JPS59121195A - Semi-insulating gallium arsenide crystal - Google Patents
Semi-insulating gallium arsenide crystalInfo
- Publication number
- JPS59121195A JPS59121195A JP22748482A JP22748482A JPS59121195A JP S59121195 A JPS59121195 A JP S59121195A JP 22748482 A JP22748482 A JP 22748482A JP 22748482 A JP22748482 A JP 22748482A JP S59121195 A JPS59121195 A JP S59121195A
- Authority
- JP
- Japan
- Prior art keywords
- semi
- gallium arsenide
- insulating
- insulating gallium
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/02—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
- C30B15/04—Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)技術分野
本発明はすぐれた特性を有する半絶縁性砒化ガリウム結
晶に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to semi-insulating gallium arsenide crystals having excellent properties.
(ロ)背景技術
半絶縁性砒化ガリウムはその特徴を生かして超高速素子
GaAs F E TまたはFgTを主素子。(b) Background technology Semi-insulating gallium arsenide has taken advantage of its characteristics to be used as a main element in ultra-high-speed elements GaAs FET or FgT.
とするGaAs ICの開発が急速に進んでおり、半絶
縁性砒化ガリウム結晶はクロムや酸素全添加したり、ま
た最近ではアンドープ(無添加JLEC法によりつくら
nている。GaAsFgTをつ(る際には主としてイオ
ンインプランテーション法が採らn、この方法では半絶
縁性砒化ガリウム結晶に例えばシリコンを打ち込むが、
このときシリコンを打ち込んだ際のキャリアのプロファ
イル(分布)が理論通りに行かずに異形となったシ、打
ち込んだシリコンのキャリアとして有効に働く度合い、
活性化率が不安定であったジする。また、この様にして
活性層を形成した半絶縁性砒化ガリウムを用いてFET
を形成してみてもvth(ピンチオフ電圧)のバラツキ
が大゛きいとか、飽和電流(Idss)値の分布が不均
一という問題点がある。The development of GaAs ICs is progressing rapidly, and semi-insulating gallium arsenide crystals are manufactured by adding chromium or oxygen, or recently by the undoped JLEC method. The ion implantation method is mainly used.In this method, silicon, for example, is implanted into a semi-insulating gallium arsenide crystal.
At this time, the profile (distribution) of carriers when implanting silicon did not follow the theory and became an irregular shape, and the degree to which the implanted silicon worked effectively as a carrier,
The activation rate was unstable. In addition, we have also developed an FET using semi-insulating gallium arsenide with an active layer formed in this way.
However, there are problems such as large variations in vth (pinch-off voltage) and uneven distribution of saturation current (Idss) values.
(ハ)発明の開示
本発明は、このような問題点を解決するために種々実験
全行った結果、見出されたもので、半絶縁性砒化ガリウ
ムにインジウムを添加することにより従来にない良い特
性の半絶縁性砒化ガリウム結晶を提供するものである。(C) Disclosure of the Invention The present invention was discovered as a result of conducting various experiments in order to solve these problems, and by adding indium to semi-insulating gallium arsenide, an unprecedented improvement was achieved. The present invention provides a semi-insulating gallium arsenide crystal with characteristics.
すなわち本発明はインジウム全添加したことを特徴とす
る半絶縁性砒化ガリウム結晶に関し、インジウムの添加
量はj 01g 、、 i 020 cIn−3が好ま
しい。本発明におけるインジウムとしては、In単体の
他、砒化インジウム−酸化インジウム等、あるいはこれ
らの混合物が用いられ、その添加量はInとして101
8〜10” 1m4が好ましい。この下限はいわゆる不
純物硬化が期待できる下限であり、一方、濃度が高すぎ
ると()aAs中に均一に取り込まれず析出が生じ、不
純物としての役割を果たせず、また折用自身点欠陥とし
てデバイス特性に悪影響を与えをので、上記上限が定め
られる。また本発明における半絶縁性砒化ガリウムはI
nの他に酸素やクロムが添加さnていてもよいし、また
アンドープ(Inは除外に考える)のものでもよ(、こ
の場合Inドープにより結晶欠陥を低減させることがで
きると同時に、er、o2により導電、性に寄与する残
留の浅い準位(ドナーおよび/またはアクセプター)を
電気的に補償して半絶縁性のGaAsを得ることができ
る。この補償用不純物としては他にV 、 Go、Fe
、Ni等がある。That is, the present invention relates to a semi-insulating gallium arsenide crystal characterized in that all indium is added, and the amount of indium added is preferably j01g, i020cIn-3. As indium in the present invention, in addition to In alone, indium arsenide-indium oxide, etc., or a mixture thereof is used, and the amount added is 101 as In.
