JPS59120810A - Apparatus for detecting oblique angle - Google Patents

Apparatus for detecting oblique angle

Info

Publication number
JPS59120810A
JPS59120810A JP23468482A JP23468482A JPS59120810A JP S59120810 A JPS59120810 A JP S59120810A JP 23468482 A JP23468482 A JP 23468482A JP 23468482 A JP23468482 A JP 23468482A JP S59120810 A JPS59120810 A JP S59120810A
Authority
JP
Japan
Prior art keywords
sensor
oblique angle
magnetoresistive element
temperature
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23468482A
Other languages
Japanese (ja)
Inventor
Akinori Mizuno
水野 明徳
Hideo Nakaoka
英雄 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23468482A priority Critical patent/JPS59120810A/en
Publication of JPS59120810A publication Critical patent/JPS59120810A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To make it possible to remove a detection error based on a temp. characteristic, by mounting a power mechanism for rotating a magnetic resistance element 180 deg. on a level base. CONSTITUTION:An oblique angle detecting apparatus shown by drawing is equipped with a motor 50, a speed reducing gear group 60, a shield case 70, stopping switches 80a, 80b and stopping switches operating pieces 90a, 90b cooperated with the stopping switches 80a, 80b. At first, an oblique angle is measured and, subsequently, the motor 50 is driven to transmit the rotation thereof to a sensor 20 through the speed reducing group 60 and this sensor 20 is rotated 180 deg. to again measure the oblique angle. Thus measured value is further operated by the operation circuit provicded on a printed circuit board 30 and the resulting obtained value is subjected to digital display due to an oblique angle display device 40.

Description

【発明の詳細な説明】 炎五匁」 本発明は、磁気抵抗素子を用いた傾斜角検出装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inclination angle detection device using a magnetoresistive element.

羨X且遣 傾斜角検出装置の代表的なものとして、従来より、気泡
管式水準器があるが、この気泡管式水準器は、読み取り
時に人間が直接監視する必要があり、そのため、読み取
り誤差が避けられない、省人化(例えばオートプリント
化)ができない等の欠点があった。
A typical example of an inclination angle detection device is a bubble level, but this bubble level requires direct supervision by a human when reading, and as a result, there is a risk of reading errors. There were disadvantages such as unavoidable labor saving (for example, automatic printing).

このような気泡管式水準器の欠点を補うものとして、デ
ジタル読み取りが■r能な傾斜角検出装置が提案されて
おり、その−例として、磁気抵抗素子を用いた傾斜角検
出装置が提案されている。
To compensate for the drawbacks of the bubble level, tilt angle detection devices that can be read digitally have been proposed.As an example, a tilt angle detection device that uses a magnetoresistive element has been proposed. ing.

第1図は、磁気抵抗素子を用いた従来の傾斜角検出装置
の一例を示す図で、図中、lOは水準器ベースで、該水
準器ベース10−1.:には1、磁気抵抗素子センサー
20が搭載され、このアナログ出力がプリント回路基板
30によってデジタル信号に変換されて傾斜角表示器4
0に表示されるようになっている。センサー20の構造
は1代表的には、セラミック基板2J上に磁界の強さで
抵抗値が変化する性質を持つ物質(例えばInSb、I
nAs、GaAs等の磁気抵抗素f)22が蒸着等の−
r段によって付着されており、また、それに近接して永
久磁石23が設けられており、これらセラミック基板又
は永久磁石のいずれか一方(図示例では永久磁石)か絶
えず重力方向に垂直になるように吊架されているつ 第2図は、上述のごとき傾斜角検出装置を水ip面1−
に載置した時の図、第3図は、傾斜角0の傾斜面1−に
載置した時の図で、第2図に示すように、水平面に載置
した場合には、永久磁イI23が゛磁気抵抗素イー22
の中央にあり、従ってセンサー20の出力はOであるが
、第3図に示すように傾斜面に載置した場合には、永久
磁石23が磁気抵抗素f 22の−・方の側に偏るため
、その偏りがセンサー20より磁気抵抗素子の抵抗の変
化として取り出され、傾斜表示器30に傾斜面の傾斜角
と17でデジタル表ノ1<される。
FIG. 1 is a diagram showing an example of a conventional tilt angle detection device using a magnetoresistive element. In the figure, lO is a level base, and the level base 10-1. 1 is equipped with a magnetoresistive element sensor 20, and this analog output is converted into a digital signal by a printed circuit board 30 and displayed on an inclination angle indicator 4.
It is now displayed as 0. The structure of the sensor 20 is as follows: 1. Typically, a material (for example, InSb, I
nAs, GaAs, etc. magnetoresistive element f) 22 is deposited by -
In addition, a permanent magnet 23 is provided in the vicinity thereof, and either one of the ceramic substrate or the permanent magnet (permanent magnet in the illustrated example) is always perpendicular to the direction of gravity. Figure 2 shows the above-mentioned inclination angle detection device on the water IP surface 1-
Figure 3 is a diagram when it is placed on an inclined surface 1- with an inclination angle of 0. As shown in Figure 2, when it is placed on a horizontal surface, there is no permanent magnetism. I23 is a magnetoresistive element E22
Therefore, the output of the sensor 20 is O, but when placed on an inclined surface as shown in FIG. Therefore, the deviation is detected by the sensor 20 as a change in the resistance of the magnetoresistive element, and is displayed on the inclination display 30 as a digital table 17 indicating the inclination angle of the inclined surface.

