JPS59117999A - Cold and heat reclaiming device for low-temperature liquefied gas - Google Patents

Cold and heat reclaiming device for low-temperature liquefied gas

Info

Publication number
JPS59117999A
JPS59117999A JP57233884A JP23388482A JPS59117999A JP S59117999 A JPS59117999 A JP S59117999A JP 57233884 A JP57233884 A JP 57233884A JP 23388482 A JP23388482 A JP 23388482A JP S59117999 A JPS59117999 A JP S59117999A
Authority
JP
Japan
Prior art keywords
gas
liquefied
cold
heat
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57233884A
Other languages
Japanese (ja)
Other versions
JPS6257879B2 (en
Inventor
Kazunari Omori
一成 大森
Goji Nanao
七尾 剛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO KK
Original Assignee
KYODO SANSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO KK filed Critical KYODO SANSO KK
Priority to JP57233884A priority Critical patent/JPS59117999A/en
Publication of JPS59117999A publication Critical patent/JPS59117999A/en
Publication of JPS6257879B2 publication Critical patent/JPS6257879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To efficiently reclaim cold and heat of low-temperature liquefied gas which changes in flow rate intermittently keenly by connecting a liquid storing tank to the outlet of a gas passageway for relaiming cold and heat of a heat exchanger through a pipeline having a rise-up portion. CONSTITUTION:In a heat exchanger 4, low-temperature liquefied gas 5 is passed through the heat exchanger 4 and normal-temperature gas 6 is passed through a gas passageway for reclaiming cold and heat on heating side to exchange heat, and liquefied gas is gasified to be taken out as normal-temperature gas 7. A liquid storing tank 3 is connected to the outlet of the gas passageway for reclaiming cold and heat through a pipeline 2 having a rise-up portion 1, and cold and heat reclaimed liquefied gas 8' is taken out through a pipeline 8 connected to the bottom of the liquid storing tank 3.

Description

【発明の詳細な説明】 この発明は、低温液化ガスのガス化供給において、断続
的に激しく流量変化する低温液化ガスの冷熱を回収する
液化ガス回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquefied gas recovery device that recovers cold energy from low-temperature liquefied gas whose flow rate changes drastically intermittently during gasification and supply of low-temperature liquefied gas.

従来、低温液化ガスのガス化に際し低温液化ガスの冷熱
回収装置としては、第1図に示すように、熱交換器(4
)に液化ガス(6)を通し、冷熱回収用常温ガス(6)
と熱交換させ常温ガス(7)を取出し、一方熱交換によ
り液化した冷熱回収用ガスは、ガス化して取り出される
常温ガス(7)の温度、圧力等の信号を受けて液化ガス
として冷熱回収できるように調節される流量調節弁の7
)を通して冷熱回収用液化ガス(′8)として取出され
る装置が使用されていた。
Conventionally, when gasifying low-temperature liquefied gas, a heat exchanger (4
) to pass the liquefied gas (6) through the room temperature gas (6) for cold heat recovery.
The room temperature gas (7) is extracted by heat exchange with the room temperature gas (7), and the cold heat recovery gas liquefied by heat exchange can be recovered as a liquefied gas by receiving signals such as the temperature and pressure of the room temperature gas (7) that is gasified and taken out. 7 of the flow control valve adjusted as follows.
) was used to extract the liquefied gas for cold heat recovery ('8).

この従来装置は、液化ガスのガス化供給量が安定してい
る場合には冷熱液化ガスの回収が円滑にできる。しかし
ながら、流量が断続的に激しく変化する低温液化ガスの
ガス化供給の場合に1よ冷熱回収したガスは流量調節弁
の制御性に問題があり、液化ガスを安定して回収出来な
い。又激しく流fit変化する低温液化ガスの冷熱を温
度一定の過冷却液化ガスとして回収することは困難であ
る。
This conventional device can smoothly recover cold and hot liquefied gas when the amount of gasified and supplied liquefied gas is stable. However, in the case of gasification and supply of low-temperature liquefied gas where the flow rate changes drastically intermittently, the gas whose cold heat is recovered has a problem in the controllability of the flow rate control valve, and the liquefied gas cannot be recovered stably. Furthermore, it is difficult to recover the cold heat of the low-temperature liquefied gas, which undergoes rapid flow changes, as supercooled liquefied gas whose temperature is constant.

