JPS59118616A - Driving device for elliptical vibration parts feeder - Google Patents

Driving device for elliptical vibration parts feeder

Info

Publication number
JPS59118616A
JPS59118616A JP23227082A JP23227082A JPS59118616A JP S59118616 A JPS59118616 A JP S59118616A JP 23227082 A JP23227082 A JP 23227082A JP 23227082 A JP23227082 A JP 23227082A JP S59118616 A JPS59118616 A JP S59118616A
Authority
JP
Japan
Prior art keywords
horizontal
vertical
phase
electromagnet
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23227082A
Other languages
Japanese (ja)
Other versions
JPS6359923B2 (en
Inventor
Takeyoshi Nonaka
野中 丈義
Masaru Akama
赤間 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP23227082A priority Critical patent/JPS59118616A/en
Publication of JPS59118616A publication Critical patent/JPS59118616A/en
Publication of JPS6359923B2 publication Critical patent/JPS6359923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • B65G27/24Electromagnetic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jigging Conveyors (AREA)

Abstract

PURPOSE:To make an optimum transfer speed securable in an easy manner, by making a phase difference in each voltage to be fed to both horizontal and vertical driving electromagnets so as to be set to 60 deg. or 120 deg. by means of a phase selector switch. CONSTITUTION:A selector switch SW2 is changed over to a counterclockwise contact and a power switch SW1 is turned off. With this method, the voltage between R-S of a 3-phase AC power source is fed to a horizontal driving part 32A while the voltage between T-S is fed to a vertical driving part 32B respectively. If the selector switch SW2 is set to the 60 deg. side, vertical direction exciting force and horizontal direction exciting force being different in a phase of 60 deg. each are added to a pole. In this case, when the selector switch SW2 is changed over to the 120 deg. side, at the vertical driving part 32B, the selector switch SW2 can advance or delay the phase as far as 120 deg. according to whether to be the CW direction or the CCW direction rather than in case of the horizontal driving part 32A so that the phase difference can be set to its optimum 60 deg.. Thus, optimum transfer conditions can be secured without necessitating a highly accurate design.

Description

【発明の詳細な説明】 本発明はだ円振動部品供給機もしくはだ円振動パーツフ
ィーダの駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a driving device for an elliptical vibrating parts feeder or an elliptical vibrating parts feeder.

だ円振動部品供給機は一般に部品受容器;該部品受容器
を水平方向に振動可能に支持する水平振動用弾性手段;
前記部品受容器を水平方向に加振するための水平動動電
磁石;前記部品受容器を垂直方向に振動’oJ能に支持
する垂直揚動用弾性手段;前記部品受容器を垂直方向に
加振するための垂@鳳勤電磁石を備え、前記水平駆動電
磁石と前記垂直駆動電磁石に供給される各電圧に位相差
をもたせるように商用周波の三相交流電源を前記水平駆
動電磁石と前記垂直駆動電磁石に接続するようにしてい
る。以上のような構成によシ部品受容器はだ円振動を行
い、その内周監部に形成されたスパイラル状のトラック
上を部品は移送されるのでとが実験的に証明されている
An elliptical vibrating component feeder generally includes a component receiver; horizontally vibrating elastic means that supports the component receiver so that it can vibrate in the horizontal direction;
a horizontally movable electromagnet for horizontally vibrating the component receiver; a vertically lifting elastic means for vertically supporting the component receiver with vibrating ability; A commercial frequency three-phase AC power supply is provided to the horizontal drive electromagnet and the vertical drive electromagnet so as to provide a phase difference between the voltages supplied to the horizontal drive electromagnet and the vertical drive electromagnet. I'm trying to connect. It has been experimentally proven that with the above configuration, the parts receiver vibrates in an elliptical manner, and the parts are transferred on a spiral track formed on the inner circumference of the receiver.

このようなだ円振動部品供給機は2つの独立した水平方
向振動系と垂直方向振動系を構成し、水平方向振動系の
共振周波数は部品受容器の重量、水平振動用弾性手段の
はね常数などによって決定され、1だ垂直方向振動系の
共振周波数は部品受容器のM蛍、垂厘撮勤用弾性手段の
はね常数などによって決定される:、またこの種の振動
機では小さな駆動力で大きな振巾を得るために一般に系
の共振周波数を駆動周波数にはX゛一致させるように設
計しているっ 水平方向倣動系と垂直方向振動系の共振周波数を全く同
一に設計すれば、各供給電圧に60°の位相差をもたせ
るように商用周波の三相交流電のを各駆動電磁石yc逆
接続ることによって上述の最適条件が得られる。然るに
両方向振動系の共振周波数を全く同一に設計することは
極めて困難であり、共振周波数に大きな差があれは、加
振力すなわち供給電圧と振動との位相差において、水平
方向振動系と垂直方向振動系とでは大きな差が生じ、従
って供給電圧に60°の位相差馨もたせても谷振動間の
位相差は60°から太きくずれることになυ、最適条件
は得られなくなる。
Such an elliptical vibrating component feeder has two independent horizontal vibration systems and vertical vibration systems, and the resonant frequency of the horizontal vibration system is determined by the weight of the component receiver and the resiliency constant of the elastic means for horizontal vibration. The resonant frequency of the vertical vibration system is determined by the resonant frequency of the component receiver, the resiliency constant of the elastic means used for hanging the camera, etc. Also, in this type of vibrator, the driving force is small. In order to obtain a large amplitude, the resonant frequency of the system is generally designed to match the drive frequency by The above-mentioned optimum conditions can be obtained by connecting the commercial frequency three-phase AC power to each drive electromagnet yc in reverse so that each supply voltage has a phase difference of 60°. However, it is extremely difficult to design a bidirectional vibration system with exactly the same resonant frequency, and if there is a large difference in the resonant frequency, the excitation force, that is, the phase difference between the supply voltage and the vibration, will be A large difference occurs in the vibration system, and therefore, even if the supply voltage has a phase difference of 60°, the phase difference between the valley vibrations will deviate significantly from 60°, making it impossible to obtain optimal conditions.

