他の不純物元素、例えばAl2O3やFe2O3
等の元素が存在しても、これらの元素がフッ素雲母構造
の電荷のアンバランスを解消するように働くためである
This is caused by other impurity elements, such as Al2O3 and Fe2O3.
This is because even if such elements are present, these elements work to eliminate the charge imbalance of the fluorine mica structure.

この場合Al2O3が一部構造中に固溶するが、本雲母
の基本構造には影響はない。
In this case, although Al2O3 is partially dissolved in the structure, it does not affect the basic structure of the mica.

フッ化物としては市販の工業用の試薬を用いた。A commercially available industrial reagent was used as the fluoride.

滑石とフッ化物の混合割合は、フッ化物の量をそれぞれ
15%、17%。
The mixing ratio of talc and fluoride is 15% and 17%, respectively.

20係、25o;bと変えて添加した。20 parts, 25 o; b were added.

本発明は、前記の原料の混合物を電気炉、ロータリキル
ン等を用いて、800°C〜1200℃に急速加熱して
、0秒から24時間保持することにより、滑石の層間部
にアルカリイオンを浸入させ、同時に、滑石の構造水で
あるOHイオンをフッ素イオンで一部同形イオン置換さ
せて、フッ素雲母を得ようとしたものである。
In the present invention, alkali ions are introduced into the interlayers of talc by rapidly heating the mixture of the above-mentioned raw materials to 800°C to 1200°C using an electric furnace, rotary kiln, etc. and holding it for 0 seconds to 24 hours. At the same time, fluorine mica was obtained by partially replacing OH ions, which are the structural water of talc, with fluorine ions.

ただし熱処理0秒保持とは次のように定義する。However, the heat treatment held for 0 seconds is defined as follows.

滑石との混合物を所定の温度に保持しである電気炉に挿
入すると、炉内温度は数十度降下し、再度、所定温度に
復帰するまでに数十秒を要する。
When a mixture with talc is maintained at a predetermined temperature and inserted into an electric furnace, the temperature inside the furnace drops several tens of degrees, and it takes several tens of seconds to return to the predetermined temperature again.

つまり0秒保持とは、再度所定温度になったと同時に、
炉内から試料を取り出し7た時の熱処理をいう。
In other words, holding for 0 seconds means that as soon as the temperature reaches the specified temperature again,
This refers to the heat treatment performed when a sample is removed from the furnace.

フッ素雲母の収率に対する加熱温度と加熱時間の影響は
、第1図に示すとおりである。
The influence of heating temperature and heating time on the yield of fluorine mica is as shown in FIG.

第1図かられかるように1000℃以上の温度なら、熱
処理時間が0秒でも充分にフッ素雲母化しているので、
1000℃以上の力ロ熱が好ましい。
As can be seen from Figure 1, if the temperature is 1000℃ or higher, even if the heat treatment time is 0 seconds, the fluorine mica is sufficiently converted.
Force heating at 1000°C or higher is preferred.

800°C2900°Cでも熱処理時間を長くすれば、
充分にフッ素雲母化する。
Even at 800°C and 2900°C, if the heat treatment time is increased,
Completely converts into fluorinated mica.

1200°C以上の加熱でもフッ素雲母の製造は可能で
あるが、粉体が焼結してしまうため、製造物質の粉砕が
必要である。
Although it is possible to produce fluorine mica by heating at 1200°C or higher, the powder is sintered, so it is necessary to pulverize the production material.

また1000℃で熱処理されたものは、粉状で得られる
し、しかも純粋にフッ素雲母のみが得られるので、分離
操作も粉砕も必要でなく、そのまま利用可能である。
Furthermore, those heat-treated at 1000° C. are obtained in powder form, and since only fluorine mica is obtained, there is no need for separation or pulverization, and the product can be used as is.