この発明は、従来装置におけるかかる問題点を解決する
ため装置の改善を図ったものであり、その特徴は熱交換
器を出た冷熱回収液化ガスを抜き出し管途中に設け1こ
立上り部を通して液貯槽に貯えるよう構成することにあ
る。、 すなわち、この発明は低温液化ガスをガス化するための
熱交換器において、加熱側の冷熱回収用ガス通路の出側
に、立上り部を有する配管を介して液貯槽を接続したこ
とを要旨とする。
This invention aims to improve the device in order to solve the problems in the conventional device.The feature is that the cold heat recovered liquefied gas leaving the heat exchanger is extracted from the pipe and passed through the rising part to the liquid storage tank. The purpose is to configure it so that it can be stored in That is, the gist of the present invention is that in a heat exchanger for gasifying low-temperature liquefied gas, a liquid storage tank is connected to the outlet side of a cold heat recovery gas passage on the heating side via a pipe having a rising part. do.

この発明の装置を第2図について原理的に説明すると、
熱交換器(4)に低温液化ガス(5)を通し、加熱側の
冷熱回収用ガス通路に冷熱回収用常温ガス(6)を通し
て熱々換させて液化ガスをガス化して常n1,1ガス(
7)として取り出す熱交換器(4)において、上記冷熱
回収用ガス通路の出側に、立上り部+11を有する配管
(2)を介して液貯槽(3)を接続し、液貯槽(3)の
槽底に接合しtこ配管(8)より冷熱回収液化ガス(箱
を取り出すようにtFt成する。
The principle of the device of this invention will be explained with reference to FIG.
The low-temperature liquefied gas (5) is passed through the heat exchanger (4), and the normal temperature gas for cold heat recovery (6) is passed through the gas passage for cold heat recovery on the heating side for hot exchange to gasify the liquefied gas and convert it into a normal n1,1 gas (
In the heat exchanger (4) taken out as 7), the liquid storage tank (3) is connected to the outlet side of the cold heat recovery gas passage through the piping (2) having a rising part +11, and the liquid storage tank (3) is connected to the outlet side of the cold heat recovery gas passage. Cold heat recovery liquefied gas (tFt) is formed from the pipe (8) connected to the bottom of the tank (as if taking out the box).

次に、この発明の実施例として、冷熱回収用ガスに酸素
ガスを使い液化アルゴンをガス化させる場合を第3図に
基づいて説明する。
Next, as an embodiment of the present invention, a case where liquefied argon is gasified using oxygen gas as the cold heat recovery gas will be described with reference to FIG.

熱交換器(4)の内部は、上部が冷却ソーン、中央部が
液化ゾーン、下部が過冷却ゾーンの3部より構成され、
上部ヘッダ一部(9)には加熱流1体通路に連通した酸
素ガス供給管(′6)と気化したアルゴンガス取出し管
(′/)を設け、又液化アルゴン供給管(10)に接合
しjコ気液分離器(川の上部から出た配管02)と下部
から出た配管03)を下部ヘッダ一部(14)に接合し
上記アルゴンガス取出し管(′I)に連通させる。上記
気液分knt器(11)は熱交換器内部で機械的振動が
発生するのを防止するのに有効である。二方、上記加熱
流体通路の出側に連通させて下部ヘッダータンク(I4
)には立上り部t11を有する配管(2)を接合する。
The inside of the heat exchanger (4) is composed of three parts: a cooling zone in the upper part, a liquefaction zone in the center, and a supercooling zone in the lower part.
The upper header part (9) is provided with an oxygen gas supply pipe ('6) communicating with the heated flow passageway and a vaporized argon gas extraction pipe ('/), which is also connected to the liquefied argon supply pipe (10). j) The gas-liquid separator (piping 02 coming out from the upper part of the river and pipe 03 coming out from the lower part) is connected to a part of the lower header (14) and communicated with the argon gas extraction pipe ('I). The gas-liquid separator (11) is effective in preventing mechanical vibrations from occurring inside the heat exchanger. On the other hand, the lower header tank (I4) is connected to the outlet side of the heating fluid passage.
) is joined to the pipe (2) having a rising portion t11.

そして、配管(2)の他端は液貯槽(3)の上部に接合
する。
The other end of the pipe (2) is joined to the upper part of the liquid storage tank (3).