8 to 10" 1 m4 is preferable. This lower limit is the lower limit at which so-called impurity hardening can be expected. On the other hand, if the concentration is too high, it will not be incorporated uniformly into the aAs and will precipitate, failing to play its role as an impurity. The above upper limit is set because folding itself causes a point defect that adversely affects device characteristics.Furthermore, the semi-insulating gallium arsenide in the present invention is
Oxygen or chromium may be added in addition to n, or it may be undoped (excluding In) (in this case, In doping can reduce crystal defects and at the same time Semi-insulating GaAs can be obtained by electrically compensating for residual shallow levels (donors and/or acceptors) that contribute to conductivity and properties using o2.Other impurities for compensation include V, Go, Fe
, Ni, etc.
Crは、GaAs中で深いアクセプター準位を形成する
とさ扛ており、この深い準位で残留の浅いドナー準位(
導電性に寄与)を補償して、半絶縁性を得るのが、゛い
わゆるcrドープの半絶縁性GaAsである。残留の浅
いドナー準位濃度を満たす為にCrけα01 wtpp
m以上加えるのが望ましく、一方、Inの場合と同様に
析出の問題を避けるためと、更に1.C。Cr is known to form a deep acceptor level in GaAs, and this deep level forms a remaining shallow donor level (
So-called cr-doped semi-insulating GaAs is used to compensate for the contribution to conductivity and to obtain semi-insulating properties. To satisfy the remaining shallow donor level concentration, Cr α01 wtpp
It is desirable to add 1. C.
用製法としてイオン注入が主たる方法となシつつあり、
この場合良好な素子を得るにはCrの添加量は1 wt
ppm以下が望ましい。Ion implantation is becoming the main manufacturing method.
In this case, to obtain a good element, the amount of Cr added is 1 wt.
It is desirable that the amount is less than ppm.
0、はGaAS中で深いドナー準位を形成するというの
が通説となっており、Crとは逆に残留の浅いアクセプ
ター準位(導電性に寄与)全補償して、半絶縁性全得る
のがいわゆる02ドープの半絶縁性GaAsである。通
常アンドープ(意識的にはCrも02もドープしないと
いう意味)の半絶縁性GaAsと呼ばれているものは、
無意識にドープさfした01(結晶成長工程で02は入
り易く制御も姉かしい)によって浅いアクセプター(C
,CuあるいUGa’2孔等)1−補償しているものと
考えらnている。It is generally accepted that 0 forms a deep donor level in GaAS, and contrary to Cr, it is possible to fully compensate for the residual shallow acceptor level (contributing to conductivity) and obtain a semi-insulating state. is so-called O2-doped semi-insulating GaAs. What is usually called undoped (meaning that neither Cr nor 02 is intentionally doped) semi-insulating GaAs is
A shallow acceptor (C
, Cu or UGa' 2 holes, etc.) 1- It is thought that it compensates.
本発明における半絶縁性砒化ガリウム結晶は液体カプセ
ル引上法や、水平式ブリッジアン法、グラディエンドフ
リーズ法等で製造できる。液体カプセル引上法では引上
時炉内圧力をsokg/crd以下、引上速度3〜20
m711/時間とすることによって、結晶径50171
10以上の特性のすぐnた単結晶を効率よく製造できる
。The semi-insulating gallium arsenide crystal in the present invention can be produced by a liquid capsule pulling method, a horizontal Bridgian method, a gradient-end freeze method, or the like. In the liquid capsule pulling method, the pressure inside the furnace during pulling is below sokg/crd, and the pulling speed is 3 to 20.