fB4図は、磁気抵抗素子の温度と抵抗値との関係を示
す図で、図中、曲線A l;1: 磁界下、曲線Bは無
磁界ドにおける特性を示すが、図示のように。
The fB4 diagram is a diagram showing the relationship between the temperature and the resistance value of a magnetoresistive element, and in the diagram, curve A l;1: under a magnetic field, curve B shows the characteristics in the absence of a magnetic field, as shown in the diagram.

磁気抵抗素rld 一定磁界ドでも外部温度が変化する
と抵抗値が変化するため、結果的には、温度特性が悪い
ことになり、外部部用−によって検出誤差が生じる。
Magnetoresistive element rld Even with a constant magnetic field, the resistance value changes when the external temperature changes, resulting in poor temperature characteristics and a detection error due to the external part.

1−−一」 本発明は、上述のごとき磁気抵抗素子センサーにおける
温度特性に基づく検出誤差を除去することを目的とする
1--1 The present invention aims to eliminate detection errors based on temperature characteristics in a magnetoresistive element sensor as described above.

碑−−−一−−−−成 本発明の構成について、以ド、一実施例に基ずいて説明
する。
The structure of the present invention will now be described based on one embodiment.

第5図及び第6図は、本発明の課題、換11すれば、従
来装置の問題点を説明するだめの概略図で、図中、20
は磁気抵抗素子センサー、lOOは被測定物体の傾斜面
で、今、仮に、tanθ】−t、 a nθ2の関係に
あるものとすれば、換言すれば、被M1定物体の傾斜方
向が全く逆の傾斜面であるとすれば、センサー20から
の出力(−表示値)の絶対値は同じでなければならない
。ところが、第5図の場合の測定時と第6図の場合の測
定時とで被M1定物体の温度或いは周囲温度が異なって
いると、第4図に示したセンサーの温度−出力特性によ
り、絶対値が等しくならない。また、この問題は、第5
図或いは第6図のみの状態で測定した場合でも、測定時
の温度が異なると前記と同じ理由先こよって同一・出力
(表示)が得られない。
5 and 6 are schematic diagrams for explaining the problems of the present invention, or in other words, the problems of the conventional device.
is a magnetoresistive element sensor, lOO is an inclined surface of the object to be measured, and if we assume that the relationship is tan θ] - t, a n θ2, in other words, the direction of inclination of the M1 constant object to be measured is completely opposite. , the absolute values of the outputs (-displayed values) from the sensor 20 must be the same. However, if the temperature of the M1 constant object or the ambient temperature is different between the measurement in FIG. 5 and the measurement in FIG. 6, then due to the temperature-output characteristics of the sensor shown in FIG. Absolute values are not equal. Also, this problem
Even if measurements are made using only the conditions shown in Figure 6 or Figure 6, if the temperature at the time of measurement is different, the same output (display) will not be obtained for the same reason as above.

これらの問題はいずれもセンサーの温度−出力特性によ
るもので、これを解決するためには、次の2つの方法、
すなわち、(1)温度−出カ特性補1F丹回路を設ける
、(2)センサーを180’回転させセンサーの温度−
出力特性をキャンセルする、等の方υ:が考えられる。
Both of these problems are due to the temperature-output characteristics of the sensor, and there are two ways to solve them:
In other words, (1) provide a temperature-output characteristic compensation 1F tan circuit, (2) rotate the sensor 180' to adjust the temperature of the sensor.
One possibility is to cancel the output characteristics.