又液貯槽(3)の上部と熱交換器の中央部(液化ゾーン
)とを均圧管(15)で接合し、かつ配管(2)の立上
り部(1)の頂部と上記均圧管(15)との間を均圧管
(国で接合する。この均圧管(151(16)はサイホ
ン効果を防止し、液化ガスを重力自然落下させるのに有
効である。
Further, the upper part of the liquid storage tank (3) and the center part (liquefaction zone) of the heat exchanger are connected by a pressure equalizing pipe (15), and the top of the rising part (1) of the pipe (2) and the pressure equalizing pipe (15) are connected to each other. The pressure equalizing pipe (151 (16) is joined by the government).This pressure equalizing pipe (151 (16)) is effective in preventing the siphon effect and allowing the liquefied gas to fall by gravity.

そして、液貯槽(3)の底には減圧膨張弁0ηを有する
配管(8)を接合し、必要圧力まで減圧させた液体酸素
を取り出せるように構成される。上記均圧管(15)Q
++)は液貯槽(3)、配管(2)及び熱交換器(4)
の飽和ガス部を均圧にするためのものである。
A pipe (8) having a pressure reducing expansion valve 0η is connected to the bottom of the liquid storage tank (3) so that liquid oxygen reduced to the required pressure can be taken out. Above pressure equalization pipe (15) Q
++) indicates liquid storage tank (3), piping (2) and heat exchanger (4)
This is to equalize the pressure in the saturated gas section.

今、液化アルゴン供給管(10)より液化アルゴンを気
液分離器Qlに送入する。ここで気液に分離されり後、
液体アルゴンは配管θ3)を通って、又アルゴンガスは
配管02)を通って、それぞれ下部へラグ−タンク(1
4)に送入される。このmボンガスにより、過冷却ゾー
ンで液化酸素を過冷却し、液化アルゴンの一部はガス化
して液体ゾーンで酸素ガスを液化さ各、液化アルゴンの
大部分はガス化してL昇し、上部の冷却ゾーンで常温酸
素ガスを液化直前の温度まで冷却し、アルゴンは常温の
アルゴンガスとなってアルゴンガス取り出し管(狛より
取り出される。
Now, liquefied argon is fed into the gas-liquid separator Ql from the liquefied argon supply pipe (10). After being separated into gas and liquid here,
Liquid argon passes through pipe θ3), and argon gas passes through pipe 02) to the bottom of the lug tank (1).
4). This m-bon gas supercools the liquefied oxygen in the supercooling zone, and part of the liquefied argon gasifies and liquefies oxygen gas in the liquid zone.Most of the liquefied argon gasifies and rises to the upper part. In the cooling zone, the room temperature oxygen gas is cooled to a temperature just before liquefaction, and the argon becomes room temperature argon gas and is taken out from the argon gas extraction pipe.

一方、酸素ガスは熱交換器中央部の液化ゾーンで液化し
、下部の過冷却ゾーンに落下する。これにより、上部の
冷却ゾーンには新たな酸素ガス力;自然に導入される。
On the other hand, oxygen gas is liquefied in the liquefaction zone at the center of the heat exchanger and falls into the supercooled zone at the bottom. This naturally introduces new oxygen gas into the upper cooling zone.

又、下部の過冷却ゾーンをこ液体酸素が落トするに従っ
てその液面が上昇し液圧が増す。そのため、過冷却ゾー
ン内の液化酸素は配管(2)を経て液貯槽(3)に押し
出され、過冷却ゾーンと液貯槽が均圧したとき液化酸素
の流出が止まる。
Also, as the liquid oxygen falls through the lower supercooled zone, the liquid level rises and the liquid pressure increases. Therefore, the liquefied oxygen in the supercooled zone is pushed out to the liquid storage tank (3) through the pipe (2), and when the pressures of the supercooled zone and the liquid storage tank are equalized, the outflow of the liquefied oxygen stops.

そして、液貯槽(3)内の液化酸素を使用する際は、必
要圧力まで減圧膨張弁(17)で減圧させて使用する。
When using the liquefied oxygen in the liquid storage tank (3), the pressure is reduced to the required pressure using the pressure reduction expansion valve (17).