By setting m711/hour, the crystal diameter is 50171
Single crystals with properties of 10 or more can be efficiently produced.
実施例1
液体カプセル引上げ沃で次のようにして半絶縁性砒化ガ
リウム結晶を作成した。砒化ガリウムチャージ量は1
kg、加圧圧力は4.5#/d、引上速度は7 mW
7時間であり、添加物としてInを用いた。できた半絶
縁性砒化ガリウム結晶は質量分析の結果、Inが2.4
X I Q18〜1.8 X 10” CTL−3含
まAていた。Example 1 A semi-insulating gallium arsenide crystal was produced using a liquid capsule pulling method as follows. Gallium arsenide charge amount is 1
kg, pressurizing pressure is 4.5 #/d, pulling speed is 7 mW
The time was 7 hours, and In was used as an additive. As a result of mass spectrometry, the resulting semi-insulating gallium arsenide crystal has an In content of 2.4.
X I Q18~1.8 X 10'' CTL-3 included A.
この結晶にイオンインプランテーションによ#)5X
1012イオン/7のシリコン全70Keyで注入し、
そのキャリア濃度分布を測足したところ、第1図に示す
ように非常に良い分布を示した。#) 5X by ion implantation on this crystal
1012 ions/7 silicon implanted in all 70 keys,
When the carrier concentration distribution was measured, it showed a very good distribution as shown in FIG.
結晶のトップ、ミドル、バック各部を示しているが、は
とんど一本の線となっている。It shows the top, middle, and back parts of the crystal, but it is essentially a single line.
実施例2
実施例1とほぼ同じ方法で、添加物としてクロムとイン
ジウムを用いて半絶縁性砒化ガリウム結晶を成長させた
。同じ(質量分析法により結晶中にCrが0.05〜0
.25wt ppm、 Inが6 X 10” 〜s、
4 x 1 o′9cm’含まn ていた。実施例1と
同様のイオンインプランテーションを施して活性化率と
移動度を測定したところ、下記の表に示すように非常に
良好な結果を得た実施例6
インジウムを添加する代りに砒化インジウムを添加して
結晶成長を行い、インジウム量15〜16X10”ぼ−
3の結晶全得、このものに2.2X1012イオン/d
のシリコン全打込み、FETを形成してピンチオフ電圧
(vth)を測定したところ、結晶のトップ部で平均2
.Ov、面内分布2.1係、バック部で平均1.9v、
面内分布2.2%と均一であった。Example 2 A semi-insulating gallium arsenide crystal was grown using substantially the same method as in Example 1 using chromium and indium as additives. Same (mass spectrometry shows that Cr is 0.05 to 0 in the crystal)
.. 25wt ppm, In is 6 x 10”~s,
It contained 4 x 1 o'9cm'. When the activation rate and mobility were measured using the same ion implantation as in Example 1, very good results were obtained as shown in the table below. Example 6 Indium arsenide was used instead of adding indium. The amount of indium is 15 to 16 x 10”.
3 crystals obtained, this one has 2.2X1012 ions/d
When we measured the pinch-off voltage (vth) after forming a FET with a full silicon implant of
.. Ov, in-plane distribution coefficient 2.1, average 1.9v at the back part,
The in-plane distribution was uniform at 2.2%.
