JPS59120385A - Mechanical seal ring and its production - Google Patents

Mechanical seal ring and its production

Info

Publication number
JPS59120385A
JPS59120385A JP23215382A JP23215382A JPS59120385A JP S59120385 A JPS59120385 A JP S59120385A JP 23215382 A JP23215382 A JP 23215382A JP 23215382 A JP23215382 A JP 23215382A JP S59120385 A JPS59120385 A JP S59120385A
Authority
JP
Japan
Prior art keywords
alloy
plate
cemented carbide
face
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23215382A
Other languages
Japanese (ja)
Other versions
JPS6330115B2 (en
Inventor
Yasuro Mihashi
三橋 靖郎
Shigeya Sakaguchi
茂也 坂口
Akira Tanaka
章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP23215382A priority Critical patent/JPS59120385A/en
Publication of JPS59120385A publication Critical patent/JPS59120385A/en
Publication of JPS6330115B2 publication Critical patent/JPS6330115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain easily a product which is securely joined with a sintered hard alloy having a min. required thickness by joining a torus-shaped sintered hard alloy layer to the end face of a torus-shaped base material formed of a Ti-Mo sintered alloy via a Cu-Ti alloy layer diffused to both layers. CONSTITUTION:A sintered body of a Ti-Mo alloy is made and the inside and outside surfaces thereof as well as the end face are ground to make a torus- shaped base material 1. A torus-shaped copper sheet is placed on the end face and a sintered hard alloy plate 3 having a preliminarily ground end face is placed thereon, and while load is exerted thereon in a vacuum, the assembly is heated and held. Then a Cu-Ti eutectic alloy layer 2 diffuses into the material 1 and the plate 3 and the material 1 is metallurgically and securely joined to the plate 3 via the layer 2. The plate 3 is kept free from undue compressive stress unlike in the case of assembling by a shrinkage fitting method and therefore the plate 3 is required to have a min. required thickness.

Description

【発明の詳細な説明】 本発明はメカニカルシールリング及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mechanical seal ring and a method for manufacturing the same.

(1) メカニカルシールリングは多くの種類があるが通常その
素材としてはプラスチック、硬質ゴム、カーボン、ハス
テロイ、セラ芝ツク、超硬合金等が使われている。なか
でも超硬合金製メカニカルシールリングは耐摩耗性や靭
性等の諸性質に優れている為にカーボン製リング等との
組み合わせで拡く用いられている。
(1) There are many types of mechanical seal rings, but the materials usually used include plastic, hard rubber, carbon, Hastelloy, Ceramics, and cemented carbide. Among these, mechanical seal rings made of cemented carbide have excellent properties such as wear resistance and toughness, and are therefore widely used in combination with rings made of carbon.

乙の超硬合金製メカニカルシールリングの白金として通
常用いられるのは鉄系合金であるが、種々の腐食性環境
ではこの鉄系合金台金では耐食性が不十分なので、耐食
性に富むTi合金が台金の素材として使われる事がある
。モしてT1合金台金に超硬合金を装着するには一般に
Ti合金溶製材を機械加工に」:り円輪状になした台金
に、焼嵌めにより超硬合金リングを嵌合装着する方法が
採られているが、正確な焼嵌め状態を現出する為にはT
1合金台金及び超硬合金リングの双方に非常に厳密な寸
もT1合金は加熱による酸化が進行し易いので焼嵌め加
工時の加熱に於いて特殊な手段を用いなけれ(2) ばならず、更には焼嵌めされた後の超硬合金リングには
相当の圧縮応力が掛かりそれに耐え得る為に超硬合金リ
ングを必要以上に厚くしなければならないという種々の
問題点がある。
Iron-based alloys are usually used as the platinum for the cemented carbide mechanical seal rings mentioned above, but since this iron-based alloy base metal has insufficient corrosion resistance in various corrosive environments, Ti alloys with high corrosion resistance are used as the base metal. It is sometimes used as a material for gold. In order to attach cemented carbide to a T1 alloy base metal, generally a Ti alloy melt is machined.A method of shrink fitting a cemented carbide ring onto a circular ring shaped base metal. However, in order to achieve an accurate shrink-fitting condition, T
1 Alloy base metal and cemented carbide ring both have extremely strict dimensions.T1 alloy is prone to oxidation due to heating, so special means must be used for heating during shrink fitting (2). Furthermore, there are various problems in that the cemented carbide ring is subjected to a considerable compressive stress after being shrink-fitted, and the cemented carbide ring must be made thicker than necessary in order to withstand the compressive stress.

