JPS59119626A - Electrode for vacuum interrupter - Google Patents

Electrode for vacuum interrupter

Info

Publication number
JPS59119626A
JPS59119626A JP23264182A JP23264182A JPS59119626A JP S59119626 A JPS59119626 A JP S59119626A JP 23264182 A JP23264182 A JP 23264182A JP 23264182 A JP23264182 A JP 23264182A JP S59119626 A JPS59119626 A JP S59119626A
Authority
JP
Japan
Prior art keywords
weight
electrode
molybdenum
chromium
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23264182A
Other languages
Japanese (ja)
Other versions
JPS6336091B2 (en
Inventor
佳行 柏木
泰司 野田
薫 北寄崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP23264182A priority Critical patent/JPS59119626A/en
Publication of JPS59119626A publication Critical patent/JPS59119626A/en
Publication of JPS6336091B2 publication Critical patent/JPS6336091B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は真空インタラプタの電極に関するものである。[Detailed description of the invention] The present invention relates to electrodes for vacuum interrupters.

一般に、真空インタラプタの電極は、 (1)大電流をしゃ断する能力が高いこと、(2)絶縁
耐力が高いこと、 (3)耐溶着性が良好なこと、 (4)小電流を良好にしゃ断できること、等の条件を満
たすことが要求される。
In general, the electrodes of a vacuum interrupter must (1) have a high ability to interrupt large currents, (2) have high dielectric strength, (3) have good welding resistance, and (4) effectively interrupt small currents. You are required to meet the following conditions:

従来、上述した条件を満足すべく、銅に@号の高蒸気圧
材料(低融点材料)を含有せしめた合金材料からなる電
極、たとえば米国特許第へ24へ979号、(特公昭4
l−12181)に記載された銅にα6重量俤のビスマ
スを含有せしめてなる電極(以下、「Ou−、0,5B
i電極」という)および米国特許第8.596.027
号(豹公昭48−88071)に記載されたもの等が知
られている。
Conventionally, in order to satisfy the above-mentioned conditions, electrodes made of alloy materials made of copper containing a high vapor pressure material (low melting point material), for example, U.S. Pat.
1-12181) containing α6 weight of bismuth (hereinafter referred to as “Ou-, 0,5B
8.596.027) and U.S. Patent No. 8.596.027
The one described in No. (Hyouko Sho 48-88071) is known.

しかし、Cu−05Bi電極等は、大電流しゃ断能力、
耐溶着性および導電率に優れているものの、絶縁耐力、
特にしゃ断後の絶縁耐力が著しく低下するとともに、電
流さい断値がIOAと高いなめ、しゃ断時にさい断サー
ジを発生することがあり、進みおよび遅れ小電流を良好
にしゃ断し得す、負荷の電気機器の絶縁破壊を招来する
おそれがある等の問題がある。
However, Cu-05Bi electrodes etc. have a large current cutting ability,
Although it has excellent welding resistance and electrical conductivity, its dielectric strength and
In particular, the dielectric strength after cutting off is markedly reduced, the current cutting value is as high as IOA, and a cutting surge may occur when cutting off. There are problems such as the risk of causing insulation breakdown of equipment.

また、0u−0,5Bi電極等の欠点を解消すべく、銅
と低蒸気圧材料(高融点材料)との合金材料からなる電
極、たとえば米国特許第3,811,989号(特公昭
54−86121)に示す80重量%のタングステンと
20重量係の銅とからなる電極(以下、「200u−8
0W電極」という)および英国公開特許第2,024,
257号(4?開昭54−157284)に記載された
もの等が知られている。しかし、20. Ou −80
W[極等は、絶縁耐力は高くなるものの、事故電流の如
き大電流をしゃ断することが困難となる等の問題がある
In addition, in order to eliminate the drawbacks of 0u-0,5Bi electrodes, etc., electrodes made of alloy materials of copper and low vapor pressure materials (high melting point materials), such as U.S. Pat. 86121) consisting of 80% by weight of tungsten and 20% by weight of copper (hereinafter referred to as "200u-8").
0W Electrode) and British Published Patent No. 2,024,
Known examples include those described in No. 257 (4? 157284/1984). However, 20. Ou-80
Although W[poles, etc.] have a high dielectric strength, they have problems such as difficulty in interrupting large currents such as accident currents.