実施例4
実施例5と同様にして砒化インジウムとクロムを添加し
−Or 0.02〜0.12wtppm、 InlX
1019〜9×1019α−3を含む半絶縁性砒化ガリ
ウム結晶を作成し、更[FET1作成し飽和。 電流
(IdSS)を測定したところ、結晶のトップ部での面
内バラツキ1.2チ、バック部でのバラツキ1,5%と
良好な分布を示した。Example 4 In the same manner as in Example 5, indium arsenide and chromium were added -Or 0.02 to 0.12 wtppm, InlX
A semi-insulating gallium arsenide crystal containing 1019 to 9×1019α-3 was created, and further FET1 was created and saturated. When the current (IdSS) was measured, it was found that the in-plane variation at the top part of the crystal was 1.2%, and the variation at the back part was 1.5%, indicating a good distribution.
第1図は、本発明の半絶縁性砒化ガリウム結晶から作成
したFETのキャリア濃度分布を示すグラフである。
代理人 内 1) 明
代理人 萩 原 亮 −
)呆さ
特許庁長官 若杉、和夫殿
1、事件の表示
昭和57年特許願第227484号
2°発10名相° 半絶縁性砒化ガリウ・結晶3、補正
をする者
事件との関係 特許出願人
1:iI’lr 大阪市東区北浜5丁目15番地4、
代理人
l補正の対象
jl) 明細書の「発明の詳細な説明」の欄。
&補正の内容
(1) 明細書第5頁1行目の「与えをので」なる記
載を「与えるので」なる記載に訂正する。
(2)明細書第5頁11行目の「v、 co、 Fe、
Ni Jなる記載のl”Oo、J およびrNiJ
e削除し、「VOlFeJ なる記載とする。
(3) 明細書第5頁下から6行目の「ブリッジアン
法」する記載を「ブリッジマン法」する記載に訂正する
。
464−FIG. 1 is a graph showing the carrier concentration distribution of an FET made from the semi-insulating gallium arsenide crystal of the present invention. Among the agents: 1) Akira's agent Ryo Hagiwara -) Abused Patent Office Commissioner Wakasugi, Kazuo 1, Incident indication 1982 Patent Application No. 227484 2° 10 persons Semi-insulating galyl arsenide crystal 3 , Relationship with the person making the amendment Patent applicant 1: iI'lr 5-15-4 Kitahama, Higashi-ku, Osaka,
Agent l Subject of amendment jl) ``Detailed description of the invention'' column of the specification. & Contents of the amendment (1) The statement "Give wo no de" on page 5, line 1 of the specification is corrected to "Give wo so". (2) “v, co, Fe,” on page 5, line 11 of the specification
l”Oo, J and rNiJ written as Ni J
e is deleted and the description is changed to ``VOlFeJ.'' (3) The description of ``Bridgean method'' in the sixth line from the bottom of page 5 of the specification is corrected to ``Bridgeman method.'' 464-
Claims (5)
縁性砒化ガリウム結晶(1) Semi-insulating gallium arsenide crystal characterized by the addition of indium
特許請求の範囲第1項記載の半絶縁性砒化ガリウム結晶
。(2) The semi-insulating gallium arsenide crystal according to claim 1, in which indium arsenide is used as indium.
’である特許請求の範囲81項または第2項記載の半絶
縁性砒化ガリウム結晶。(3) The amount of indium added is 10'8~10"m-
' The semi-insulating gallium arsenide crystal according to claim 81 or 2.
許請求の範囲第1項、第2項または第5項記載の半絶縁
性砒化ガリウム結晶。(4) The semi-insulating gallium arsenide crystal according to claim 1, 2 or 5, containing α01 to I', wt ppm of chromium.