本発明は上述の問題に鑑みてなされ、水平方向振動系及
垂厘方向撮動系の共振周波数を全く同一に設計せすとも
簡単に部品移送速度に最適条件を得ることができるだ円
振動部品供給機の駆動装置を提供すること乞目的とする
。この目的は本発明によれば、内周監部にスパイラル状
の部品移送用トラックを形成させた部品受容器;該部品
受容器を水平方向に振動可能に支持する水平振動用弾性
手段;前記部品受容器を水平方向に加振するための水平
駆動電磁石;前記部品受容器を手直方向に振動可能に支
持する垂直振動用弾性手段;前記部品受容器を垂直方向
に加振するための垂直駆動電磁石を備え、前記水平駆動
電磁石と前記垂直駆動電磁石に供給される各電圧に位相
差をもたせるように商用周波の三相交流電源を前記水平
駆動電磁石と前記垂直駆動電磁石に接続するだ円振動部
品供給機において、前記水平駆動電磁石と、前記垂直駆
動電磁石とのうちいずれか一万と前記三相交流電源との
間に相切換スイッチを設け、この切換スイッチの切換に
よシ前記水平駆動電磁石と前記垂直駆動電磁石とに供給
される各電圧の位相差を60’か120° にするよう
にしたことを特徴とするだ円振動部品供給機の駆動装置
、によって達成きれる。
The present invention has been made in view of the above-mentioned problems, and is an elliptical vibrating component in which the optimum conditions for the component transfer speed can be easily obtained by designing the resonant frequencies of the horizontal vibration system and the vertical direction imaging system to be exactly the same. The object of the present invention is to provide a drive device for a feeder. This object, according to the present invention, includes: a component receiver in which a spiral component transfer track is formed in the inner circumference; an elastic means for horizontal vibration that supports the component receiver so that it can vibrate in the horizontal direction; horizontal drive electromagnet for horizontally vibrating the receiver; vertical vibration elastic means for supporting the component receiver so that it can vibrate in the vertical direction; vertical drive for vertically vibrating the component receiver an elliptical vibrating component that includes an electromagnet and connects a commercial frequency three-phase AC power source to the horizontal drive electromagnet and the vertical drive electromagnet so that each voltage supplied to the horizontal drive electromagnet and the vertical drive electromagnet has a phase difference; In the feeder, a phase changeover switch is provided between either the horizontal drive electromagnet or the vertical drive electromagnet and the three-phase AC power supply, and by switching the changeover switch, the horizontal drive electromagnet This can be achieved by a driving device for an elliptical vibrating component feeder, characterized in that the phase difference between the voltages supplied to the vertical drive electromagnet is 60' or 120°.

以下、本発明の詳細につき図示した実施例に基づいて説
明する。
Hereinafter, details of the present invention will be explained based on illustrated embodiments.

1す本実施例に適用されるだ円振動パーツフィーダの構
造について第 1図〜第5図を参照して説明する。
1. The structure of the elliptical vibrating parts feeder applied to this embodiment will be explained with reference to FIGS. 1 to 5.

図において、だ円振動パーツフィーダは全体として(1
)で示され、公知のボール(2)を備えている。
In the figure, the elliptical vibrating parts feeder as a whole (1
) and is equipped with a known ball (2).

ボール(2)の内壁面には第5図に示すようにスパイラ
ル状のトラック(3)が形成され、この下流側の適所に
概念的に図示した部品姿勢矯正手段(4)が設けられて
いる。この部品姿勢矯正手段(4)にはすでに各種の構
造が周知であるので図を簡略化するために概念的に図示
する。トラック(3)の排出端には姿勢保持手段(5)
が設けられ、こ\を通って所望の姿勢の部品が直線式振
動フィーダ(6ンに供給される。
As shown in FIG. 5, a spiral track (3) is formed on the inner wall surface of the ball (2), and a conceptually illustrated component posture correction means (4) is provided at a suitable location on the downstream side of the spiral track (3). . Since various structures of this component posture correction means (4) are already well known, they are illustrated conceptually to simplify the drawing. At the discharge end of the truck (3) is a posture maintaining means (5).
is provided, and through this the parts in the desired posture are fed to a linear vibratory feeder (6).

ボール(2)は第2図に明示される十字状の上側可動フ
レーム(7)に固定されて2勺、この上側可動フレーム
(7)は第3図に明示式れるやはり十字状の下側可動フ
レーム(8)に面立した4組の重ね板はね(9ンにより
結合されている。すなわち、上側可動フレーム(7ンの
4つの端部(7a)に重ね板はね(9ンの上端部がボル
トによシ固定され、下側可動フレーム(3ンの4つり端
部(8a)に重ね板はね(9)の下端部がボルトにより
固定される。端部(7aバ8a)は上下方向に整列して
いる。
The ball (2) is fixed to a cross-shaped upper movable frame (7) as shown in FIG. The four sets of stacked plates (9) facing the frame (8) are connected by the four ends (7a) of the upper movable frame (7) and the upper end of the stacked plates (9). The lower end of the stacked plate (9) is fixed with a bolt to the four hanging ends (8a) of the lower movable frame (3). They are aligned vertically.

固定フレームQlの中央部には、上側可動フレーム(7
)の中央部に対向して垂直駆動電磁石Qυが固定され、
こ(1)電磁石Qυに対向して上側可動フレーム(7)
の下面には垂直可動コアa場が固定されている。
An upper movable frame (7) is located in the center of the fixed frame Ql.
) A vertical drive electromagnet Qυ is fixed opposite the center of the
(1) Upper movable frame (7) facing the electromagnet Qυ
A vertical movable core a-field is fixed on the lower surface of the .

また固定フレームOQの相対向する側壁部には垂直駆動
電磁石Q〃を狭んで対照的に一対の水平駆動電磁石(1
4aバ14b)が固定され、これら電磁石(14a)(
14b) Kはそれぞれコイル(15a)(1,5りが
巻装されている。上側可動フレーム(7)の下面には水
平駆動電磁石(14aX14b)に対向して水平可動コ
アけ5a)(16b)が固定されているう 固定フレームQOにはこれと一対的に4個の脚部αηが
形成され、これら脚部αηが防振ゴムQ81ヲ介して基
台上に支持される3脚部(1711には横方向に延在す
るばね取付部(17a)が一対向に形成され、これらば
ね取付部(17a)に第3図に明示するように垂直駆動
用の重ね板はね01が両端部分で4組、ボルトにより固
定される。板はねα91(グ第1図に示されるようにス
ペーサ■を介して重ねられ、これらの中央部分が下側可
動フレーム(8)にボルトにより固定されている。
In addition, on opposite side walls of the fixed frame OQ, a pair of horizontal drive electromagnets (1
4a bar 14b) is fixed, and these electromagnets (14a) (
14b) K is wound with coils (15a) (1, 5) respectively. On the lower surface of the upper movable frame (7) there is a horizontal movable core 5a) (16b) facing the horizontal drive electromagnet (14aX14b). The fixed frame QO to which the QO is fixed has four leg parts αη formed in pairs therewith, and these leg parts αη are connected to three leg parts (1711 The spring mounting parts (17a) extending in the horizontal direction are formed opposite to each other, and as shown in FIG. 4 sets are fixed with bolts.The plates α91 (g) are stacked with spacers ■ as shown in Figure 1, and their central parts are fixed to the lower movable frame (8) with bolts. .