しかし、補正回路を設ける方法は、センサーの特性を充
分把握し、¥1つ、量産する場合には、センサーの特性
がそれぞれ均一・であることが条件となるが、センサー
を作る上程中に、材質の均一・性、蒸着条件の均−性等
のコントロールしにくい上程があるため、七くザーの特
性を均一にすることは非常に難かしく従って、(1)の
方法は実施困難である。そこで1本発明においては、1
−記(2)による方法を採用し、センサーを180°回
転させてセンサーの温度−出力特性をキャンセルするよ
うにしている。
However, the method of providing a correction circuit requires a thorough understanding of the characteristics of the sensor, and when mass-producing it, the characteristics of each sensor must be uniform, but during the process of manufacturing the sensor, Since there are problems that are difficult to control, such as the uniformity and properties of the material and the uniformity of the vapor deposition conditions, it is very difficult to make the properties of the laser uniform, and therefore method (1) is difficult to implement. Therefore, in the present invention, 1
- The method according to (2) is adopted, and the sensor is rotated 180 degrees to cancel the temperature-output characteristics of the sensor.

第7図は1本発明の動作原理を説明するための概略構成
図で、同図は、03の傾斜のある被測定器物体1001
−にセンサー20が載置されている状態を示したもので
、本発明は、このセンサー20を(a)にて27<す方
向で一回測定し1次いで、該センサー20の向きを18
0°変えた(b)にて示す方向で測定することを特徴ど
している。而して、センサー20は(a)、(b)の場
合とも回−傾斜面l−にあるため、センサーから見ると
傾斜方向が異なるだけであり、従って、検出出力の絶対
値は同じになるはずのものであるが、実際には、前述の
理由によって等しくならない。本発明は、このような問
題を解決するためなされたもので、次の手順によって測
定するようにしたものである。
FIG. 7 is a schematic configuration diagram for explaining the operating principle of the present invention.
This figure shows the sensor 20 placed in the direction shown in (a).
The feature is that the measurement is performed in the direction shown in (b), which is changed by 0°. Since the sensor 20 is located on the tilted plane l- in both cases (a) and (b), the only difference is the tilt direction when viewed from the sensor, and therefore the absolute value of the detection output is the same. However, in reality, they are not equal for the reasons mentioned above. The present invention was made in order to solve such problems, and the measurement is carried out according to the following procedure.

1)、まず(a)の状態での出力を求め、・・・■2)
1次に(b)の状態での出力を求め、・・・〈シ)3)
1次いで、■+■/2を求め、・・・・・・・・・・・
・■4)、最後に、(■又は■)−■を求める・・・【
4)lu 1.の処理は、本来+、i)+t’@ = 
Qの関係にあるべきところ、前述のご゛どきセンサー・
の温度−出力性?1の関係で+1’、> + (2+ 
x Oとなるので、前記■式によりその中央値を求めて
疑似的に中点を11シ、この中点を用いて前記+4)戊
より傾斜角を求めるようにしたものである。このように
I7て測定すれば、センサ・−の温度−山力特廿がどう
なっていても良いことは勿論のこと、同 測定物に対し
て2回測定を行っているため、測定精度が2倍になって
いるという副次的効果も得られる。
1) First, find the output in state (a), and...■2)
First, find the output in state (b), and...<C)3)
1 Next, find ■+■/2, and...
・■4), Finally, find (■ or ■) - ■... [
4) lu 1. The processing is originally +, i) + t'@ =
What should be the relationship of Q, the above-mentioned sensor
temperature - output characteristics? 1, +1', > + (2+
Since x O, the median value is found using the formula (2) above, the midpoint is set to 11, and this midpoint is used to find the inclination angle from the above +4). By measuring with I7 in this way, it goes without saying that it doesn't matter what the temperature of the sensor is - the power characteristic, and since the same measurement object is measured twice, the measurement accuracy is You can also get the side effect of being doubled.

第8図は、本発明による傾斜角検出装置の一実施例を示
す構成図で、図中、50はモータ、60は減速歯車泪、
70はう・−ルドケース、80a。
FIG. 8 is a configuration diagram showing an embodiment of the inclination angle detection device according to the present invention, in which 50 is a motor, 60 is a reduction gear,
70 wall case, 80a.