本発明は上述した問題に鑑みてなされたもので、その目
的とするところは、大電流しゃ断能力および耐溶着性等
を良好に維持しつつ、絶縁耐力に優れかつ小電流をも良
好にしゃ断し得るようにし次真空インタラプタの電極を
提供するにある。以下、図面を参照してこの発明の実施
例を詳細に説明する0 図は本発明に係るN極を備えた真空インタラプタの縦断
面図で、この真空インタラプタは、円筒状に成形したガ
ラスまたはセラミックス等の絶縁物からなる複数(本実
施例においては2本)の絶縁筒/、/を、それぞれの両
端に固着したコバール等の金属からなる薄肉円環状の封
着金具コ1.2゜・・・の一方を介し同軸的に接合して
1本の絶縁筒とするとともに、その両端開口部を他方の
封着金具、2.Jt−介しステンレス鋼等の金属からな
る円板状の金属端板J、Jにより閉塞し、かつ内部を高
真空に排気して真空容器11&:形成し、この真空容器
ダ内に、1対の円板状の電極j、!f、各金属端板J、
Jの中央部から真空容器lの気密性を保持して相対的に
接近離反自在に導入した対をなす電極棒に、tを介し、
接触離反(接M)自在に設けて概略構成されている。
The present invention was made in view of the above-mentioned problems, and its purpose is to provide excellent dielectric strength and to effectively interrupt small currents while maintaining good large current interrupting ability and welding resistance. The next step is to provide the electrodes of the vacuum interrupter. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The figure is a longitudinal cross-sectional view of a vacuum interrupter equipped with an N pole according to the present invention. A thin annular sealing fitting made of a metal such as Kovar is attached to each end of a plurality of insulating tubes (two in this example) made of an insulating material such as 1.2°... 2. are joined together coaxially to form a single insulating tube through one of the sealing fittings, 2. and 2. A vacuum vessel 11&: is formed by closing the Jt with disk-shaped metal end plates J, J made of metal such as stainless steel, and evacuating the inside to a high vacuum. Disk-shaped electrode j,! f, each metal end plate J,
Through T, a pair of electrode rods were introduced from the center of J into the vacuum container L so that they could be relatively approached and separated while maintaining airtightness.
It is roughly configured so that it can be brought into contact and separated (contacted and separated) freely.

なお、図において7は金属ベローズ、tは各電極3等を
同心状に囲繞するシールドである。
In the figure, 7 is a metal bellows, and t is a shield concentrically surrounding each electrode 3 and the like.

前記各電極3は、20〜70重量%の銅、6〜40重量
%のタングステン、5〜70重量%のモリブデンおよび
5〜70重量%のクロムの合金からなる。
Each of the electrodes 3 is made of an alloy of 20-70% by weight copper, 6-40% tungsten, 5-70% molybdenum and 5-70% chromium.

すな、わち、各電極jは、−100メツシユ(147μ
J下)のタングステンの粉末5〜40重量%と、−10
0メツシユのモリブデンの粉末5〜70重−[1%と、
−100メツシユのクロムの粉末5〜70重量%との混
合粉末をその融点以下の温度で相互に拡散結合して多孔
質の基材を形成し、この基材に20〜70重を憾の銅を
溶浸させて設けられている。
That is, each electrode j is -100 mesh (147μ
5 to 40% by weight of tungsten powder (J lower) and -10
0 mesh molybdenum powder 5-70 weight - [1%,
- A porous base material is formed by diffusion bonding a mixed powder of 100 mesh with 5 to 70 weight percent of chromium powder at a temperature below its melting point, and 20 to 70 weights of copper are added to this base material. It is provided by infiltrating it.