−万態食性に富む合金層のTi合金としては通常Ti−
Mo系合金はそれを溶製材として造ると偏析が著しくか
つその後の機械加工性にも劣るという性質がある。
- Ti-
Mo-based alloys have the property that when they are produced as melted materials, they are highly segregated and have poor machinability thereafter.

本発明は」−記諸条件を勘案し、特に塩酸や硫酸耐 等の還元性の酸に対する/食性に富むメカニカルレール
リング及びその製造方法を提供せんとするものであり、
その要旨はTi−Mo系焼結合金から成る円輪状基材の
端面に、Cu−Ti共晶合金層を介し円輪状の超硬合金
層が強固に密着され、しかも上記Cu−Ti共晶合金は
Ti−No系焼結合金及び超硬合金のいずれとも相互に
拡散状態にあることを特徴(3) とするメカニカルシールリング及びTi  Mo系焼結
合金から成る円輪状基材の端面と、円輪状の超硬合金板
の端面との間に、Cu若しくはCu基合金薄板を配設し
、非酸化性雰囲気中で荷重を加え乍ら加熱保持し、拡散
結合によ)+Ti−Mo系焼結合金基材、Cu若しくは
Cu基合金薄板及び超硬合金板を強固に接合させること
を特徴とするメカニカルシールリングの製造方法である
The present invention takes into consideration the conditions mentioned above, and aims to provide a mechanical rail ring that is particularly resistant to reducing acids such as hydrochloric acid and sulfuric acid and is highly edible, and a method for producing the same.
The gist is that a circular cemented carbide layer is firmly adhered to the end face of a circular base material made of a Ti-Mo based sintered alloy through a Cu-Ti eutectic alloy layer, and the above-mentioned Cu-Ti eutectic alloy A mechanical seal ring characterized in that it is in a mutually diffused state with both the Ti-No-based sintered alloy and the cemented carbide, and the end face of the circular base material made of the Ti-Mo-based sintered alloy and the circular A Cu or Cu-based alloy thin plate is placed between the end face of a ring-shaped cemented carbide plate, heated and held in a non-oxidizing atmosphere while applying a load, and is bonded by diffusion bonding)+Ti-Mo based sintered bonding. This method of manufacturing a mechanical seal ring is characterized by firmly joining a gold base material, a Cu or Cu-based alloy thin plate, and a cemented carbide plate.

なお本発明に於いて使用するTi−No系焼結合金は、
通常Moを5〜35重量%含有するものとし、又Cu基
合金としてはCu −Ni、 Cu−Ni−P +Cu
 −Ag。
The Ti-No based sintered alloy used in the present invention is
It usually contains 5 to 35% by weight of Mo, and the Cu-based alloys include Cu-Ni, Cu-Ni-P +Cu
-Ag.

Cu−−AI等を用いるものとする。Cu--AI etc. shall be used.

又超硬合金とは11Cを主成分とし、CoやNi等をバ
インダーとし、必要に応じてTiC,TaC,MozC
,VC等を約5重量%以下の範囲で含有させたものをい
う。
Cemented carbide is mainly composed of 11C, binders such as Co and Ni, and TiC, TaC, MozC as necessary.
, VC, etc. in a range of about 5% by weight or less.

以下本発明をその実施例を参酌し乍ら詳述する。The present invention will be described in detail below with reference to examples thereof.