80bは停止トスイツヂ、90a、90bはそれぞれ前
記停止Iスイッチ80a、80bど協働する停止Iス・
イツヂf1動片を示し、その他、第1図と同様の作用を
する部分小こは第1図の場合と同一・の参照番号を伺1
2である。而して、本発明においては、前述の測定原理
に従って、最初、第7図(a)又は(、b)に4(す状
態にて傾斜角を測定1.((i)式)、次いで、モータ
50を駆動し、その回転を減速南東群60を介してセン
サー20に伝達し、該センサー20を180°回転1,
2て第7図(b)又(走(a)に示す状態にして再度傾
斜角を測定しく・2)式)、このようにしてWill定
した値を、プリンI・回路基板30上に配設された演算
回路にて前記(鎖式及び(4)戊の演算をし、その結果
得られた値を傾斜角表示器40にデジタル表示するよう
・にしたものである。
80b is a stop switch, and 90a and 90b are stop I switches that cooperate with the stop I switches 80a and 80b, respectively.
The Itsuji f1 moving piece is shown, and other parts that have the same function as those in Figure 1 have the same reference numbers as in Figure 1.
It is 2. Therefore, in the present invention, in accordance with the above-mentioned measurement principle, first, the inclination angle is measured in the state shown in FIG. Drives the motor 50, transmits its rotation to the sensor 20 via the deceleration southeast group 60, and rotates the sensor 20 by 180 degrees.
2) Measure the inclination angle again in the state shown in FIG. The arithmetic circuit provided performs the above-described calculations (chain equation and (4)), and the resulting value is digitally displayed on the tilt angle display 40.

第9図は、本発明の他の実施例を示す要部構成図で、こ
の実施例は、第8図に示した減速歯1ト群60 f、ベ
ルトとプーリによって構成される減速機構60(0に変
えたもので、その他の動作は、第8図に示17た実施例
と回しである。
FIG. 9 is a configuration diagram of main parts showing another embodiment of the present invention. This embodiment includes a reduction gear mechanism 60 (made up of a group of reduction teeth 60f, a belt, and a pulley shown in FIG. 8). 0, and the other operations are the same as the embodiment 17 shown in FIG.

りし−−−−一課 第10図は、従来の測定方法によって測定した場合の温
度(曲線A)と傾斜値(曲線B)を示す図、第11図は
、本発明の測定原理に従って測定1、た場合の温度(曲
線A)と傾斜値(曲線B)を示す図であるか 両図の比
較から明らかなように、本発明によると、周囲温度の影
響を受けることなく、精度よく傾lA1角を測定するこ
とができ
Figure 10 shows the temperature (curve A) and slope value (curve B) measured by the conventional measurement method, and Figure 11 shows the temperature measured according to the measurement principle of the present invention. 1. Is the diagram showing the temperature (curve A) and the slope value (curve B) when Can measure lA1 angle

【図面の簡単な説明】[Brief explanation of drawings]

第1図1it、従来の傾斜角検出装置の−・例を示す図
、0′S2図は、第1図に示I7た傾斜角検出装置を水
4・面に載置した時の図、第3図は、傾斜面に載置した
111の図、第4図は、磁気抵抗素子の温度と抵抗値ど
の関係を示す図、第5図及び第6図は、本発明の詳細な
説明するための概略図、第7図は、本発明の動作原理を
説明するための概略図、第8図は、本発明の一実施例を
説明するための構成図、第9図は本発明の他の実施例を
示す要部構成図、第10図は、従来の測定法による用足
結果を示す図、第11図は、本発明によるW11定原理
に従って測定した場合の測定結果を示す図である。 10・・・水準器べ−・ス、20・・・磁気抵抗素子、
30・・・プリント回路基板、40・・・傾斜角表示器
。 50・・・モー7タ、60.60■・・・減速機構、7
0・・・シールドケース、80a、80b・・・停+1
ニスイツヂ、90 a 、 90 b−=停止1スイッ
チ作動J1.100・・・被Δ11定休。 第1図 第4図 蟲度−一
Fig. 1 shows an example of a conventional inclination angle detection device; 3 is a diagram of 111 placed on an inclined surface, FIG. 4 is a diagram showing the relationship between temperature and resistance value of the magnetoresistive element, and FIGS. 5 and 6 are for detailed explanation of the present invention. FIG. 7 is a schematic diagram for explaining the operating principle of the present invention, FIG. 8 is a configuration diagram for explaining one embodiment of the present invention, and FIG. FIG. 10 is a diagram showing the main part configuration of the embodiment, FIG. 10 is a diagram showing the results of the conventional measurement method, and FIG. 11 is a diagram showing the measurement results according to the W11 constant principle according to the present invention. 10... Level base, 20... Magnetoresistive element,
30... Printed circuit board, 40... Tilt angle indicator. 50...Motor 7 motor, 60.60■...Deceleration mechanism, 7
0...Shield case, 80a, 80b...Stop +1
Nisuitsuji, 90a, 90b-=stop 1 switch activated J1.100...DELTA11 regular holiday. Figure 1 Figure 4 Mushido-1