かかる電極jを製造する第1の方法は、まず、融点以下
の温度での相互拡散を可能にするため粒1i−100メ
ツシュとしたタングステン、モリブデンおよびクロムの
粉末を所定量機械的に混合−する。ついで、タングステ
ン、モリブデンおよびr6″””?−>\ クロムの混合粉末を      、クロム、タングステ
ンおよび銅のいずれとも反応しないアルミナ等からなる
容器に収納するとともに、5XlO−6Torr 以下
の圧力の真空雰囲気または水素ガス、窒素ガスおよびア
ルゴンガス等の非酸化性雰囲気中において800〜i、
ooo℃の温度で10分以上加熱し、相互に拡散結合し
て多孔質の基材を形成する。最後に、この多孔質の基材
と銅15X10−”Torr 以下の圧力の真空雰囲気
中において1,100℃または銅の融点(1,088℃
)以上の温度で6〜20分間程分間熱し、所定量の銅を
基材に溶浸させると所望の電極jが完成する。
The first method for manufacturing such an electrode is to first mechanically mix a predetermined amount of tungsten, molybdenum, and chromium powders with a grain size of 1i-100 mesh to enable mutual diffusion at a temperature below the melting point. . Next, the mixed powder of tungsten, molybdenum, and r6"""?->\ chromium is stored in a container made of alumina, etc., which does not react with any of chromium, tungsten, and copper, and placed in a vacuum atmosphere at a pressure of 5XlO-6 Torr or less, or 800-i in a non-oxidizing atmosphere such as hydrogen gas, nitrogen gas and argon gas,
They are heated at a temperature of 00° C. for 10 minutes or more to form a porous base material by mutual diffusion bonding. Finally, this porous base material and the copper are heated to 1,100°C or the melting point of copper (1,088°C
) and above for about 6 to 20 minutes to infiltrate a predetermined amount of copper into the base material to complete the desired electrode j.

また、電極jを製造する第2の方法は、第1の製造方法
と同様に、まず、融点以下の温度での相互拡散を可・能
にするため一100メツシュとしたタングステン、モリ
ブデンおよびクロムの粉末を所定量機械的に混合し、こ
のタングステン、モリブデンおよびクロムの混合粉末を
タングステン、モリブデン、クロムおよび銅のいずれと
も反応しないアルミナ等から々る容器に収納するととも
に、容器に収納された混合粉末上に所定量の銅のブロッ
クを載置する。ついで、混合粉末と銅のブロックを収納
し九容器を5×10″″1ITorr以下の圧力に保持
自在の真空炉中に納置する。そして、真空炉’e600
℃の温度で60分間運転して混合粉末等の脱ガス処理を
最初に行ない、ついで真空炉を800℃の温度で80分
間運転するとともに、温度it、000℃に上昇して3
0分間運転してタングステン、モリブデンおよびクロム
の粉末を相互に拡散結合せしめて多孔質の基材を形成し
、最後に真空炉を1,100℃の温度で20分間運転し
て銅を基材に溶浸させると所望の電極Sが完成する。
Similarly to the first manufacturing method, the second method for manufacturing electrode j is to first prepare tungsten, molybdenum, and chromium with a mesh of 1100 to enable mutual diffusion at temperatures below the melting point. A predetermined amount of powder is mechanically mixed, and this mixed powder of tungsten, molybdenum, and chromium is stored in a container made of alumina, etc., which does not react with any of tungsten, molybdenum, chromium, and copper. Place a predetermined amount of copper blocks on top. Next, the mixed powder and the copper block are placed in a vacuum furnace that can maintain a pressure of 5×10″″1 ITor or less. And vacuum furnace 'e600
℃ for 60 minutes to degas the mixed powder etc., then the vacuum furnace was operated for 80 minutes at a temperature of 800℃, and the temperature was increased to 3,000℃.
The vacuum furnace was operated for 0 minutes to diffusely bond the tungsten, molybdenum and chromium powders to each other to form a porous substrate, and finally the vacuum furnace was operated for 20 minutes at a temperature of 1,100°C to bond the copper to the substrate. After infiltration, the desired electrode S is completed.