〈実施例1〉 100メツシユ以下のTi粉粉末7璽 径5μmのNo粉粉末3璽 し、パラフィン2重量%ートリクレーン溶液を加(4) え更に十分混合した後乾燥させてTi−No混合粉末を
得た。この混合粉末を2ton/c+/の圧力で外径グ
ア711mp内径$ 4511111#厚み4(lnw
+の円輪状に圧縮成形17、真空中(10””torr
) 500℃にて予備焼結をした後、高真空中(1〇−
子torr)で1450℃、2時間焼結し理論密度が約
97%の焼結体を得た。この焼結体の内外面及び端面を
研削加工して得た円輪状基材の端面上に厚さ0.2mg
+の円輪状Cu板を載せ、その上に予め端面を研削した
外径≠69+na+,内径1511II+。
<Example 1> Seven Ti powder powders of 100 mesh or less and three No powder powders with a diameter of 5 μm were added to 2 wt. Obtained. This mixed powder was heated at a pressure of 2 tons/c+/ with an outer diameter of 711 mp, an inner diameter of $ 4511111, and a thickness of 4 (lnw).
Compression molding 17 in a circular ring shape, in vacuum (10"" torr)
) After pre-sintering at 500°C, sintering in high vacuum (10-
The material was sintered at 1450° C. for 2 hours in a small torr to obtain a sintered body with a theoretical density of about 97%. The inner and outer surfaces and end surfaces of this sintered body were ground, and a 0.2 mg thick layer was placed on the end surface of a circular base material obtained by grinding the inner and outer surfaces and end surfaces.
A + circular ring-shaped Cu plate was placed on top of which the end surface was ground in advance, with an outer diameter of ≠69+na+ and an inner diameter of 1511II+.

厚み311I+の超硬合金板 (IIC− 6. 5C
o)を載せ、真空中(10−+torr)にて、30g
/cdの荷重を加え乍ら900℃で1時間保持し第1図
に示す如きメカニカルシールリングを得た。この第1図
中(1)はTi−Mo系合金基材(2)はCu−Ti共
晶合金層(3)(よ超硬合金層を示す。
Cemented carbide plate with thickness 311I+ (IIC- 6.5C
o) and 30g in vacuum (10-+torr)
A mechanical seal ring as shown in FIG. 1 was obtained by holding at 900° C. for 1 hour while applying a load of /cd. In FIG. 1, (1) indicates that the Ti--Mo alloy base material (2) is the Cu--Ti eutectic alloy layer (3) (the cemented carbide layer).

以上の様にして得た製品につき、その接合部の組織写真
及びEPMA像を第2図〜第7図に示す。即ち第2図は
接合部の電子顕微鏡組織写真でありこの写真で示すのと
同一部所についてのW, Co, Ti#No及びCu
についてのそれぞれの特性X線像を各々(5) 第3図〜第7図に示すが、これらの写真からTi −M
o基材と超硬合金板との間に配設せしめたCu板はそれ
が加熱保持される事によってT1と相互に拡散しCu−
Ti共晶合金となっている事、又該Cu−Ti共晶合金
中にW, Co, Moがそれぞれ相当量拡散して来て
いる事が判る。
The structural photographs and EPMA images of the joints of the products obtained as described above are shown in FIGS. 2 to 7. That is, Fig. 2 is an electron micrograph of the structure of the joint, and W, Co, Ti#No, and Cu at the same location shown in this photo.
(5) Figures 3 to 7 show the respective characteristic X-ray images of Ti-M.
o When the Cu plate placed between the base material and the cemented carbide plate is heated and held, it diffuses into T1 and Cu-
It can be seen that the alloy is a Ti eutectic alloy, and that considerable amounts of W, Co, and Mo have each been diffused into the Cu-Ti eutectic alloy.

この実施例1で得た製品につき、Cu−Ti共晶合金層
の所を境にしてその剪断強度を求めた結果18kg /
 w”であった。
The shear strength of the product obtained in Example 1 was determined at the Cu-Ti eutectic alloy layer, and the result was 18 kg/
It was “w”.

次に一F記メカニカルシールリングを第8図に示す様に
、2枚の抑圧板(41 、 (4)間に、両面にゴムバ
ッキング(5) 、 (5)を介しボルト(6)で強固
に締め付は圧縮空気を圧入し圧力ゲージ(7)でその時
のメカニカルシールリングの内部空間(8)の圧力を確
かめた上でそのまま水中に浸漬して圧力漏れを測定した
結果、ゲージ圧8.5kg/cjで30分間経過しても
空気漏れはみられなかった。
Next, as shown in Fig. 8, the mechanical seal ring (1F) is placed between two suppression plates (41, (4)) with rubber backings (5), (5) on both sides, and firmly secured with bolts (6). For tightening, compressed air was injected and the pressure in the internal space (8) of the mechanical seal ring was checked using the pressure gauge (7), and the ring was immersed in water to measure the pressure leakage. As a result, the gauge pressure was 8. No air leakage was observed even after 30 minutes at 5 kg/cj.