Claims (1)

【特許請求の範囲】[Claims] 吊架された磁気抵抗素子(又は永久磁石)と該磁気抵抗
素子(又は永久磁石)に対向して配設された永久磁石(
又は磁気抵抗素子)とから成る磁気抵抗素子センサーと
、該磁気抵抗素子センサーを搭載した水準器ベースとか
ら成り、前記磁気抵抗素fと前記永久磁石との相対位置
関係から前記水準器ベースが載−されている囲の傾斜角
を検出するよう番とした傾斜角検出装置において、前記
水準器ベース−にに前記磁気抵抗素子を1000回転さ
せるための動力機構を有していることを特徴とする傾斜
角検出装置。
A suspended magnetic resistance element (or permanent magnet) and a permanent magnet (
or a magnetoresistive element), and a spirit level base on which the magnetoresistive element sensor is mounted, and the spirit level base is mounted based on the relative positional relationship between the magnetoresistive element f and the permanent magnet. - an inclination angle detection device designed to detect an inclination angle of a surrounding enclosure, characterized in that the level base has a power mechanism for rotating the magnetic resistance element 1000 times; Tilt angle detection device.
JP23468482A 1982-12-27 1982-12-27 Apparatus for detecting oblique angle Pending JPS59120810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23468482A JPS59120810A (en) 1982-12-27 1982-12-27 Apparatus for detecting oblique angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23468482A JPS59120810A (en) 1982-12-27 1982-12-27 Apparatus for detecting oblique angle

Publications (1)

Publication Number Publication Date
JPS59120810A true JPS59120810A (en) 1984-07-12

Family

ID=16974818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23468482A Pending JPS59120810A (en) 1982-12-27 1982-12-27 Apparatus for detecting oblique angle

Country Status (1)

Country Link
JP (1) JPS59120810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214011U (en) * 1988-07-13 1990-01-29
JPH053290U (en) * 1991-06-28 1993-01-19 株式会社タダノ Operating equipment for construction machinery such as mobile cranes
JP2008020214A (en) * 2006-07-10 2008-01-31 Daishowa Seiki Co Ltd Level

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214011U (en) * 1988-07-13 1990-01-29
JPH053290U (en) * 1991-06-28 1993-01-19 株式会社タダノ Operating equipment for construction machinery such as mobile cranes
JP2008020214A (en) * 2006-07-10 2008-01-31 Daishowa Seiki Co Ltd Level

Similar Documents

Publication Publication Date Title
JP2949528B2 (en) Method and apparatus for detecting center position of wafer
JPS6334975B2 (en)
EP0234772A3 (en) Apparatus for aligning objects
JPH088328A (en) Wafer positioning apparatus
JPS59120810A (en) Apparatus for detecting oblique angle
DE3866392D1 (en) MEASURING METER.
US4968145A (en) Non-contacting revolving speed detecting apparatus
JPS61254812A (en) Instrument for continuously measuring thickness of nonmagnetic sheet
JP2000208590A (en) Method and apparatus for detecting position of wafer
JP2000121344A (en) Thickness measuring equipment for semiconductor wafer
JPH11243131A (en) Wafer positioning method
JPS5698602A (en) Shape measurement method for cylinder or column
JP2000114327A (en) Resistivity measuring instrument for semiconductor wafer
JP2997360B2 (en) Positioning device
JPS62272107A (en) Inspecting method for packaging component
JPH04177851A (en) Device for inspecting wafer appearance
JPS62261016A (en) Multirotational encoder
JP3396752B2 (en) Acceleration sensor board
JPS637850Y2 (en)
JPS6344722Y2 (en)
JPS57179648A (en) Reflectivity measuring apparatus
RU1805275C (en) Device for checking parameters of saw disk
SELEZNEV et al. Optical polarization circuit for recording small angles of rotation with a device for calibration of parameters of the measurement channel(Optical polarization circuit for calibrating and gravity measurements)
JPH0723733Y2 (en) Crystal azimuth measuring device
SU783575A1 (en) Apparatus for monitoring parameters of toothed-gear geometric shape