本発明のフッ素雲母は滑石を電気炉、ロータリキルンを
用いて、850°C〜1200℃に加熱し、暫時保持す
ることにより、アルカリイオンが、滑石の層間部に浸入
し、と同形に滑石の構造水がフッ素イオンにより同時イ
オン置換されてフッ素雲母を得るものである。
The fluorinated mica of the present invention is produced by heating talc to 850°C to 1200°C using an electric furnace or rotary kiln and holding it for a while, so that alkali ions penetrate into the interlayers of talc and form the same shape as the talc. Fluorine mica is obtained by simultaneous ion substitution of structural water with fluorine ions.

層間部ににイオンが浸入していることは、第2図に示す
、一次元方向の電子分布密度図から明らかである。
It is clear from the one-dimensional electron distribution density diagram shown in FIG. 2 that ions have penetrated into the interlayer region.

なぜなら、滑石では、第2図のカリウムの位置、つまり
層間部に伺もイオンが存在しないからである。
This is because, in talc, there are no ions at the position of potassium in Figure 2, that is, in the interlayer region.

すなわち層間部ににイオンのピークがあることは、滑石
からフッ素雲母に変化したことを示しており、X線回折
の定性分析の結果と同様に、フッ素雲母が生成したこと
を確認することができる。
In other words, the presence of an ion peak in the interlayer region indicates that talc has changed to fluorinated mica, and similar to the results of qualitative X-ray diffraction analysis, it can be confirmed that fluorinated mica has been produced. .

本発明によるフッ素雲母の化学構造式は、上記の実験結
果から判断して、従来法のように非常に安定した条件下
で製造されたものでないため、Kイオンが滑石の層間部
に浸入すると同時に、滑石の単位胞中に4個あるOHイ
オンが2個Fイオンに置換され、他は0イオンとして残
り、 KMg3Si40.1F、NaMg5Si4011F
Judging from the above experimental results, the chemical structural formula of the fluorinated mica according to the present invention is not produced under very stable conditions as in the conventional method, and therefore K ions penetrate into the interlayers of talc at the same time. , two of the four OH ions in the unit cell of talc are replaced by F ions, and the others remain as 0 ions, KMg3Si40.1F, NaMg5Si4011F
.

LiMg5Si401、Fのような陰イオン構造をもつ
ものになる。
It has an anion structure like LiMg5Si401,F.

この011F陰イオン構造は、一般に複鎖構造をもつ結
晶に代表的なものであるため、本発明によるフッ素雲母
が、かなり特異なものであることがわかる。
Since this 011F anion structure is generally typical of crystals having a double-chain structure, it can be seen that the fluorinated mica according to the present invention is quite unique.

本発明のフッ素雲母(KMg3 S t 40 t t
F )の昇温過程における電気伝導度の変化を第3図
に示す。
Fluorine mica (KMg3 S t 40 t t
Figure 3 shows the change in electrical conductivity during the heating process of F).

かなり特異な組成をもつフッ素雲母であるが、約500
°Cまで、電気伝導度は1011でマイカセラミックに
比べ非常に小さな値を示しており良好な電気絶縁材料で
ある。
Fluorine mica has a quite unique composition, but about 500
Celsius, the electrical conductivity is 1011, which is a much smaller value than mica ceramic, making it a good electrical insulating material.

例えば、高温下で使用する精密分析装置ならびに制御装
置等の高抵抗の材料として、また耐熱性および絶縁性材
料の充填材、または耐熱塗料等として好適である。
For example, it is suitable as a high-resistance material for precision analysis devices and control devices used at high temperatures, as a filler for heat-resistant and insulating materials, or as a heat-resistant paint.

実施例 1 滑石を粉砕後、篩分けにより74μm以下を原料として
用いた。
Example 1 After pulverizing talcum, it was sieved to use the talc with a diameter of 74 μm or less as a raw material.

まず原料とフッ化物をそれぞれ所定の割合(25%)に
混合した。
First, raw materials and fluoride were mixed at predetermined ratios (25%).

この混合物を白金ルツボに入れ急速加熱して所定時間保
持してフッ素雲母を得た。
This mixture was placed in a platinum crucible, rapidly heated, and held for a predetermined time to obtain fluorine mica.

