JPS59121120A - Reducing treatment of titanium dioxide - Google Patents

Reducing treatment of titanium dioxide

Info

Publication number
JPS59121120A
JPS59121120A JP57232916A JP23291682A JPS59121120A JP S59121120 A JPS59121120 A JP S59121120A JP 57232916 A JP57232916 A JP 57232916A JP 23291682 A JP23291682 A JP 23291682A JP S59121120 A JPS59121120 A JP S59121120A
Authority
JP
Japan
Prior art keywords
titanium dioxide
reduction treatment
vacuum
photo
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57232916A
Other languages
Japanese (ja)
Inventor
Toshio Nakayama
中山 俊夫
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57232916A priority Critical patent/JPS59121120A/en
Publication of JPS59121120A publication Critical patent/JPS59121120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reaction efficiency of titanium dioxide as a photo- catalyst or a photo-electrode, remarkably, by carrying out the two-stage reduction treatment of titanium dioxide first in vacuum and then in a hydrogen gas stream under specific respective temperature conditions. CONSTITUTION:Titanium dioxide prepared by various processes is subjected to the first step reduction at 400-500 deg.C in vacuum, and then to the second step reduction at 700-800 deg.C in hydrogen gas stream. The reaction efficiency of reduced titanium dioxide as a photo-catalyst or photo-electrode can be improved remarkably by this process. The above process can be applied to titanium dioxide of arbitrary form, e.g. single crystal, powder, thermally oxidized coating film, sputtered film, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光触媒反応や光電気化学反応の触媒もしくは
電極として利用される二酸化チタンの還元処理方法に関
するものであるO 〔発明の技術的背景とその問題点〕 近年、半導体−溶液界面における光電子移動反応は、新
しい光エネルギー変換システムとして注目されている。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for reducing titanium dioxide used as a catalyst or electrode for photocatalytic reactions and photoelectrochemical reactions. Problems] In recent years, photoelectron transfer reactions at semiconductor-solution interfaces have attracted attention as a new optical energy conversion system.

この光電子移動反応を利用した光化学反応の例としては
、半導体電極として二酸化チタン板、対極として白金板
を使い光電池全構成することによって水の光分解が可能
であることが知られている([ネイブユア(Natur
e(London)) J 。
As an example of a photochemical reaction that utilizes this photoelectron transfer reaction, it is known that water can be photolyzed by constructing a photovoltaic cell using a titanium dioxide plate as a semiconductor electrode and a platinum plate as a counter electrode. (Natur
e(London)) J.

第288巻、第37頁(1972年)〕。Volume 288, page 37 (1972)].

また、二酸化チタン粉末の懸濁液に光を照射することに
よって水の光分解が進行し、更にこノ系に祭素ガヌ全通
気することによってアンモニアの光生成も可能であるこ
とが知られている( 「Jounal of Amer
ican Chemical 5oceity J 。
It is also known that photodecomposition of water progresses by irradiating a suspension of titanium dioxide powder with light, and that photogeneration of ammonia is also possible by fully aerating the system with the fertilized element. ( ``Journal of Amer
ican Chemical 5ociety J.

第99巻、第7189頁(1977年))。Volume 99, page 7189 (1977)).

このような反応方法においては、光照射によって半導体
内に生成した電子と正孔を夫々還元サイトと、酸化反応
サイトへ伝達する過程が含まれるために、半導体の電導
度が反応効率に大きく影響する。半導体として二酸化ブ
タン全周いる場合、その反応効率を改善する方法として
は従来、■二酸化チタンを真空中で還元処理する方法あ
るいは■二酸化チタンを水素雰囲気中で還元処理する方
法等が提案されている。しかしながら、これらの方法で
は未還元処理のものに比べて電導度は向上するが、依然
として反応効率が低く、充分に満足できるものではなか
ったO 〔発明の目的〕 本発明は、かかる従来方法の問題点に鑑み種々研究を行
なった結果、二段階の還元処理と、その温度条件を規定
することにより、光触媒あるいは光電極として反応効率
を大幅に向上させることができる二酸化チタンの還元処
理方法を提供すること全目的とするものである。
This reaction method involves the process of transmitting electrons and holes generated in the semiconductor by light irradiation to reduction sites and oxidation reaction sites, respectively, so the conductivity of the semiconductor has a large effect on reaction efficiency. . When butane dioxide is present all around the semiconductor, methods to improve the reaction efficiency have been proposed, such as (1) reducing titanium dioxide in a vacuum, or (2) reducing titanium dioxide in a hydrogen atmosphere. . However, although these methods improve the conductivity compared to non-reduced methods, the reaction efficiency is still low and the results are not fully satisfactory. As a result of conducting various studies in view of this point, we have provided a method for reducing titanium dioxide that can significantly improve reaction efficiency as a photocatalyst or photoelectrode by performing a two-step reduction treatment and specifying the temperature conditions. This is the entire purpose.