振動フィーダ(6)においては、駆動部(2B(その構
造については周知であるので図示せず)が一対の板はね
c!4)により可動ブロック60)と結合され、全体は
ベースブロック+221 ’&介して防振ゴムシ3)に
J:9基台上に支持される。可動ブロック側には細長い
トラフ(511が固定されて3シミ このトラフl51
)に8いては第5図に明示されるように両側壁部(25
a)(25b)間に溝(26+ Y形成させている。こ
の溝(26)の上流側には、これに近接して発光素子(
271と検光素子(2(至)とから成るオーバフロー検
出装置がV設括れている。
In the vibratory feeder (6), the drive section (2B (not shown as its structure is well known) is coupled to the movable block 60) by a pair of plate springs c!4), and the entire structure consists of a base block +221'& It is supported on the J:9 base by the anti-vibration rubber band 3). On the movable block side there is a long and narrow trough (511 is fixed and there are 3 stains. This trough l51
), as shown in Figure 5, both side walls (25
A groove (26+Y) is formed between a) (25b). On the upstream side of this groove (26), a light emitting element (
An overflow detection device consisting of 271 and an analyzing element (2) is installed in a V-circuit.

溝(26)には図示せずとも発光素子(2力に対向し−
C小孔が形成されており、部品がその上方に存在しない
場合には検光素子C28)が発生素子(2力からの光を
受光するように構成はれている。検光素子(28)の出
力端子は制御回路のに接続され、この制御回路(29)
の2つの出力端子G30+(31)はそれぞれ、第6図
に示すパーツフィーダ駆動N路の入力端子aG ojに
接続される。
Although not shown in the groove (26), there is a light emitting element (opposed to the two forces).
A small hole C is formed, and when there is no component above it, the analyzer element C28) is configured to receive light from the generating element (two forces.Analyzer element (28) The output terminal of the control circuit (29) is connected to the control circuit (29).
The two output terminals G30+(31) are respectively connected to the input terminal aG oj of the parts feeder drive N path shown in FIG.

次に第6図を参照してパーツフィーダ駆動回路の詳細に
ついて説明する。
Next, details of the parts feeder drive circuit will be explained with reference to FIG.

本駆動(ロ)路は主として水平、駆動部(32A) 、
垂直駆動部(32B) 、低速用リレー(ト)、オーバ
フロー解除用リレー(3優、切換スイッチSW2、SW
lから成p、三相交流短のに接続される。すなわち、相
jしをRlS、Tとしてit入力端子は電詠スイッチS
W、ヒーーズ關を介して水平駆動部(32A)に接続さ
れると共に更に切換スイッチsw、、sw、 fr:介
して垂厘゛駆動部(32B)に接続される。S入力端子
は同様に遅動電源スイッチSW1、ヒユーズ(38);
Y介して水平駆動部(32A)の他方の入力端子に接続
されると共に更に切換スイッチSW、、8W、 Y介し
て垂直駆動部(32B)に接続される。またT入力端子
は遅勤電0スイッチSW、、ヒユーズ(38)、切換ス
イッチSW、V介して垂@駆動部(32B)に接続され
る。切換スイッチsW、、SW、によシ垂直駆動部(3
2B)の2つの入力端子にJ 8XTの入力のうち2つ
が選択的に供給されるようになっている。
The main drive (b) path is mainly horizontal, the drive section (32A),
Vertical drive unit (32B), low speed relay (G), overflow release relay (3-way, selector switch SW2, SW
From l to p, it is connected to a three-phase AC short circuit. That is, with the phase j being RlS and T, the it input terminal is the electric switch S.
W is connected to the horizontal drive unit (32A) via the heaters, and further connected to the vertical drive unit (32B) via changeover switches sw, sw, fr:. Similarly, the S input terminal is a slow-acting power switch SW1 and a fuse (38);
It is connected to the other input terminal of the horizontal drive section (32A) via Y, and further connected to the vertical drive section (32B) via changeover switches SW, 8W, and Y. Further, the T input terminal is connected to the vertical drive section (32B) via the late shift power zero switch SW, fuse (38), changeover switch SW, and V. Changeover switch sW, SW, vertical drive section (3
Two of the inputs of the J8XT are selectively supplied to the two input terminals of the J8XT.

一般にボールには時計方向か反時計方向にスパイラル状
のトラックが形成されるが、この方向に応じて切換スイ
ッチSW、が切換られる。寸だ切換スイッチSW3は水
平駆動部(32A)に供給される電圧と、垂直駆動部(
32B)に供給はれる電圧との位相差を60°か120
°かに切換えるためのスイッチである。すなわち、切換
スイッチSW、にゴdいて可動接点01 (40) (
4υ(4渇は連動しているが、図示するように時計方向
用固定接点(39aバ40、aバ41a%42a)に接
続され、切換スイッチSW、を60°用固足接点(43
a)に接続されている場合には、垂直駆動部(32B)
の−万の入力端子にはR入力が供給され、他方の入力端
子にはT入力が供給される5また図示する状態から切換
スイッチSW、V反時計方向用固定接点(39Cバ40
CX41c)(42c)に切換えた場合には、垂直駆動
部(32B)の−万の入力端子には1人力が供給され、
他方の入力端子にはS入力が供給される。すなわち、切
換スイッチ5Wtv切換えることによシ、垂直駆動部(
32B)には水平駆動部(32A)より60゜位相が進
んでいるか遅れている電圧が゛供給される。
Generally, a spiral track is formed on the ball in either a clockwise or counterclockwise direction, and the changeover switch SW is switched depending on this direction. The size changeover switch SW3 selects between the voltage supplied to the horizontal drive section (32A) and the voltage supplied to the vertical drive section (32A).
The phase difference with the voltage supplied to 32B) is 60° or 120°.
This is a switch for switching between degrees. That is, when switching to the changeover switch SW, the movable contact 01 (40) (
4υ (4 degrees are interlocked, but as shown in the figure, they are connected to the fixed contacts for clockwise direction (39a bar 40, a bar 41a% 42a), and the changeover switch SW is connected to the fixed contact for 60° direction (43
a), the vertical drive (32B)
The R input is supplied to the -10,000 input terminal, and the T input is supplied to the other input terminal.
When switching to CX41c) (42c), one manual power is supplied to the -10,000 input terminal of the vertical drive section (32B),
The S input is supplied to the other input terminal. That is, by switching the changeover switch 5Wtv, the vertical drive section (
32B) is supplied with a voltage that is 60° ahead or behind the horizontal drive unit (32A).