又上記メカニカルシールリングを切出し、50℃の10
%塩酸及び50℃の10%硫酸中にそれぞれ188時間
浸漬し、接合部断面の状態を観察したが何ら愕(6) 食されておらずその耐食性は十分であった。
Also, cut out the mechanical seal ring and heat it at 50°C for 10 minutes.
% hydrochloric acid and 10% sulfuric acid at 50° C. for 188 hours, and the state of the cross section of the joint was observed, no corrosion was found and the corrosion resistance was sufficient.

〈実施例2〉 100メツシユ以下のTL粉末85重量%と、平均粒径
5μmのNo粉末15重量%を用い、上記実施例1と同
様の方法にて理論密度が約97%の円輪状基材を得た。
<Example 2> Using 85% by weight of TL powder of 100 mesh or less and 15% by weight of No powder with an average particle size of 5 μm, a circular base material with a theoretical density of about 97% was prepared in the same manner as in Example 1 above. I got it.

この円輪状基材の上に厚さ0.2s+s+の円輪状Cu
−Ni合金板(Cu −5,5Ni)を載せ、予め端面
を研削した外径グ69rv+、内径151+nmp厚み
311Ilの超硬合金板を載せ以下実施例1と同様の方
法でメカニカルシールリングを得た。
On this circular base material, a circular Cu plate with a thickness of 0.2s+s+ is placed.
A mechanical seal ring was obtained by placing a Ni alloy plate (Cu -5,5Ni) and a cemented carbide plate with an outer diameter of 69 rv+, an inner diameter of 151 nm, and a thickness of 311 Il whose end surfaces had been ground in advance. .

この実施例2で得られた製品につきCu−Ti共晶合金
層の所を境にしてその剪断強度を求めた結果15kg 
/關2であった。
The shear strength of the product obtained in Example 2 was determined at the Cu-Ti eutectic alloy layer, and the result was 15 kg.
/It was the second time.

この製品について実施例1で述べたのと同様の空気漏れ
試験をした結果ゲージ圧8.5kg/cdで30分間経
過しても空気漏れ;よ全くな(、又接合部の耐食性試験
に於いても何ら腐食されなかった。
An air leak test similar to that described in Example 1 was conducted on this product, and the results showed no air leaks even after 30 minutes at a gauge pressure of 8.5 kg/cd (also, in the corrosion resistance test of the joints) was not corroded in any way.

以上述べて来た実施例1,2の他に加熱保持の(7) 条件を種々変化させて実験をした結果、その雰囲気が大
気中の場合にはTi−No系基材が酸化されて好ましく
ない事、真空条件としては高真空程接合強度が増す事、
アルゴン雰囲気とずればIP’torrの真空中とほぼ
同様の接合強度が得られる事が確認された。
In addition to Examples 1 and 2 described above, we conducted experiments with various conditions (7) for heating and holding, and found that when the atmosphere is in the air, the Ti-No base material is oxidized, which is preferable. In terms of vacuum conditions, the higher the vacuum, the stronger the bond.
It was confirmed that if the bonding strength was changed from an argon atmosphere, almost the same bonding strength as in an IP'torr vacuum could be obtained.

以上述べて来た如く、本発明によれば塩酸や硫酸等の還
元性の酸に対する耐食性に富むTi=No系合金と超硬
合金とが、それらの間に介在するCu−T1共晶合金層
を介し強固に冶金的に接合されているのでその接合強度
は大きく、シかもこの接合は基材と超硬合金との間に配
設されたCu若しくはCu基合金が基在中のT1どの間
で拡散をしt:結果として形成されtこCu−Ti共晶
合金により現出せしめられているので例えば焼滅め法に
よる場合の様に超硬合金に対し無理な圧縮応力が掛かる
という事がないので超硬合金は必要最低限の厚さがあれ
ばよいという利点もある。
As described above, according to the present invention, a Ti=No alloy and a cemented carbide, which are highly resistant to corrosion against reducing acids such as hydrochloric acid and sulfuric acid, are interposed between a Cu-T1 eutectic alloy layer. The bonding strength is high because it is strongly metallurgically bonded through the base material and the cemented carbide. As a result, it is formed by the Cu-Ti eutectic alloy, so it is impossible to apply unreasonable compressive stress to the cemented carbide, as in the case of the burn-out method, for example. Therefore, cemented carbide has the advantage that it only needs to be as thick as possible.