」−記は酸素ガスを用いtコ場合で説明し1こが、酸素
ガスの代りに窒素、空気等のガスを用いることができる
。又液化酸素、液化窒素の蒸発ガス化を行う場合も同様
に冷熱を回収しつつガス化できる。
1 is explained based on the case where oxygen gas is used, but gases such as nitrogen and air can be used instead of oxygen gas. Furthermore, when evaporating and gasifying liquefied oxygen and liquefied nitrogen, it is possible to gasify while recovering cold energy in the same manner.

次に、この発明を空気分離装置と組合せて実施した場合
を第4図iこついて説明する。
Next, a case where the present invention is implemented in combination with an air separation device will be explained with reference to FIG.

空気分離装置(18)で分離採取した液化アルゴンは液
化アルゴンタンク(19)に圧力約0.5 kg/n4
で蓄積し、長期のアルゴン需給調整を行なう。次いで、
ポンプ(20)で需要側が必要とする圧力まで昇圧し、
短期のアルゴン需要の平均流量で連続的に加圧タンク(
21)に注入するか、又は大容量の流量で断続的に加圧
タンク(2I)に注入する。加圧タンクシl)は需要側
が要求する最大流量を送出できる加圧蒸発器(22)を
有し、加圧タンク(21)の内圧を検知して自動的に加
圧し必要量を送出する。
The liquefied argon separated and collected by the air separation device (18) is stored in the liquefied argon tank (19) at a pressure of approximately 0.5 kg/n4.
It accumulates argon gas and performs long-term argon supply and demand adjustment. Then,
The pump (20) increases the pressure to the pressure required by the demand side,
Continuously pressurized tank (with average flow rate for short-term argon demand)
21) or intermittently at a high volume flow rate into a pressurized tank (2I). The pressurized tank (1) has a pressurized evaporator (22) capable of delivering the maximum flow rate required by the demand side, and detects the internal pressure of the pressurized tank (21) and automatically pressurizes it to deliver the required amount.

加圧タンク(21)より送出された液化アルゴンは熱交
換器(4)に導入される。一方、空気分離装置(18)
で分離採取された酸素は、圧縮機圀)で昇圧されガスホ
ルダー(24)に蓄積され需要側に供給される。この酸
素ガスの一部を酸素ガス供給管(6)を通して熱交換器
(4)に導入し、上記液化アルゴンと熱交換し加、 温
側の酸素ガスは冷却され液化する。この冷却液化により
熱交換器(4)内の酸素側圧力が低下し、新jコな酸素
ガスが熱交換器(4)に入ってくる。液化アルゴンはF
、 y、?4ガスにより巽;(発し常温のガスとなり熱
交換R:!(4)止り出て需要側に供給される。
Liquefied argon sent out from the pressurized tank (21) is introduced into the heat exchanger (4). On the other hand, air separation equipment (18)
The oxygen separated and collected is pressurized in the compressor (compressor area), stored in the gas holder (24), and supplied to the demand side. A part of this oxygen gas is introduced into the heat exchanger (4) through the oxygen gas supply pipe (6), where it is heated by exchanging heat with the liquefied argon, and the oxygen gas on the warm side is cooled and liquefied. Due to this cooling and liquefaction, the pressure on the oxygen side within the heat exchanger (4) decreases, and new oxygen gas enters the heat exchanger (4). Liquefied argon is F
, y,? (4) Gas is emitted and becomes room temperature gas, which undergoes heat exchange R:! (4) and is supplied to the demand side.

ただし、酸素ガスの圧力は液化アルゴン温度で液化する
圧力カテ必要である。液化アルゴンの圧力が7 A:q
/l:Aの4合液化アルゴン温度は約−160”Cであ
り、この温度で戯素が液化するには、約5kg/cパ以
」二の圧力が必要である。製鉄所に送られている酸素は
H゛力が15〜3 D/cg/c−m変動しながら供給
されており十分液化する。
However, the pressure of oxygen gas needs to be liquefied at the liquefied argon temperature. The pressure of liquefied argon is 7 A: q
/l: The temperature of the argon mixture in A is about -160"C, and a pressure of about 5 kg/cm2 or more is required to liquefy the argon at this temperature. The oxygen being sent to the steelworks is supplied with H power varying from 15 to 3 D/cg/cm and is sufficiently liquefied.