切換スイッチsWs、 Y 120° 用固定接点(4
3り側に切シ換えた場合には、切換スイッチSW、の切
換えによシ、垂直駆動部(32B) Kは水平駆動部(
32A)より120°位相が進んでいるか遅れている電
圧が供給される。なお、切換スイッチsw、、sw、 
v中立固定接点(39bパ40b)(41bバ42bバ
43b〕 に切り換えた場合には垂直駆動部(32B)
には電圧は印加されない。
Changeover switch sWs, fixed contact for Y 120° (4
When switching to the 3-way side, change the changeover switch SW, and the vertical drive section (32B) K is the horizontal drive section (
32A) is supplied with a voltage that is 120 degrees ahead or behind in phase. In addition, the changeover switches sw, sw,
v Neutral fixed contact (39b, 40b) (41b, 42b, 43b) When switched to vertical drive unit (32B)
No voltage is applied to.

低速態動用リレー(ハ)及びオーバフロー解除用リレー
(3カはそれぞれ入力端子(36+ (31)と几入カ
ラインとの間に接続され、それらの接点几s、Roはそ
れぞれ水平駆動部(32A)、垂直駆動部(32B)内
に設けられてSす、これら駆動部(32A)(32B)
の回路構成は全く同一であるので、−万の水平駆動部(
32A)についてのみ以下説明する。
The low-speed state relay (c) and the overflow release relay (three are connected between the input terminal (36+ (31) and the input line, respectively, and their contacts S and Ro are connected to the horizontal drive unit (32A), respectively. , S provided in the vertical drive section (32B), these drive sections (32A) (32B)
Since the circuit configurations of are exactly the same, -10,000 horizontal drive units (
32A) will be explained below.

水平駆動部(32A)の−万の入力端子はトライアック
(351’&介して水平駆動電磁石コイル(15a)(
15b)の−万の端末に接続され、他方の入力端子は直
接、同コイル(158X15b)の他方の端末に供給さ
れる。
The -10,000 input terminal of the horizontal drive unit (32A) is connected to the horizontal drive electromagnetic coil (15a) (via the triac (351')).
15b), and the other input terminal is directly supplied to the other terminal of the same coil (158x15b).

トライアック0ωの制御電極にはダイアック(36)と
ダイオードc37)との直列回路が接続され、ダイオー
ド(37)のアノード側とトライブック(351の出力
側電極との間(はコンデンサC1が接続される。またト
ライアック051の入力側電極と、ダイオード0ηとコ
ンデンサC8との接続点との間にはトライアック(35
1の導通角制御用の抵抗回路が接続される。すなわち、
この抵抗回路は固定抵抗几8、可変抵抗R,、R。
A series circuit of a diac (36) and a diode c37) is connected to the control electrode of the triac 0ω, and a capacitor C1 is connected between the anode side of the diode (37) and the output side electrode of the triac (351). In addition, a triac (35
A resistor circuit for controlling the conduction angle is connected. That is,
This resistance circuit has a fixed resistance 8 and variable resistances R, , R.

几4、ル及びリレー接点fLO,几Sから成シ、固定抵
抗Rいリレー接点几0、可変抵抗R,,R,は直列に接
続され、可変抵抗也に並列に可変抵抗也、瓜が接続され
る。リレー接点Rsの切換により可変抵抗几3、R4の
いづれかゾ選択される。可変抵抗馬はトライアック(3
つの導通角の最大値、すなわち水平駆動力の最大値を決
定するために用いられ、可変抵抗亀はトライアック65
1の導通角の最大値、すなわち水平駆動力の最小値を決
定するために用いられ、この範囲内で水平駆動力の調整
を行うために可変抵抗R1、几4が用いられる。−万の
可変抵抗几、が高速移送用であり、他方の可変抵抗fL
4が低速移送用である。トライブック(35)には更に
並列にコンデンサC,と抵抗几6との直列回路が接続さ
れ、トライアック(3つに対するサージキラーの働らき
をする。な8、水平駆動部(32A)と垂直駆動部(3
2B)の可変抵抗R1、几、は図示せすとも連動して調
整されるものとする。
4, 2 and relay contacts fLO, S are connected, fixed resistance R, relay contact 0, variable resistors R, , R, are connected in series, and variable resistor 2 and melon are connected in parallel to variable resistor 2. be done. By switching the relay contact Rs, either variable resistor 3 or R4 is selected. Variable resistance horses are triac (3
The variable resistance turtle is used to determine the maximum value of the two conduction angles, that is, the maximum value of the horizontal driving force.
Variable resistors R1 and 4 are used to adjust the horizontal driving force within this range. - 10,000 variable resistors are for high-speed transfer, and the other variable resistor fL
4 is for low speed transfer. A series circuit of a capacitor C and a resistor 6 is further connected in parallel to the triac (35), which acts as a surge killer for the three triacs.8, horizontal drive section (32A) and vertical drive section (3
It is assumed that the variable resistor R1 (2B) is adjusted in conjunction with the variable resistor R1 (not shown).

本発明の実施例は以上のように構成されるが次にこの作
用について説明するっ ます、だ円振動パーツフィーダ(υを駆動するに当って
、このボール(2)には第5図に示すようにトラック(
3)が反時計方向に巻回されているので第6図の駆動回
路に3いて切換スイッチSW、を反時計用固定接点側に
切り換える、次いで電源スィッチSW、を閉じると、水
平駆動部(32A)には三相交流電源の几−8間電圧が
供給される。他方、垂旧尾動部(32B)にはT−8間
電圧が供給妊れる。なオ6、切換スイッチSW3は60
°1ltlIに図示のように切り換えられた筐5とする
。トライアック35)はl−1,、、R2、几8、几、
によって構成される抵抗回路の抵抗値に応じて導通し、
この導通角に応じた大きさの電流が水平駆動電磁石コイ
ル(15a)(15b)  及び垂直駆動電磁石コイル
(6)に流れる。なお、このときリレー09は励磁され
ていないので、その接点SSは図示するように左側固定
接点に接続されている。従って、可変抵抗几、とけ並列
に高速移送用可変抵抗R5が接続されている。
The embodiment of the present invention is constructed as described above, and its operation will be explained next. In driving the elliptical vibrating parts feeder (υ), this ball (2) is track (
3) is wound in a counterclockwise direction, so when the drive circuit shown in Fig. 6 is set and the selector switch SW is switched to the counterclockwise fixed contact side, and then the power switch SW is closed, the horizontal drive part (32A ) is supplied with the voltage between 几 and 8 of the three-phase AC power supply. On the other hand, the voltage between T-8 can be supplied to the vertical tail movement part (32B). Nao 6, selector switch SW3 is 60
Assume that the housing 5 is switched to °1ltlI as shown in the figure. Triac 35) is l-1,,,R2,几8,几,
conduction according to the resistance value of the resistor circuit composed of
A current having a magnitude corresponding to this conduction angle flows through the horizontal drive electromagnet coils (15a) (15b) and the vertical drive electromagnet coil (6). Note that since the relay 09 is not energized at this time, its contact SS is connected to the left fixed contact as shown. Therefore, a variable resistor R5 for high-speed transfer is connected in parallel with the variable resistor R5.