さらに、電極左を製造する第8の方法は、まず、所定組
成割合のタングステン、モリブデンおよびクロムの合金
を製造するとともに、このタングステン、モリブデンお
よびクロムの合金を粉砕し、−100メツシユの粉末と
する。ついで、タングステン、モリブデンおよびクロム
の合金粉末を、タングステン、−モリブデン、クロムお
よび銅のいずれとも反応しないアルミナ等からなる容器
に収納するとともに、5 X 10−”Torr以下の
圧力の真空雰囲気または水素ガス、アルゴンガス等の非
酸化性雰囲気中においてその融点以下の温度で所定時間
加熱し、相互に結合した多孔質の基材とする。
Furthermore, the eighth method for manufacturing the left electrode is to first manufacture an alloy of tungsten, molybdenum, and chromium with a predetermined composition ratio, and then crush this alloy of tungsten, molybdenum, and chromium to form a -100 mesh powder. . Next, the alloy powder of tungsten, molybdenum, and chromium is stored in a container made of alumina or the like that does not react with any of tungsten, molybdenum, chromium, and copper, and placed in a vacuum atmosphere or hydrogen gas at a pressure of 5 x 10 Torr or less. , heated in a non-oxidizing atmosphere such as argon gas at a temperature below its melting point for a predetermined time to form a porous base material that is bonded to each other.

最後に、この多孔質の基材に5X10’−’Tort 
以下の圧力の真空雰囲気中において所定量の@を溶浸さ
せると所望の電極5が完成する。
Finally, apply 5X10'-'Tort to this porous substrate.
A desired electrode 5 is completed by infiltrating a predetermined amount of @ in a vacuum atmosphere at the following pressure.

ここで、直径50%にしてかつ周縁を4アールの円板状
に形成するとともに、そのタングステン、モリブデン、
クロムおよび銅の組成割合をそれぞれ20重量%、20
重量%、20重′tチおよび40重量%とじ九■組成の
材料、ま念は40重it優、10重量%、10重量%お
よび40重lt4とした■組成の材料、あるいは10重
量%、40重in。
Here, the tungsten, molybdenum,
The composition ratios of chromium and copper are 20% by weight and 20% by weight, respectively.
% by weight, 20% by weight and 40% by weight, materials with a composition of 9; 40 in.

10重量%および40重tチとした■組成の材料、さら
に10重量%、10重11チ、40重量%および40重
量%とした■組成の材料からなる1対の電極jを有する
真空インタラプタの諸性能の検証結果は、以下に示す工
うになった。
A vacuum interrupter having a pair of electrodes j made of a material with a composition of 10% by weight and 40% by weight, and a material with a composition of The performance verification results are as shown below.

0 1)大電流しゃ断能力 各組成ともl 2KA (EMS)の電流をしゃ断する
ことができた。
0 1) Large current interrupting ability Each composition was able to interrupt a current of 1 2 KA (EMS).

11)絶縁耐力 ギャップ″f、8%に保持し、衝撃波耐電圧試験を行か
ったところ、■組成のものは、+120KV。
11) When a shock wave withstand voltage test was conducted with the dielectric strength gap ``f'' maintained at 8%, the product with the composition ■ was +120 KV.

−IIOKVを示し、■組成のものは、±120■を示
し、薯組成のものは、+110!!V、−120Wを示
し、さらに■組成のものは、±110Wを示し、いずn
もバラツキは±10Wであった。また、大電流(12K
A)のしゃ断後に同様の試験を行なったが、絶縁耐力に
変化けなかった。さらに、進み小電流(80A)の開閉
後に同様の試験を行々つたが、絶縁耐力は殆んど変化し
なかつ穴。
-IIOKV, the one with the ■ composition shows ±120■, and the one with the yellow composition +110! ! V, -120W, and those of composition (■) show ±110W;
The variation was ±10W. Also, large current (12K
A similar test was conducted after A) was cut off, but there was no change in dielectric strength. Furthermore, similar tests were conducted after switching on and off with a small advance current (80A), but the dielectric strength hardly changed.