せていない特許請求の範囲第1項記載の半絶縁性砒化ガ
リウム結晶。(5) The semi-insulating gallium arsenide crystal according to claim 1, which does not intentionally contain any impurities other than indium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22748482A JPS59121195A (en) | 1982-12-28 | 1982-12-28 | Semi-insulating gallium arsenide crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22748482A JPS59121195A (en) | 1982-12-28 | 1982-12-28 | Semi-insulating gallium arsenide crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59121195A true JPS59121195A (en) | 1984-07-13 |
Family
ID=16861602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22748482A Pending JPS59121195A (en) | 1982-12-28 | 1982-12-28 | Semi-insulating gallium arsenide crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59121195A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59131598A (en) * | 1983-01-18 | 1984-07-28 | Sumitomo Electric Ind Ltd | Production of gaas single crystal |
JPS59131599A (en) * | 1983-01-18 | 1984-07-28 | Sumitomo Electric Ind Ltd | Production of gaas single crystal |
JPS61201697A (en) * | 1985-03-04 | 1986-09-06 | Agency Of Ind Science & Technol | Production of gaas compound single crystal |
JPS62191500A (en) * | 1986-02-19 | 1987-08-21 | Sumitomo Electric Ind Ltd | Production of single crystal of gallium sulfide compound semiconductor |
JPS63201097A (en) * | 1987-02-13 | 1988-08-19 | Sumitomo Electric Ind Ltd | Semiinsulating gallium-arsenic single crystal |
-
1982
- 1982-12-28 JP JP22748482A patent/JPS59121195A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59131598A (en) * | 1983-01-18 | 1984-07-28 | Sumitomo Electric Ind Ltd | Production of gaas single crystal |
JPS59131599A (en) * | 1983-01-18 | 1984-07-28 | Sumitomo Electric Ind Ltd | Production of gaas single crystal |
JPS61201697A (en) * | 1985-03-04 | 1986-09-06 | Agency Of Ind Science & Technol | Production of gaas compound single crystal |
JPS62191500A (en) * | 1986-02-19 | 1987-08-21 | Sumitomo Electric Ind Ltd | Production of single crystal of gallium sulfide compound semiconductor |
JPH0357078B2 (en) * | 1986-02-19 | 1991-08-30 | ||
JPS63201097A (en) * | 1987-02-13 | 1988-08-19 | Sumitomo Electric Ind Ltd | Semiinsulating gallium-arsenic single crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59121195A (en) | Semi-insulating gallium arsenide crystal | |
Fewster et al. | The effect of silicon doping on the lattice parameter of gallium arsenide grown by liquid-phase epitaxy, vapour-phase epitaxy and gradient-freeze techniques | |
DE3514294A1 (en) | SEMI-INSULATING GALLIUM ARSENIDE CRYSTALS DOPED WITH INDIUM AND METHOD FOR THEIR PRODUCTION | |
Bode et al. | Spontaneous calcium oscillations in clonal endocrine pancreatic glucagon-secreting cells | |
Brozel et al. | Tin segregation and donor compensation in melt-grown gallium arsenide | |
JPS6325297A (en) | Manufacture of single crystal 3-5 semi-insulating substance by doping | |
US3627498A (en) | Growth of crystalline chalcogenide spinels | |
JPH03103394A (en) | Production of semiinsulating inp single crystal | |
JPH0529639B2 (en) | ||
JPS61111998A (en) | Manufacture of single crystal of gallium arsenide | |
KR960005511B1 (en) | Growing method of gaas single crystal | |
CA1271393A (en) | Method of manufacturing a semi-insulating single crystal of gallium indium arsenide | |
Gray et al. | Iron doped bulk semi‐insulating GaAs | |
Gatos et al. | Oxygen in GaAs-Direct and indirect effects | |
JPS56100410A (en) | Gallium arsenide crystal of low defect density and semi-insulation | |
JPS59121881A (en) | Gaas fet | |
JPS63201097A (en) | Semiinsulating gallium-arsenic single crystal | |
JPS59131599A (en) | Production of gaas single crystal | |
JPS60176999A (en) | Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation | |
JPH01215799A (en) | Semi-insulating gaas compound semiconductor single crystal and production thereof | |
JPH01102932A (en) | Manufacture of semi-insulating gaas substrate | |
JPS6128639B2 (en) | ||
JPS60235798A (en) | Gaas single crystal having semiinsulating property | |
ANTYPAS | Basic improvements in substrate INP material[Final Report, 1 Feb. 1976- 31 Jul. 1978] | |
JPS5919911B2 (en) | Semi-insulating Group 3-5 compound single crystal |