水平駆動電磁石コイル(15aバ15b)及び垂直、鴛
動電磁石コイル(ロ)には導通角を制御された半波の電
流が流れ、ボール(2)に対し60肛位相異なる垂直方
向の加振力と水平方向の加振力が刃口えられる。
A half-wave current with a controlled conduction angle flows through the horizontal driving electromagnetic coil (15a and 15b) and the vertical moving electromagnetic coil (b), which generates an excitation force in the vertical direction that is 60 degrees out of phase with the ball (2). The horizontal excitation force is applied to the cutting edge.

これによシボール(2)は第4図でBで示すように交流
電源の周波数でだ円振動を行う。(商用交流電源の場合
50)IZ又は60Hz)Bはある一点の軌跡を示すも
ので図では誇張して示している。このだ円の長袖の長さ
は高速移送時には可変抵抗也によシ、低速移送時には可
変抵抗几4によって変えられるが、通常は0〜3 mm
程度である口だ円振動パーツフィーダ(1)においてボ
ール(2)ハ垂直鳳勤用電磁石Oηに、しって垂直方向
に力ロ振力を受け、一対の水平態動用電磁石(14a)
(14b)によって水平方向に加振力を受け、各方向に
おける振動の合成がだ円振動となるのであるが、一般に
垂直方向振動と水平方向振動との位相差が約60°近辺
で最大の部品移送速度が得られることを実験的に確認し
ているっだ円振動ノ(−ツフイーダ(1)の垂m方向振
動の共振周波数はボール(2)の重量、板tiね(1つ
のはね常数などによって決定され、イ也万水平方向据勤
の共振周波数はボール(2)の重量、板しiね(9)の
はね常数などによって決定されるが、構造設言士上、こ
れらの共振周波数を全く同一にすることは難しい。また
、この種の振動機では共振周波数を態動周波数にはシ一
致さ七るように構成させることが好ましいが、これも面
倒である。
This causes the ball (2) to vibrate in an ellipse at the frequency of the AC power source, as shown by B in Figure 4. (In the case of a commercial AC power source, 50) IZ or 60 Hz) B indicates the locus of a certain point, which is exaggerated in the figure. The length of this elliptical long sleeve can be changed by variable resistor 4 during high-speed transfer and by variable resistor 4 during low-speed transfer, but usually it is 0 to 3 mm.
In the elliptical vibrating parts feeder (1), the ball (2) is subjected to vertical vibration force by the vertical movement electromagnet Oη, and a pair of horizontal movement electromagnets (14a)
(14b) receives an excitation force in the horizontal direction, and the combination of vibrations in each direction becomes elliptical vibration, but generally the phase difference between vertical vibration and horizontal vibration is maximum around 60° for parts. The resonant frequency of the vertical vibration of the elliptical vibration (1), which has been experimentally confirmed to be able to obtain the transfer speed, is determined by the weight of the ball (2), the plate ti (one spring constant) The resonance frequency of the horizontal direction is determined by the weight of the ball (2), the spring constant of the board (9), etc., but from a structural engineer's perspective, these resonance frequencies It is difficult to make the frequencies exactly the same.Furthermore, in this type of vibrator, it is preferable to configure the resonance frequency so that it does not coincide with the state frequency, but this is also troublesome.

本実施例ではだ円振動パーツフィーダ(1)の垂直方向
及び水平方向の共振周波数を駆動周波数にラフに一致さ
せるように設計しても、切換スイッチS毘によりはゾ最
適な振動条件が得られる。一般に加振力と振動との位相
差は、系の共振周波数と加振力の周波数との比λ、及び
ばねの粘性係θとによって決定されるが、λが1″′c
るるとき、すなわち系の共振周波数と加振力の周波数と
が完全に一致するときは位相差は90°である。λが1
よp充分小式いときには位相差はO″であLlx”充分
大きいときには180°である。λが1の近辺では位相
差は0°と180°との間の値をと!ll得るが、これ
はばねの粘性係数により−C!Aなる。例えば板はね(
9)αりが鋼製である場合には粘性係数が小さいので、
λが1の近辺でもλ〈■では位相差は0°にはゾ等しく
、λ〉1では180°にはゾ等しい。
In this example, even if the vertical and horizontal resonant frequencies of the elliptical vibrating parts feeder (1) are designed to roughly match the drive frequency, the optimum vibration conditions can be obtained by changing the changeover switch S. . Generally, the phase difference between the excitation force and the vibration is determined by the ratio λ between the resonance frequency of the system and the frequency of the excitation force, and the viscosity coefficient θ of the spring.
When the resonant frequency of the system and the frequency of the excitation force completely match, the phase difference is 90°. λ is 1
When Llx is sufficiently small, the phase difference is O'', and when Lx'' is sufficiently large, it is 180°. When λ is around 1, the phase difference takes a value between 0° and 180°! However, this is due to the viscosity coefficient of the spring -C! A. For example, the board (
9) If the α rim is made of steel, the viscosity coefficient is small, so
Even when λ is around 1, the phase difference is equal to 0° at λ<■, and is equal to 180° when λ>1.

従って、パーツフィーダ(υの垂直方向及び水平方向の
共振周波数が共にffi勤周波周波数いが、これよシ小
さい場合には各方向における加振力と振動との位相差は
約06であ夛、従って切換スイッチSW、を60°側に
切シ換えているときには、両方向における振動の位相差
は約60°となり、実験で確認した最適条件が得られる
。またパーツフィーダ(1)の垂直方向及び水平方向の
共振周波数が共に駆動周波数に近いが、これより大きい
場合には各方向における加振力と振動との位相差は共に
約180゜であり、従って切換スイッチSWsを60°
側に切シ換えているときには、両方向にあける振動の位
相差は約60°となり、同様に実験で確認し、た最適条
件が得られる。−!た垂直方向及び水平方向の共振周波
数が共に駆動周波数に近いが、一方がこれよシ大きく、
他方がこれより不妊い場合には一万の加振力と振動との
位相差は約180″であり、他方の加振力と振動との位
相差は約0°である。従って、切換スイッチSW、を6
0°狽11に切換えている場合には垂直方向と水平方向
とにおける振動の位相差は、切換スイッチSW2を時計
方向用固定接点側に閉じているが、反時計方向用固定接
点側に閉じているかによって180°+60°−240
°か180”−60゜=120° となる。これでは最
適位相差である60゜から大きく外れてしまう。
Therefore, if the vertical and horizontal resonant frequencies of the parts feeder (υ) are both the ffi working frequency frequency, but are smaller than this, the phase difference between the excitation force and vibration in each direction will be approximately 06, Therefore, when the changeover switch SW is switched to the 60° side, the phase difference between the vibrations in both directions is approximately 60°, and the optimum conditions confirmed by experiments can be obtained. The resonant frequencies in both directions are close to the drive frequency, but if they are larger than this, the phase difference between the excitation force and vibration in each direction is about 180°, and therefore the changeover switch SWs is set at 60°.
When switching to the side, the phase difference between the vibrations in both directions is about 60°, and the optimum condition, which was similarly confirmed through experiments, is obtained. -! Both vertical and horizontal resonant frequencies are close to the drive frequency, but one is larger than the other.
If the other is less sterile than this, the phase difference between the 10,000 excitation force and the vibration is about 180'', and the phase difference between the other excitation force and the vibration is about 0°.Therefore, the changeover switch SW, 6
When the switch is switched to 0° 11, the phase difference between the vibrations in the vertical and horizontal directions is determined by closing the changeover switch SW2 to the clockwise fixed contact side, but closing it to the counterclockwise fixed contact side. 180°+60°-240 depending on the dolphin
180"-60°=120°. This greatly deviates from the optimum phase difference of 60°.