〔発明の概要〕[Summary of the invention]

本発明方法は、種々の方法で作成された二酸化チタンを
還匹処理するにあたIハ予め真空中400〜500℃で
第1段の還元処理を行なった後、水素気流中700〜8
00℃で第2段の還元処理を行なうことを特徴とするも
のである。
In the method of the present invention, titanium dioxide produced by various methods is subjected to a first reduction treatment at 400 to 500°C in vacuum, and then reduced to 700 to 800°C in a hydrogen stream.
This method is characterized by performing the second stage reduction treatment at 00°C.

本発明において用いる二酸化チタンとしては、通常、光
電極や光触媒として用いられでいる二酸化チタン単結晶
や二酸化チタン粉末の他、熱酸化被膜、スパッタ膜等2
種々の方法で作成されたものに適用することができる。
The titanium dioxide used in the present invention includes titanium dioxide single crystals and titanium dioxide powders that are usually used as photoelectrodes and photocatalysts, as well as thermal oxide films, sputtered films, etc.
It can be applied to items created using various methods.

第1段の還元処理は真空中400〜500℃で加熱、還
元することにより反応効率が向上する。
In the first stage reduction treatment, reaction efficiency is improved by heating and reducing at 400 to 500° C. in vacuum.

反応効率改善効果のピークは400〜500℃の範囲に
存在し、この範囲2外れる温度条件では充分な反応効率
の改善は得られない。
The peak of the reaction efficiency improvement effect exists in the range of 400 to 500°C, and under temperature conditions outside this range 2, sufficient improvement in reaction efficiency cannot be obtained.

第2段の還元処理は水素気流中700〜800℃で加熱
、還元することにエリ反応効率全向上させることができ
る。この場合、反応効率改善効果のピークは700〜8
00℃の範囲に存在し、この範囲を外れる温度条件では
充分な反応効率の改善は得られない。
In the second stage reduction treatment, the reaction efficiency can be completely improved by heating and reducing at 700 to 800° C. in a hydrogen stream. In this case, the peak of the reaction efficiency improvement effect is 700-8
It exists in the range of 00° C., and a sufficient improvement in reaction efficiency cannot be obtained under temperature conditions outside this range.

また本発明では、第1段の還元処理を真空中で行なった
後、第2段の還元処理を水素気流中で行なう二段階の還
元処理の組み合せにエリ、これらを別個に行なっていた
従来方法お工ひ第1段と第2段の還元処理を逆に行なう
方法に比べて、反応効率が大幅に向上する。
In addition, the present invention combines a two-stage reduction process in which the first stage reduction process is performed in a vacuum, and then the second stage reduction process is performed in a hydrogen stream, whereas the conventional method in which these steps were performed separately Compared to a method in which the first and second stage reduction treatments are performed in reverse, the reaction efficiency is greatly improved.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 純度9999%の二酸化チタン板をターゲフトとして高
周波ツバツタ法により石英基板上に二酸化チタン薄膜全
堆積した0これ全試料として、電気炉を用いて石英反応
管内において真空中450℃で1時間、還元処理した後
、750℃に昇温してloml/minの水素気流中で
2時間30分遣元した。
(Example 1) A titanium dioxide thin film was completely deposited on a quartz substrate using a titanium dioxide plate with a purity of 9999% as a target by the high-frequency splatter method.The entire sample was deposited at 450°C in vacuum in a quartz reaction tube using an electric furnace. After reduction treatment for 1 hour, the temperature was raised to 750° C. and the mixture was placed in a hydrogen flow of 1 mL/min for 2 hours and 30 minutes.

この二段階の還元処理をした二酸化チタンを光触媒とし
て、水5rILl、メタノール5罰の混合溶液金入れた
フラスコ内に浸漬して真空脱気した後、500Wキセノ
ンランプを用いて1oay間光照射した0この結果、フ
ラスコ内にlOμmolの水素が発生した。
The two-stage reduction treated titanium dioxide was used as a photocatalyst and immersed in a flask containing a mixed solution of 5 parts of water and 5 parts of methanol, vacuum degassed, and then irradiated with light for 1 oay using a 500 W xenon lamp. As a result, 10 μmol of hydrogen was generated in the flask.