111)耐溶着性 1 各組成とも180KPの加圧下で、25KA(FIMS
)の電流を3秒間通電(工KO短時間電流規格)し九後
、200KPの静的な引き外し力で問題なく引き外すこ
とができ、その後の接触抵抗の増加は2〜8チにとどま
った。また、1,000)lPの加圧下で、50臥(E
MS)の電流を3秒間通電した後の引き外しも問題々く
、その後の接触抵抗の増加は、θ〜5チにとどまった。
111) Welding resistance 1 Each composition was 25KA (FIMS) under a pressure of 180KP.
) for 3 seconds (KO short-time current standard), and after 9 seconds, the contact resistance could be removed without any problem with a static removal force of 200 KP, and the increase in contact resistance after that was only 2 to 8 inches. . In addition, under a pressure of 1,000) lP,
The tripping after applying current (MS) for 3 seconds was also problematic, and the subsequent increase in contact resistance remained at θ~5ch.

し念がって、各組成とも十分な耐溶着性を備えている。Carefully, each composition has sufficient welding resistance.

IV)遅れおよび進み小電流しゃ断能力■遅れ小電流(
誘導性の負荷)のしゃ断能力電流さい断値は、rm成の
ものが平均3.9、A (fn=1.1. n=100
 )を示し、11組成のものが平均4.21 (fn=
1.8. n=100 )?示し、さらに璽組成のもの
が平均4.8ム(ry。
IV) Delayed and advanced small current cutting ability■Delayed small current (
The average breaking capacity current cutting value of the rm component (inductive load) is 3.9, A (fn=1.1. n=100
), and those with 11 compositions showed an average of 4.21 (fn=
1.8. n=100)? Furthermore, those with a seal composition have an average of 4.8 μm (ry).

2 =1.1.n=100)k示し、また■組成のものが平
均8.5 A (fn =0.9. n=LOo) k
示した。
2 = 1.1. n = 100) k, and those with composition ■ average 8.5 A (fn = 0.9. n = LOo) k
Indicated.

■進み小電流(容量性の負荷)のしゃ断能力電圧; 8
4 KV X 1.25 //T3.80A(7)進み
小電流試験(ygo181)を、10,000回行なっ
たが再点弧は0回であつ九。
■ Breaking capacity voltage for small leading current (capacitive load); 8
4 KV

V導電率 各組成とも導電率(工AO8)は、20〜50チのチ導
電率を示した。
V conductivity The conductivity (TE AO8) of each composition showed a V conductivity of 20 to 50 inches.

vl)硬 度 各組成とも硬変は、106〜L 82 av(LKp)
を示した。
vl) Hardness For each composition, cirrhosis is 106 to L 82 av (LKp)
showed that.

また、本発明に係る電極を有する真空インタラプタと、
従来の0u−05Bi電極を有する真空インタラプタと
の諸性能を比較し九ところ、以下8 に示すようになつ九。
Further, a vacuum interrupter having an electrode according to the present invention,
A comparison of various performances with a conventional vacuum interrupter with 0u-05Bi electrodes resulted in the following results.

1)大電流しゃ断能力 双方同程度である。1) Large current breaking ability Both are at the same level.

11)絶縁耐力 従来のものの10%のギャップでの絶縁耐力が、本発明
のものの3%のギャップでの絶縁耐力と等しくなる。し
たがって、本発明に係る電極を有する真空インタラプタ
は、従来のものの約8倍の絶縁耐力を有していた。
11) Dielectric strength The dielectric strength of the conventional one at a gap of 10% is equal to the dielectric strength of the one of the present invention at a gap of 3%. Therefore, the vacuum interrupter having the electrodes according to the present invention had a dielectric strength about eight times that of the conventional one.

1ll)耐溶着性 本発明に係る電極の耐溶着性は、従来のものの801で
あるが実用上殆んど問題がない。
1ll) Welding resistance The welding resistance of the electrode according to the present invention is 801 compared to the conventional electrode, but there is almost no problem in practical use.