然るに本実施例によれば、切換スイッチSW、v120
°側固定接点に切シ換えることによシ、垂直駆動部(3
2B)には水平駆動部(32A)より切換スイッチSW
、 V時計方向側固定接点に閉じているか反時計方向側
固定接点に閉じているかに応じて120”だけ位相が進
んだ、または遅れた電圧が供給されるので、垂直方向と
水平方向との振動の位相差は180°+120°=30
0°または180°−120′′= 60° となめ。
However, according to this embodiment, the changeover switch SW, v120
By switching to the fixed contact on the ° side, the vertical drive section (3
2B) has a selector switch SW from the horizontal drive unit (32A).
, Since a voltage with a phase lead or delay of 120" is supplied depending on whether the V fixed contact is closed in the clockwise direction or the fixed contact in the counterclockwise direction, the vibration in the vertical and horizontal directions is The phase difference is 180° + 120° = 30
0° or 180°-120'' = 60°.

ボール(2)は垂直方向にも水平方向にもはゾ正弦振動
を行うので、位相差が300°の場合、水平方向振動を
asinωtと表わせば、垂直方向振動はbsin(ω
t +300°)と表わせる。然るにt)3in(ωt
 +300°)= bsin(360°十ωt−60°
) = bsin(ωt −60°)であるから、垂直
方向と水平方向との振動の位相差は60゜(遅れ)とな
る。
The ball (2) vibrates sinusoidally both vertically and horizontally, so when the phase difference is 300°, if the horizontal vibration is expressed as asinωt, the vertical vibration is expressed as bsin(ω
t +300°). However, t)3in(ωt
+300°) = bsin (360° ωt-60°
) = bsin(ωt −60°), so the phase difference between the vertical and horizontal vibrations is 60° (delay).

実際には、ボール(2)のトラック(3)に部品を流し
てみて、切換スイッチSW、の切換えによシ移送速度の
高い万の電圧位相差60″又は120°が選択される。
Actually, when parts are flowed on the track (3) of the ball (2), a voltage phase difference of 60'' or 120°, which has a high transfer speed, is selected by switching the changeover switch SW.

これは目で見て明らかであシ、移送速度の低い方の電圧
位相差では部品が不規則にジャンプ運動するが、移送速
度の高い万の電圧位相差では部品はスムーズに流れる。
This is clearly visible to the naked eye; at lower transfer speeds and voltage phase differences, the parts jump irregularly, but at higher transfer speeds and voltage phase differences of 10,000, the parts flow smoothly.

だ円振動パーツフィーダ(1)は以上のようにして駆動
されるが、これに接続される振動フィーダ(6)も同時
に駆rJgJされる。図示せすともボール(2)には多
量の部品、例えば電子部品が投入されると、部品はトラ
ック(3)に沿って上昇して行き、姿勢矯正手段(4)
によシ所望の姿勢に矯正きれて、姿勢保持トラック(5
)を°通シ振動フィーダ(6)の溝(26)に供給され
る。振動フィーダ(6)は第4図に示すように矢印入方
向に面線振動してゴdシ、この振動力を受けて部品は溝
(261fx図において右方へと移送される。なり1娠
勤フイーダ(6)から連続的に部品が一個宛次工程に供
給σれてもよいし、溝(26)の排出端にストッパーを
設け、こ\で部品を−たん停止し、何らかの搬送手段、
例えば真空吸着装置により上方から部品を吸着し他所へ
1個宛搬送するようにしてもよい。いづれにしてもパー
ツフィーダ(1)から遅続的に部品が1個宛、振動フィ
ーダ(6)に供給でれるが、発光素子(27)下の溝□
□□で部品が間隔をあかず相接するようになると検光素
子(至)には発光素子(2′Dからの光が照射されなく
なる。すなわち、ある間隔をゴdいて溝(2印を部品が
流れている場合には、部品が遮光しても短時間後再び検
光素子(ハ)に光が照射されるが、所定時間以上検光素
子内に光が照射されない場合にはオーバフロー状態と判
断して、制御回路いからオーバフロー信号を発生し、こ
れが出力端子0υ馨通って駆動回路の入力端子OD′に
供給される。これによりリレー(ロ)が励磁されると水
平駆動部(32八八及び垂直駆動部(32B)の接点R
The elliptical vibrating parts feeder (1) is driven as described above, and the vibrating feeder (6) connected thereto is also driven at the same time. As shown in the figure, when a large number of parts, for example electronic parts, are thrown into the ball (2), the parts move upward along the track (3) and move to the posture correcting means (4).
Once the desired posture has been corrected, the posture maintenance track (5
) is fed through the groove (26) of the vibrating feeder (6). The vibrating feeder (6) vibrates along a plane in the direction of the arrow as shown in Fig. 4, and the parts receive this vibration force and are transferred to the right in the groove (261fx). Parts may be continuously fed one by one from the feeder (6) to the next process, or a stopper may be provided at the discharge end of the groove (26) to temporarily stop the parts, and some conveyance means,
For example, parts may be picked up from above using a vacuum suction device and transported one by one to another location. In any case, the parts feeder (1) will feed one part at a time to the vibration feeder (6), but the groove under the light emitting element (27) □
When the parts come into contact with each other without leaving a gap at □□, the light from the light emitting element (2'D) will no longer be irradiated onto the analyzer element (to). If the parts are flowing, the light will be irradiated onto the analyzer element (c) again after a short time even if the part blocks the light, but if the light is not irradiated into the analyzer element for more than a predetermined time, an overflow state will occur. When the control circuit determines that Contact point R of 88 and vertical drive part (32B)
.