フッ素雲母の生成率は、X線粉末法により測定した。The production rate of fluorine mica was measured by the X-ray powder method.

すなわち、フッ素雲母の回折ピークの面積と滑石の回折
ピークの面積と滑石の回折ピークの面積の和で、フッ素
雲母の回折ピークの面積を除し、その値をフッ素雲母の
生成率とした。
That is, the area of the diffraction peak of fluorinated mica was divided by the sum of the area of the diffraction peak of fluorinated mica, the area of the diffraction peak of talc, and the area of the diffraction peak of talc, and the value was taken as the production rate of fluorinated mica.

その結果を第1図に示すが、1,000℃以上の加熱で
しかも熱処理時間0秒と非常に短時間で、生成率100
係でフッ素雲母を製造することができた。
The results are shown in Figure 1, and the production rate was 100% by heating at 1,000°C or higher and in a very short heat treatment time of 0 seconds.
We were able to produce fluorine mica.

実施例 2 滑石とフッ化物の混合割合が20%の時、フッ素雲母と
同時に輝石が得られた。
Example 2 When the mixing ratio of talc and fluoride was 20%, pyroxene was obtained at the same time as fluorine mica.

混合割合が、20%、17%、15係の時、フッ素雲母
以外の物質が、それぞれ、約10’%、20係、30係
程度得られた。
When the mixing ratio was 20%, 17%, and 15%, substances other than fluorine mica were obtained at about 10'%, 20%, and 30%, respectively.

鉱物の定量方法はX線粉末法によった。The minerals were determined by the X-ray powder method.

実施例 3 滑石とフッ化物(ただし、この場合はKFのみ)の混合
割合が25%、20係、17係、15係の時、その混合
物を白金ルツボに入れ、徐々にカロ熱して、処理温度を
800°C〜1200℃の範囲内、保持時間を暫時変化
させて、はぼ第1図と同様の結果を得た。
Example 3 When the mixing ratio of talc and fluoride (in this case, only KF) is 25%, 20 parts, 17 parts, and 15 parts, the mixture is placed in a platinum crucible and gradually heated to a treatment temperature. By varying the holding time within the range of 800° C. to 1200° C., results similar to those shown in FIG. 1 were obtained.

ただし、この場合、実施例1,2に比較して、目的鉱物
以外の物質が若干多く得られたO 実施例 4 実施例3の製造方法において滑石とフッ化物の混合割合
が25%の時にのみ、加熱処理されたフッ素雲母を再加
熱する事により、目的鉱物以外の物質が消滅し、純粋な
フッ素雲母のみを得ることができた。
However, in this case, compared to Examples 1 and 2, slightly more substances other than the target mineral were obtained. By reheating the heat-treated fluorinated mica, substances other than the target mineral disappeared, and only pure fluorinated mica could be obtained.

その結果を第4図に示す。再加熱を2回以上行なえば、
純粋なフッ素雲母が得られた。
The results are shown in FIG. If you reheat it two or more times,
Pure fluorinated mica was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、滑石とフッ化物の混合割合が25%の時の、
熱処理温度とフッ素雲母の生成率との関係図、第2図は
、実施例1の保持時間0秒の時得られた、フッ素雲母の
一次元雲子分布密度図、この図よりにイオンが層間部に
浸入していることが明らかである。 第3図は、昇温過程におけるフッ素雲母の電気伝導度の
変化図、(実施例1の保持時間0秒で製造されたフッ素
雲母)、第4図は、再加熱によるフッ素雲母の生成率を
示した図である。
Figure 1 shows that when the mixing ratio of talc and fluoride is 25%,
Figure 2 is a diagram showing the relationship between the heat treatment temperature and the production rate of fluorine mica, and is a one-dimensional mica distribution density diagram of fluorine mica obtained when the holding time was 0 seconds in Example 1. It is clear that it has penetrated into the body. Figure 3 shows the change in electrical conductivity of fluorine mica during the temperature rising process (fluorine mica produced with a holding time of 0 seconds in Example 1), and Figure 4 shows the production rate of fluorine mica due to reheating. FIG.