なお本発明にあってばTi−No系合金基材が溶製材か
ら得るのではなく焼結により得られるのでそ(8) の脩析による組織の不均一性はなく、またその後の加工
工程が簡単になり、かつ溶製材から切出して円輪状基材
を得るのに比し材料歩留が著しく大であるので経済的効
果の点でも有効である。
In the present invention, since the Ti-No alloy base material is obtained by sintering rather than from melted material, there is no non-uniformity in the structure due to sintering (8), and the subsequent processing steps are easy. It is simple, and the material yield is significantly higher than that obtained by cutting out a circular base material from melted lumber, so it is also effective in terms of economic effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例1で得たメカニカルシールリング
の竿部1&説明図、第2図は同接合部分の電子Ijl徹
鏡耳鏡写真3図〜第7図はそれぞれ同接合部分のW、 
Co、 Ti、 No、 Cuの特性X線像を示すEP
MA像、第8図はメカニカルシールリングの空気漏れ試
験を示す説明図。 図中、(1)+Ti−Mo系合金基材 +21+Cu−Ti共晶合金層 (3):超硬合金層 特許出願人 日本タングステン株式会社代理人有 吉 
教 晴 (9) 第1図 第8図 第2図 第3図 第4図 第5図 第6図 第7図 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和57年 特許願 第232153号2、発明の名称 メカニカルシールリング及びその製造方法4、補正をす
る者 事件との関係    特 許 出願人 住所 氏名 F1本タングステン株式会社 4、代理人 住所 福岡市博多区博多駅東1丁「110−27氏名 
+8429+  弁理士  自 吉 教 晴5、補正命
令のH付  昭和 年 月 E16、補正の対象 明細
書 7、補正の内容 (1)、明細書第4ページ第12行目の[”AI等」を
、r Al 、 Cu−Ti等」に訂正する。 (2)、明細書第4ページ第15行目の「含有させたも
の」の後に、[あるいはバインダーレス超硬合金」を挿
入ずろ。 (3)、明細書第4ページ下から2行目の「播涜機」を
「(雷潰機jに訂正する。 (4)、明細書第4ページ最下行の12重短形−トリク
レーン溶液を」を[2重量%をトリクレーン溶液で]に
訂正する。 (5)、明細書第5ページ第3行目の「45iunJを
「57mmJに訂正する。 (6)、明細書第6ページ第2行目のrMo基材」をr
ho糸基材」に訂正する。 (1) −,,,,,,,443−一
Fig. 1 is an explanatory view of the rod part 1 of the mechanical seal ring obtained in Example 1 of the present invention, and Fig. 2 is an electronic Ijl telescopic otoscopic photograph of the same joint part. Figs. 3 to 7 are W of the same joint part, respectively. ,
EP showing characteristic X-ray images of Co, Ti, No, Cu
MA image, FIG. 8 is an explanatory diagram showing an air leak test of a mechanical seal ring. In the figure, (1) + Ti-Mo alloy base material + 21 + Cu-Ti eutectic alloy layer (3): Cemented carbide layer Patent applicant Nippon Tungsten Co., Ltd. Agent Yoshi Ari
Noriharu (9) Figure 1 Figure 8 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure Kazuo Wakasugi, Commissioner of the Patent Office 1, Indication of the case 1982 Patent Application No. 232153 2. Name of the invention Mechanical seal ring and its manufacturing method 4. Relationship with the case of the person making the amendment Patent Applicant Address Name F1 Hon Tungsten Co., Ltd. 4 Agent address 1-110-27 Hakataekigashi Higashi, Hakata-ku, Fukuoka City full name
+8429+ Patent attorney Noriharu Jiyoshi 5, Amendment order with H, Showa month, E16, Subject of amendment Specification 7, Contents of amendment (1), ["AI, etc."] on page 4, line 12 of the specification, r Al, Cu-Ti, etc.". (2) Insert "[or binderless cemented carbide]" after "contained" on page 4, line 15 of the specification. (3) Correct "blasting machine" in the second line from the bottom of page 4 of the specification to "(Lightning crusher j). (4) 12-fold rectangle - Tricrane in the bottom line of page 4 of specification Correct "45 iunJ" in the third line of page 5 of the specification to "57 mmJ." (6), Page 6 of the specification, line 3. rMo base material in the second row
Corrected to ``Ho thread base material''. (1) -,,,,,,443-1