また、上記実施例において、第2段の水素還元を750
℃で行ない、第1段の真空還元処理温度全変化させた場
合について、夫々の温度条件における水素発生量全測定
し、これを第1図のグラフに示した。このグラフから明
らかなように、第1段の真空還元処理は450℃でピー
クを示し、400〜500℃の範囲で充分な水素発生d
K認められた○ また上記実施例において、第1段の真空還元を450℃
とし、第2段の水素還元温度全変化させた場合について
、夫々の温度条件における水素発生量を測定し、これ全
第2図のグラフに示した。このグラフから明らかなよう
に、第2段の水素還元処理は750℃でピークを示し、
700〜800℃の範囲で充分な水素発生量が認められ
た。
In addition, in the above example, the second stage hydrogen reduction was carried out at 750
℃, and the first stage vacuum reduction treatment temperature was completely changed, the total amount of hydrogen generated under each temperature condition was measured, and the results are shown in the graph of FIG. As is clear from this graph, the first stage vacuum reduction treatment shows a peak at 450°C, and sufficient hydrogen generation d occurs in the range of 400 to 500°C.
○ In the above example, the first stage vacuum reduction was carried out at 450°C.
When the hydrogen reduction temperature of the second stage was completely changed, the amount of hydrogen generated under each temperature condition was measured, and the results are all shown in the graph of FIG. As is clear from this graph, the second stage hydrogen reduction treatment showed a peak at 750°C,
A sufficient amount of hydrogen generation was observed in the range of 700 to 800°C.

(比較例1) 上記実施例1において真空中450℃で第1段の還元処
理だけを行なった二酸化チタンを光触媒として、同様に
光照射を行なったととる、水素発生量は0.1 lzm
ol  であったO(比較例2) 上記実施例1において、第1段の真空還元処理を省き、
水素気流中750℃で第2段の還元処理だけを行なった
二酸化チタンを光触媒として、同様に光照射を行なった
ところ、水素発生量かま0.02μm01であった0 (比較例3) 上記実施例1において、本発明における第2段の水素還
元処理全750℃で先に行なった後、第1段の真空還元
処理を450’Cで行なった二酸化チタンを光触媒とし
て、同様に光照射を行なったところ水素は全く発生しな
かった。
(Comparative Example 1) Light irradiation was performed in the same manner as in Example 1 using titanium dioxide, which was subjected to only the first stage reduction treatment at 450° C. in vacuum as a photocatalyst, and the amount of hydrogen generated was 0.1 lzm.
ol (Comparative Example 2) In the above Example 1, the first stage vacuum reduction treatment was omitted,
When light irradiation was performed in the same manner using titanium dioxide which had undergone only the second stage reduction treatment at 750°C in a hydrogen stream as a photocatalyst, the amount of hydrogen generated was 0.02 μm0 (Comparative Example 3) The above example In 1, after the second stage hydrogen reduction treatment of the present invention was performed at a total temperature of 750°C, light irradiation was performed in the same manner using titanium dioxide, which had been subjected to the first stage vacuum reduction treatment at 450'C, as a photocatalyst. However, no hydrogen was generated.

(実施例2) 純度99.99%の二酸化チタン粉末(300メツシユ
)を電気炉を用いて石英反応管内において真空中450
℃で1時間、第1段の還元処理を行なった後、750℃
に昇温して10me/ minの水素気流中で2時間3
0分、第2段の還元処理を行なった。
(Example 2) Titanium dioxide powder (300 mesh) with a purity of 99.99% was heated in a quartz reaction tube using an electric furnace for 450 min in vacuum.
After performing the first stage reduction treatment at ℃ for 1 hour, 750℃
The temperature was raised to 2 hours in a 10 me/min hydrogen flow.
The second stage reduction treatment was performed for 0 minutes.