Claims (1)

【特許請求の範囲】 1 組成式 MP・3Mg0・4S102 (ただし
、Mはに、Na、又はLiである)で示されるフッ素雲
母。 2 滑石粉末に対し、その重量当たり、15係から25
係のアルカリ金属フッ素化合物粉末を加え、その混合物
を800〜1200℃で加熱処理することを特徴とする
組成式 MF・3Mg0 ・4SiO2(ただし、M
はに、Na、又はLi である)で示されるフッ素雲
母の製造方法。
[Claims] 1. Fluorine mica represented by the compositional formula MP.3Mg0.4S102 (where M is 2, Na, or Li). 2 For talcum powder, 15 to 25 per weight
A composition formula characterized by adding the related alkali metal fluorine compound powder and heat-treating the mixture at 800 to 1200°C.
2, Na, or Li).
JP15930780A 1980-11-11 1980-11-11 Fluorine mica and its manufacturing method Expired JPS591215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15930780A JPS591215B2 (en) 1980-11-11 1980-11-11 Fluorine mica and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15930780A JPS591215B2 (en) 1980-11-11 1980-11-11 Fluorine mica and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5782114A JPS5782114A (en) 1982-05-22
JPS591215B2 true JPS591215B2 (en) 1984-01-11

Family

ID=15690936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15930780A Expired JPS591215B2 (en) 1980-11-11 1980-11-11 Fluorine mica and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS591215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1020708C (en) * 1988-01-21 1993-05-19 希欧欧匹化学株式会社 Method for producing fluorine mica
US5204078A (en) * 1988-01-21 1993-04-20 Co-Op Chemical Co., Ltd. Method for producing fluorine mica

Also Published As

Publication number Publication date
JPS5782114A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US3356513A (en) Production of silicon oxynitride
US3940255A (en) Process for making cordierite glass-ceramic having nucleating agent and increased percent cordierite crystallinity
Smith et al. Re‐examination of the polymorphism of dicalcium silicate
Pet’kov et al. Characterization and controlling thermal expansion of materials with kosnarite-and langbeinite-type structures
JPS591215B2 (en) Fluorine mica and its manufacturing method
WO1989010800A1 (en) Process for preparing a barium titanate film
Morgan et al. Reactions of BeO and SiO2; Synthesis and Decomposition of Phenacite
US3975308A (en) Preparation of pyrophosphates
US3084053A (en) Ceramic materials and method for making same
RU2724760C1 (en) Bismuth germanate-silicate production method
JPH061614A (en) Compound expressed by formula bi5o7no3 and its production
US4994419A (en) Low temperature synthesis of high purity monoclinic celsian using topaz
US4681862A (en) Electrically insulating filler for sheathed heaters
US5041400A (en) Low temperature synthesis of high purity monoclinic celsian
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
RU2783651C1 (en) Method for production of powder mullite ceramics
JPH08290905A (en) Hexagonal boron nitride powder and its production
RU2197440C2 (en) Raw material concentrate for production of glass and ceramics and method of production of such material
JPH0632616A (en) Production of bi5o7@(3754/24)no3)
Kokubo et al. Effects of Al₂O₃ Addition on Glassy Phase Separation and Crystallization of a PbO-TiO₂-SiO₂ Glass
Pet’kov et al. Preparation, thermal diffusivity, and thermal conductivity of phosphate ceramics with the tridymite structure
Tkalčce et al. Influence of Dopants on Nucleation and Growth of High‐Quartz Solid Solution in Lithium Aluminosilicate Glass
JPH03115113A (en) Production of fluorine mica
US2763560A (en) Lead silicophosphate compositions and processes for preparing them
Argyle et al. Dilatometric and X‐Ray Data for Lead Compounds, II