1い遅れおよび進み小電流しゃ断能力 ■遅れ小電流しゃ断能力 本発明に係る電極の電流さい断値は、従来4 のものの40係と小さいので、さい断サージが殆んど問
題とならず、かつ開閉後もその値が変化しない。
1. Delayed and advanced small current cutting ability ■ Delayed small current cutting ability The current cutting value of the electrode according to the present invention is as small as 40 times compared to the conventional 4, so cutting surge hardly becomes a problem and Its value does not change even after opening and closing.

■進み小電流しゃ断能力 本発明に係る電極は、従来のものに比して2倍のキャパ
シタンス容量の負荷をしゃ断することができる。
(2) Advanced small current cutting ability The electrode according to the present invention can cut off a load with twice the capacitance compared to the conventional electrode.

タングステンが5優未満の場合は絶縁耐力が急激に低下
し、かつ404th超える場合には大電流しゃ断能力が
急激に低下した。
When the tungsten content was less than 5%, the dielectric strength decreased rapidly, and when it exceeded 404%, the large current breaking ability decreased rapidly.

なお、モリブデンが、5重tチ未満の場合には、絶縁耐
力が急激に低下し、かつ70重i1憾を超える場合VC
は、大電流しゃ断能力が急激に低下した。
In addition, if molybdenum is less than 5 folds, the dielectric strength will decrease rapidly, and if it exceeds 70 folds, VC
The large current interrupting ability suddenly decreased.

また、クロムが、5重量%未満の場合には、電流さい断
値が大きく々るとともに、遅れ小電流し5 や断能力が低下し、かつ70重量%を超える場合には、
大電流しゃ断能力が急激に低下した。
In addition, if the content of chromium is less than 5% by weight, the current cutting value will increase significantly, and the current will be delayed and the cutting capacity will decrease, and if it exceeds 70% by weight,
The large current cutting ability suddenly decreased.

さらに、銅が、20重量%未満の場合には、導電率が急
激に低下するとともに、短時間電流試験後の接触抵抗が
急激に増大し、定格電流通電時におけるジュール熱の発
生が大きく、その実用性が低下し、かつ70重量%を超
える場合には、絶縁耐力が低下するとともに、耐溶着性
が急激に悪化した。
Furthermore, if the copper content is less than 20% by weight, the electrical conductivity will decrease rapidly, the contact resistance after a short-time current test will increase rapidly, and the generation of Joule heat will be large when the rated current is applied. Practicality decreased, and when it exceeded 70% by weight, dielectric strength decreased and welding resistance rapidly deteriorated.

以上の如く本発明は、20〜70重量郁の銅、5〜40
重量%のタングステン、6〜70重量%のモリブデンお
よび5〜70重量%のクロムの合金からなる真空インタ
ラプタの電極であるから、従来の0u−05Bi電極に
比して、真空インタラプタの絶縁耐力を飛躍的に高める
ことができると  。
As described above, the present invention uses copper of 20 to 70 weight weight, 5 to 40 weight of copper,
Since the vacuum interrupter electrode is made of an alloy of tungsten (wt%), molybdenum (6~70wt%), and chromium (5~70wt%), the dielectric strength of the vacuum interrupter is significantly improved compared to the conventional 0u-05Bi electrode. It is possible to increase the effectiveness.

6 ともに、真空インタラプタを大電流のしゃ断能力に優n
1かつ遅nお工び進み小電流のしゃ断能力にも優れたも
のとすることができる。
6 Both provide vacuum interrupters with excellent large current interrupting ability.
It is possible to obtain a product that is fast, slow, and has excellent ability to cut off small currents.