Claims (1)

【特許請求の範囲】 1、Ti−Mo系焼結合金から成る円輪状基材の端面に
、Cu−Ti共晶合金層を介し円輪状の超硬合金層が強
固に密着され、しかも上記Cu−Ti共晶合金はTi−
Mo系焼結合金及び超硬合金のいずれとも相互に拡散状
態にあることを特徴とするメカニカルシールリング。 2、Ti−Mo系焼結合金から成る円輪状基材の端面と
、□円輪状の超硬合金板の端面との間に、(u若しくは
Cu基合金薄板を配設し、非酸化性雰囲気中で荷重を加
え乍ら加熱保持し、拡散結合によすTi−Mo系焼結合
金基材、Cu若しくはCu基合金薄板及び超硬合金板を
強固に接合させることを特徴とするメカニカルシールリ
ングの製造方法。
[Claims] 1. A circular cemented carbide layer is firmly adhered to the end face of a circular base material made of a Ti-Mo based sintered alloy through a Cu-Ti eutectic alloy layer, and the above-mentioned Cu -Ti eutectic alloy is Ti-
A mechanical seal ring characterized by being in a mutually diffused state with both a Mo-based sintered alloy and a cemented carbide. 2. A thin U- or Cu-based alloy plate is placed between the end face of the circular base material made of Ti-Mo based sintered alloy and the end face of the circular cemented carbide plate, and a non-oxidizing atmosphere is provided. Manufacture of a mechanical seal ring characterized by firmly joining a Ti-Mo based sintered alloy base material, a Cu or Cu-based alloy thin plate, and a cemented carbide plate by heating and holding while applying a load in a chamber and by diffusion bonding. Method.
JP23215382A 1982-12-28 1982-12-28 Mechanical seal ring and its production Granted JPS59120385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23215382A JPS59120385A (en) 1982-12-28 1982-12-28 Mechanical seal ring and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23215382A JPS59120385A (en) 1982-12-28 1982-12-28 Mechanical seal ring and its production

Publications (2)

Publication Number Publication Date
JPS59120385A true JPS59120385A (en) 1984-07-11
JPS6330115B2 JPS6330115B2 (en) 1988-06-16

Family

ID=16934821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23215382A Granted JPS59120385A (en) 1982-12-28 1982-12-28 Mechanical seal ring and its production

Country Status (1)

Country Link
JP (1) JPS59120385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479646B1 (en) * 2012-12-17 2015-01-07 (주)하이엠시 Cemented carbide mechanical seal maunfacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479646B1 (en) * 2012-12-17 2015-01-07 (주)하이엠시 Cemented carbide mechanical seal maunfacturing method

Also Published As

Publication number Publication date
JPS6330115B2 (en) 1988-06-16

Similar Documents

Publication Publication Date Title
RU2499069C2 (en) Composite materials - cemented carbide-metal alloy
EP0202735B1 (en) Process for making a composite powder metallurgical billet
JPS5813603B2 (en) Joining method of shaft member and its mating member
JP2009538984A (en) Cold compressed sputter target
US2652520A (en) Composite sintered metal powder article
US4598025A (en) Ductile composite interlayer for joining by brazing
JPH0367985B2 (en)
JPS59120385A (en) Mechanical seal ring and its production
EP3630398B1 (en) Hot isostatic pressed article comprising a body of a cemented carbide and a body of a metal alloy or of a metal matrix composite
JPH0729859B2 (en) Ceramics-Metal bonding material
JPS6021306A (en) Manufacture of composite reinforced member
JP3066571B2 (en) WC-Fe alloy using iron-carbon as binder and method for producing the same
JP2616937B2 (en) Composite roll
JPH02175014A (en) Composite sintered hard alloy roll and its manufacture
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP2002013377A (en) Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JPS5890465A (en) Method of producing rotary dresser
JPH08109405A (en) Production of wear resistant composite pipe
JPH06238725A (en) Composite hollow member having optimized material at each position and manufacture of the same
JPH0243304A (en) Production of composite member
JP2002346719A (en) Injection sleeve for diecasting machine
JP2004181521A (en) Composite roll made of sintered hard alloy