(常時閉接点)が開き、水平態動電磁石コイル(15a
バ15b)及び垂直駆動電磁石コイル(6)に流れる電
流は零となる。従ってだ円振動パーツフィーダ(υは停
止し、撮動フィーダ(6)への部品供給は停止する。
(normally closed contact) opens, and the horizontal electromagnetic coil (15a
The current flowing through the bar 15b) and the vertical drive electromagnet coil (6) becomes zero. Therefore, the elliptical vibrating parts feeder (υ) is stopped, and the supply of parts to the photographic feeder (6) is stopped.

やがて振動フィーダ(6)のオーバフロー状態が解除す
ると、すなわち部品間に間隔が生じて発光素子(2ηか
らの光が検光素子(281に投光されると、制御回路(
至)からオーバフロー解除信号が発生し、これが出力端
子夏を弁して駆動回路の入力端子−に供給される。これ
によりリレー(33)が励磁され、水平駆動部(32A
)及び垂直駆動部(32B)の接点Rs が図示の状態
から左方へと移動し、低速移送用固定接点側に閉じられ
る。これにより低速移送用可変抵抗R1が可変抵抗比に
並列に接続され、水平駆動電磁石コイル(15aバ15
b)及び垂直駆動電磁石コイル(6)には高速移送の場
合よシ小さい電流が流れるようになる。なお、可変抵抗
几1、R1の抵抗値は予め調整されているものとする。
Eventually, when the overflow state of the vibrating feeder (6) is released, that is, when a gap is created between the parts and light from the light emitting element (2η) is emitted to the analyzer element (281), the control circuit (
An overflow release signal is generated from the output terminal 1 and 2, which is supplied to the input terminal of the drive circuit after closing the output terminal. As a result, the relay (33) is energized, and the horizontal drive section (32A
) and the contact Rs of the vertical drive unit (32B) move to the left from the illustrated state and close to the fixed contact for low-speed transfer. As a result, the variable resistance R1 for low-speed transfer is connected in parallel to the variable resistance ratio, and the horizontal drive electromagnet coil (15a bar 15
b) and the vertical drive electromagnetic coil (6), a smaller current flows in the case of high-speed transfer. It is assumed that the resistance values of the variable resistors 1 and R1 are adjusted in advance.

ボール(2)は停止の状態から小さい振巾の振動を開始
するので、トラック(3)特に部品姿勢矯正手段(4)
に8ける、及びこの前後の部品は静かにスタートし殆ん
どそのま\の姿勢で移送開始される。もし大きい振巾で
振動を開始すれば、部品は大きな慣性力を受け、姿勢が
乱される恐れがあるが、本実施例ではそのような恐れは
ない。オーバフロー解除信号は所定時間継続しくこのた
めに制御回路−はタイマーを含んでいる〕た後消滅する
。これによシ接点)Lsは再び図にゴdいて右方へと移
動し高速移送用固定接点側に切り換えられる。コイル(
15a)(15b)曹にはよシ大きい電流が流れ、パー
ツフィーダ(IJは大きな去巾で撮動するようになり部
品は再び高速で移送される。
Since the ball (2) starts vibrating with a small amplitude from a stopped state, the track (3), especially the component posture correction means (4)
8, and the parts before and after this start quietly and begin to be transferred in almost the same posture. If vibration is started with a large amplitude, the parts will receive a large inertial force and there is a risk that the posture will be disturbed, but in this embodiment, there is no such fear. The overflow release signal continues for a predetermined period of time (for which purpose the control circuit includes a timer) and then disappears. As a result, the contact (Ls) moves to the right in the figure again and is switched to the fixed contact for high-speed transfer. coil(
15a) (15b) A much larger current flows through the parts feeder (IJ), and the parts feeder (IJ) begins to operate with a larger width, and the parts are transferred again at high speed.

以上、本発明の実施例について説明したが、勿論、本発
明はこれに限定されることなく不発明の技術的思想に基
づいて種々の変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is, of course, not limited to these and can be modified in various ways based on the technical concept of non-invention.

例えば、以上の実施例ではだ円振動パーツフィーダの水
平振動用弾性手段及び垂直振動用弾性手段として板はね
(9)四が用いられたが、他の弾性手段、例えば弾性ゴ
ムが使用されてもよい。弾性ゴムの場合、その粘性係数
は板はね(9)01 (@製)よやかなシ大きく、従っ
て駆動周波数と共振周波数とυ比λが1の近辺ではIJ
jANIJ力(加振力〕と振動との位相差は比較的緩や
かに変化するが、部品移送速度と振動位相差との関係は
位相差60°の近辺では余シ大きな差がないので、本発
明によシ充分満足な結果が得られる。
For example, in the above embodiment, the plate springs (9) 4 were used as the elastic means for horizontal vibration and the elastic means for vertical vibration of the elliptical vibrating parts feeder, but other elastic means, such as elastic rubber, could be used. Good too. In the case of elastic rubber, its viscosity coefficient is large, so when the driving frequency, resonance frequency, and υ ratio λ are around 1, IJ
Although the phase difference between the ANIJ force (excitation force) and the vibration changes relatively slowly, the relationship between the component transfer speed and the vibration phase difference does not have a large difference in the vicinity of a phase difference of 60°. Very satisfactory results can be obtained.

となく、種々の配置が可能である。However, various arrangements are possible.

また以上の実施例では相切換スイッチSW3は手動で切
換えられるように構成したが、これン半導体素子で構成
し、電気的に切換えるようにしてもよい。
Further, in the above embodiment, the phase changeover switch SW3 is configured to be manually switched, but it may also be configured with a semiconductor element and switched electrically.