また、5〜40重畢チのタングステンの粉末、5〜70
重t%のモリブデンの粉末および5〜70重量%のクロ
ムの粉末を相互に拡散結合した多孔質の基材に、20〜
70重量%の銅を溶浸させてなる真空インタラプタの電
極であるから、上述したものの効果に加えて機械的強度
および導電率を高めることができる等の効果を奏する。
Also, tungsten powder with a weight of 5 to 40, 5 to 70
20 to 70% by weight of molybdenum powder and 5 to 70% by weight of chromium powder are bonded to each other by diffusion bonding to a porous base material.
Since the vacuum interrupter electrode is infiltrated with 70% by weight of copper, in addition to the above-mentioned effects, mechanical strength and electrical conductivity can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る電極を備え六真空インタラプタの縦断
面図である。 ≠・・・真空容器、5・・・電極。 7
The figure is a longitudinal sectional view of a six-vacuum interrupter with electrodes according to the invention. ≠...vacuum container, 5...electrode. 7

Claims (2)

【特許請求の範囲】[Claims] (1)20〜700〜70重量%〜40重−%4のり/
グステ/、5〜70重−isのモリブデンおよび6〜7
0重量%のクロムの合金からなる真空インタラプタの電
極〇
(1) 20~700~70wt%~40wt-%4 glue/
guste/, 5-70 F-is molybdenum and 6-7
Vacuum interrupter electrode made of 0% chromium alloy
(2)5〜40重量%のタングステンの粉末、5〜70
重量%のモリプデ/の粉末および5〜70重量%のクロ
ムの粉末を相互に拡散結合して成る多孔質の基材に、2
0〜700〜70重量%浸させてなる真空インタラプタ
の電極。
(2) 5-40% by weight tungsten powder, 5-70%
2% by weight of molybdenum powder and 5 to 70% by weight chromium powder are diffusion bonded to each other on a porous base material.
An electrode for a vacuum interrupter which is immersed in an amount of 0 to 700 to 70% by weight.
JP23264182A 1982-12-24 1982-12-24 Electrode for vacuum interrupter Granted JPS59119626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23264182A JPS59119626A (en) 1982-12-24 1982-12-24 Electrode for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23264182A JPS59119626A (en) 1982-12-24 1982-12-24 Electrode for vacuum interrupter

Publications (2)

Publication Number Publication Date
JPS59119626A true JPS59119626A (en) 1984-07-10
JPS6336091B2 JPS6336091B2 (en) 1988-07-19

Family

ID=16942478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23264182A Granted JPS59119626A (en) 1982-12-24 1982-12-24 Electrode for vacuum interrupter

Country Status (1)

Country Link
JP (1) JPS59119626A (en)

Also Published As

Publication number Publication date
JPS6336091B2 (en) 1988-07-19

Similar Documents

Publication Publication Date Title
US2975256A (en) Vacuum type circuit interrupter
US3818163A (en) Vacuum type circuit interrupting device with contacts of infiltrated matrix material
JPS60172116A (en) Contact for vacuum breaker
JPH0534406B2 (en)
US4551596A (en) Surge-absorberless vacuum circuit interrupter
JPS59119626A (en) Electrode for vacuum interrupter
JPS59119625A (en) Electrode for vacuum interrupter
JPS5994320A (en) Electric contact for vacuum breaker
US4129760A (en) Vacuum circuit breaker
JPH0510782B2 (en)
JPS6215716A (en) Contact for vacuum breaker electrode
EP0178796A2 (en) Manufacture of vacuum interrupter contacts
JPS6335049B2 (en)
JPS603822A (en) Electrode material of vacuum interrupter and method of producing same
JPS6010526A (en) Electrode material of vacuum interrupter and method of producing same
JP2555409B2 (en) Contact for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JPS5991617A (en) Contact for vacuum breaker
US3663775A (en) Vacuum interrupter with contacts containing a minor percentage of aluminum
JP3150516B2 (en) Contact material for vacuum valve
JPS6014721A (en) Electrode material of vacuum interrupter and method of producing same
JPH04132127A (en) Contact point for vacuum bulb
JPS6010525A (en) Electrode material of vacuum interrupter and method of producing same
JPH0547928B2 (en)
JPS5914212A (en) Electric contact material
JPH04206122A (en) Vacuum value