この二段階の還元処理’x−1,た二酸化チタンを光触
媒として、100■を、水5 ml 、メタノール5 
tnlの混合溶液を人itたフラスコ内に混合し、真空
脱気した後、500Wキセノンランプ11いて3時間光
照射を行なった0 この結果30μmolの水素が発生した。これは何ら還
元処理を施さない二酸化チタン粉末音用いた場合に比べ
て約4倍の水素発生量であった。
In this two-stage reduction treatment 'x-1, using titanium dioxide as a photocatalyst, 100 μm, water 5 ml, methanol 5
A mixed solution of tnl was mixed in a flask, vacuum degassed, and then irradiated with light for 3 hours using a 500W xenon lamp 11. As a result, 30 μmol of hydrogen was generated. This was about 4 times the amount of hydrogen generated compared to the case where titanium dioxide powder without any reduction treatment was used.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係わる二酸化チタンの還元
処理方法に工れば、真空と水素の二段階の還元処理と、
その温度条件全規定すること、にエリ、光触媒あるいは
光電極としての反応効率金入幅に向上させることかでき
る○゛まだ、従来エリ知られている二酸化テタ/に白金
や二酸化ルテニウムを担持させた光触媒においても、二
酸化チタンに本発明の還元処理を施すことにより更に反
応効率全向上さぜることかできる。
As explained above, if the titanium dioxide reduction treatment method according to the present invention is applied, a two-step reduction treatment of vacuum and hydrogen can be performed.
By fully specifying the temperature conditions, it is possible to greatly improve the reaction efficiency as a photocatalyst or photoelectrode. In photocatalysts as well, the reaction efficiency can be further improved by subjecting titanium dioxide to the reduction treatment of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 種々の方法で作製された二酸化チタンを還元処理するに
あたり、予め真空中400〜500℃で、第1段の還元
処理を行なった後、水素気流中700〜800℃で第2
段の還元処理を行なうことを特徴とする二酸化チタンの
還元処理方法0
When titanium dioxide produced by various methods is subjected to reduction treatment, the first reduction treatment is performed in advance at 400 to 500°C in a vacuum, and then the second reduction treatment is performed at 700 to 800°C in a hydrogen stream.
Titanium dioxide reduction treatment method 0 characterized by performing a stage reduction treatment
JP57232916A 1982-12-24 1982-12-24 Reducing treatment of titanium dioxide Pending JPS59121120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232916A JPS59121120A (en) 1982-12-24 1982-12-24 Reducing treatment of titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232916A JPS59121120A (en) 1982-12-24 1982-12-24 Reducing treatment of titanium dioxide

Publications (1)

Publication Number Publication Date
JPS59121120A true JPS59121120A (en) 1984-07-13

Family

ID=16946843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232916A Pending JPS59121120A (en) 1982-12-24 1982-12-24 Reducing treatment of titanium dioxide

Country Status (1)

Country Link
JP (1) JPS59121120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125636A1 (en) * 1998-08-21 2001-08-22 Ecodevice Laboratory Co., Ltd Visible radiation type photocatalyst and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125636A1 (en) * 1998-08-21 2001-08-22 Ecodevice Laboratory Co., Ltd Visible radiation type photocatalyst and production method thereof

Similar Documents

Publication Publication Date Title
CN112169819B (en) g-C 3 N 4 /(101)-(001)-TiO 2 Preparation method and application of composite material
US4684537A (en) Process for the sensitization of an oxidation/reduction photocatalyst, and photocatalyst thus obtained
CN103316714B (en) Catalyst for photo-catalytically decomposing water to produce hydrogen and preparation method of catalyst
WO1999063614A1 (en) Method of manufacturing photoelectric cell and oxide semiconductor for photoelectric cell
TW201016611A (en) Method for making metal/titania pulp and photocatalyst
CN112076791A (en) Ni-MOF film photocatalyst growing on surface of foamed nickel in situ, and preparation method and application thereof
JP3845720B2 (en) Potassium niobate photocatalyst and method for producing the same
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
CN111482169B (en) Noble metal-loaded nano photocatalyst and preparation method and application thereof
CN114425330B (en) Double noble metal loaded nano titanium dioxide and preparation method and application thereof
CN106975497A (en) Titanium dioxide nanoplate and copper-zinc-tin-sulfur nano particle hetero-junctions preparation method and application
CN107417503A (en) A kind of method for producing aromatic aldehyde using sun photooxidation aromatic alcohol
JPS6044053A (en) Photo-reactive membrane like catalyst
JPS59112841A (en) Catalyst for photochemical reaction
JPS59121120A (en) Reducing treatment of titanium dioxide
Mori et al. Design of Advanced Functional Materials Using Nanoporous Single‐Site Photocatalysts
CN111330625A (en) Composite photocatalytic material and preparation method and application thereof
JP2001286749A (en) Chemical transducer
JP2021515691A (en) Improvement of photocatalytic water decomposition efficiency of Weyl semimetal using magnetic field
CN112246256B (en) Piezoelectric catalytic degradation and ammonia synthesis catalyst, and preparation method and application thereof
CN110116014A (en) A kind of N-TiO with hollow structure2Photochemical catalyst preparation method
CN109046302B (en) Porous petal-shaped anatase TiO2Nanocrystalline thin film and preparation method thereof
CN109926080B (en) Visible light response hydrogen production photocatalyst GO/SiC/WO3Preparation method and application of
CN111514890A (en) Synthesis of N-doped C-coated Au/TiO with square morphology2Method for preparing photocatalyst
CN112221481A (en) Catalyst for converting Cr (VI) in water by Z-shaped structure and preparation method and application thereof