以上述べたように本発明のだ円振動部品供給機の駆動装
置によれば、水平振動系及び垂直振動系の共振周波数を
大まかに設計することができるので、製造コストy低下
させることができ、かつ生産能率を向上させることがで
きる。
As described above, according to the drive device of the elliptical vibrating component feeder of the present invention, the resonance frequencies of the horizontal vibration system and the vertical vibration system can be roughly designed, so the manufacturing cost y can be reduced. Moreover, production efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例が適用でれるだ円感動パーツフ
ィーダの部分断面図、第2図は第1図におけるI−II
線方向平面図、第3図は第1図のだ円振動パーツフィー
ダの底面図、第4図は本発明の実施例が適用される第1
図のだ円振動パーツフィーダ及びこれに接続される直線
振動フィーダの側面図、第5図は同平面図、及び第6図
は第4図のだ円振動パーツフィーダの駆動回路図である
。 なお図において、 (1)・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・だ円振動パーツフィーダ(2)・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・ボ − ル(3ン・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・  ト   ラ   
ッ   り(9月・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・水平振動用板はねCLJ)・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・垂厘駆wJJ電磁石(2)、1..10..6
0.110101..011191.11.・コ イ 
ル(J4 (16a]16b)・・・・・・・・・可動
コ ア(14a)(14b)  ・・・・・・・・・・
・・水平駆動電磁石(15a)(15b)  ・・・・
・・・・・・・・コイ   ル01・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・垂直伽動
用板はね几、S、 T・・・・・・・・・・・・・・・
開用周波の三和交b1を電の入力端子 SW、・・・・・・・・・・・・・・・・・・・・・・
中相切換スイッチ第1図 7′
FIG. 1 is a partial sectional view of an elliptical moving parts feeder to which an embodiment of the present invention can be applied, and FIG. 2 is a section taken along I-II in FIG.
3 is a bottom view of the elliptical vibrating parts feeder of FIG. 1, and FIG. 4 is a plan view of the elliptical vibrating parts feeder of FIG.
FIG. 5 is a side view of the elliptical vibrating parts feeder and the linear vibrating feeder connected thereto, FIG. 5 is a plan view thereof, and FIG. 6 is a drive circuit diagram of the elliptical vibrating parts feeder of FIG. 4. In the figure, (1)・・・・・・・・・・・・・・・・・・・・・
......Elliptical vibration parts feeder (2)...
・・・・・・・・・・・・・・・・・・・・・・・・
・・Ball (3 n・・・・・・・・・・・・・・・
··············· Tiger
(September...)
・・・・・・・・・・・・Horizontal vibration plate CLJ)・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・Suraku wJJ electromagnet (2), 1. .. 10. .. 6
0.110101. .. 011191.11. ·Koi
(J4 (16a) 16b) ・・・・・・・・・Movable core (14a) (14b) ・・・・・・・・・・・・
・・Horizontal drive electromagnet (15a) (15b) ・・・
・・・・・・・・・Coil 01・・・・・・・・・
・・・・・・・・・・・・・・・・・・ Vertical movement plate Haneka, S, T・・・・・・・・・・・・・・・
The Sanwa AC b1 of the open frequency is connected to the power input terminal SW, ・・・・・・・・・・・・・・・・・・・・・
Medium phase selector switch Fig. 1 7'

Claims (1)

【特許請求の範囲】[Claims] 内周壁部にスパイラル状の部品移送用トラックを形成さ
せた部品受容器;該部品受容器を水平方向に振動可能に
支持する水平低動用弾性手段:前記部品受容器を水平方
向に加振するための水平駆動電磁石;前記部品受容器を
垂直方向に振動可能に支持する垂直振動用弾性手段;前
記部品受容器を垂直方向に加振するための垂@駆動電磁
石を備え、前記水平駆動電磁石と前記垂直駆動電磁石に
供給される谷電圧に位相差をもたせるように商用周波の
三相交流電源を前記水平駆動電磁石と前記垂直駆動電磁
石に接続するだ円振動部品供給機において、前記水平駆
動電磁石と前記垂@駆動電磁石とのうちいずれか一万と
前記三相交流電源との間に相切換スイッチを設け、この
切換スイッチの切換により前記水平駆動電磁石と前記垂
直部!XIJ電磁石とに供給される谷電圧の位相差を6
0°か120゜にするようにしたことを特徴とするだ円
振動部品供給機の駆動装置。
A component receiver having a spiral component transfer track formed on the inner circumferential wall; Horizontal low-motion elastic means for supporting the component receiver so that it can vibrate in the horizontal direction: for horizontally vibrating the component receiver. horizontal drive electromagnet; vertical vibration elastic means for vertically vibratingly supporting the component receiver; a vertical drive electromagnet for vertically vibrating the component receiver; In an elliptical vibrating parts supply machine, a commercial frequency three-phase AC power source is connected to the horizontal drive electromagnet and the vertical drive electromagnet so as to have a phase difference in the valley voltage supplied to the vertical drive electromagnet. A phase changeover switch is provided between any one of the vertical driving electromagnets and the three-phase AC power supply, and by switching the changeover switch, the horizontal driving electromagnet and the vertical driving electromagnet are switched. The phase difference between the valley voltage supplied to the XIJ electromagnet is 6
A drive device for an elliptical vibrating parts feeder, characterized in that the angle is set at 0° or 120°.
JP23227082A 1982-12-24 1982-12-24 Driving device for elliptical vibration parts feeder Granted JPS59118616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23227082A JPS59118616A (en) 1982-12-24 1982-12-24 Driving device for elliptical vibration parts feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23227082A JPS59118616A (en) 1982-12-24 1982-12-24 Driving device for elliptical vibration parts feeder

Publications (2)

Publication Number Publication Date
JPS59118616A true JPS59118616A (en) 1984-07-09
JPS6359923B2 JPS6359923B2 (en) 1988-11-22

Family

ID=16936608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227082A Granted JPS59118616A (en) 1982-12-24 1982-12-24 Driving device for elliptical vibration parts feeder

Country Status (1)

Country Link
JP (1) JPS59118616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018790A1 (en) * 2011-08-02 2013-02-07 Ntn株式会社 Vibrating bowl feeder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143823U (en) * 1988-03-11 1989-10-03

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486187A (en) * 1977-12-19 1979-07-09 Hitachi Ltd Ellipse vibration feeder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486187A (en) * 1977-12-19 1979-07-09 Hitachi Ltd Ellipse vibration feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018790A1 (en) * 2011-08-02 2013-02-07 Ntn株式会社 Vibrating bowl feeder
JP2013032203A (en) * 2011-08-02 2013-02-14 Ntn Corp Vibratory bowl feeder

Also Published As

Publication number Publication date
JPS6359923B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
JPH0798567B2 (en) Method for removing parts clogging in a vibrating parts carrier
US3251457A (en) Method and apparatus for driving vibratory devices
JP2008127047A (en) Vibrating-device-having hopper
JPS59118616A (en) Driving device for elliptical vibration parts feeder
JP2018143596A5 (en)
US4015705A (en) Adjustable drive vibratory device
JPS59114211A (en) Control method for vibration parts feeder
EP2987563B1 (en) Vibratory sieving machine
US6879067B1 (en) Orbital vibrator
JP4323826B2 (en) Electromagnetic vibratory feeder and combination weighing device
JPH0251809B2 (en)
USRE19816E (en) Electromagnetic vibrating
JP4061685B2 (en) Drive control method and apparatus for elliptical vibration feeder
JPH11124217A (en) Vibration part feeder
US2020681A (en) Vibrator and operating circuit therefor
JP2004359413A (en) Parts feeder
US1039568A (en) Motor control.
JP2004018200A (en) Magnetic attracting device and method of using magnetic attracting device
JPH10329926A (en) Vibrating feeder
JPH11193124A (en) Drive controlling method for ollipitical vibration feeder and device thereof
US3179343A (en) Grinding mills, pelletising mills and like apparatus
JPH05252723A (en) Magnetic floating carrier
JPH08268531A (en) Elliptic vibration device
US2402593A (en) Vibrator
JP2001114412A (en) Vibrating parts feeder