液化された酸素は、減圧弁(2)りによりガス化しない
圧力まで減圧し加圧液化酸素タンク(2e)に蓄積され
る。この蓄積された液化酸素はさらに減圧されて空気分
離装置(INに尋人される。又、液化アルゴンから得た
冷熱も与えら口る。
The liquefied oxygen is depressurized by a pressure reducing valve (2) to a pressure at which it will not be gasified, and is stored in a pressurized liquefied oxygen tank (2e). This accumulated liquefied oxygen is further reduced in pressure and sent to an air separation device (IN). It is also given cold heat obtained from liquefied argon.

冷熱を余分に与えられtコ空気分喘装置は、冷熱を発生
している膨張タービン風りを減風することができ、その
減量に相当する原料空気を減らし消費動力を低減できる
。或は膨張タービンの減量した空気を精留に向はアルゴ
ン、酸素、窒素等の製品の増量にも活用できる。さらに
、液化酸素をそのまま製品として回収することができる
The air dividing device that is given extra cold energy can reduce the expansion turbine wind that generates cold energy, and can reduce the amount of feed air corresponding to the reduced amount of air, thereby reducing power consumption. Alternatively, the air reduced by the expansion turbine can be used for rectification to increase the amount of products such as argon, oxygen, nitrogen, etc. Furthermore, liquefied oxygen can be recovered directly as a product.

なお、空気分離装置段(18)で分離されjコ液化酸素
は液化酸素タンク(27)に貯留され、必要によりイ7
ンクローり轍に積載して運搬され、又ポンプQ1))を
経て熱交換器Qui)でガス化して供給先へ送られる。
The liquefied oxygen separated in the air separator stage (18) is stored in a liquefied oxygen tank (27), and the liquefied oxygen is
It is loaded onto a crawler track and transported, and is gasified in a heat exchanger Qui) via a pump Q1)) and sent to a supply destination.

父方離さスまた液化窒素も液化蔓素タンク(31)に貯
留され、必賠によりタンクロー1月32)で運搬さオ゛
シ、又ポンプ(33)を経て熱交換r+N C14)で
ガス化して供給先へ送られる。又更気分隨・装置(18
)から出た窒素ガスは圧縮機(35)で圧縮されガスホ
ルダー(:>1+)に貯留され必要により送出される。
Liquefied nitrogen is also stored in the liquefied nitrogen tank (31), transported by tanker (January 32) by necessity, and then gasified and supplied via a pump (33) by heat exchanger + N C14). sent to the destination. Also, the refurbishment element/equipment (18
) is compressed by a compressor (35), stored in a gas holder (:>1+), and sent out as necessary.

この発明は、上記のごとく、熱交換器の冷熱回収用ガス
通路の出側に、立上り部を有する配管留分して液貯槽を
接合することにより、断続的に激しく流量変化する低温
液化ガスの冷熱を能率よく回収できるのである。
As described above, this invention is capable of handling low-temperature liquefied gas whose flow rate changes drastically intermittently by connecting a piping fraction having a rising part and a liquid storage tank to the outlet side of a cold heat recovery gas passage of a heat exchanger. Cold heat can be efficiently recovered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低温液化ガスをガス化する熱交換器の従来例の
説明図、第2図はこの発明の詳細な説明図、第3図はこ
の発明の一実施例における要部を示しTコ斜視図、第4
図はこの発明を空気分1’lI装置と組合せた一実施例
における説明図である。 図中 1・・・立−1ニリ部、2・・・配管、3・・・
液貯槽、4・・・熱交換器、5・・・低温液化ガス、6
・・・冷熱回収用常温ガス、6・・・酸素ガス供給管、
7・・・常温ガス、f・・・アルゴンガス取出し管、8
・・・配管、4・・・ン告熱回収用液化ガス、9・・・
」二部ヘッダ一部、10・・・液化アルゴン供給管、1
1・・・気液分離器、12,1.3・・・配管、14・
・・下部ヘッダ一部、15.’16・・・均圧管、17
・・・減圧膨張弁。 出願人 共同酸素株式会社 代理人  押  [H良  久 −(資) 第1図 ぺb2図 第3)ツ) 6′
Fig. 1 is an explanatory diagram of a conventional example of a heat exchanger for gasifying low-temperature liquefied gas, Fig. 2 is a detailed explanatory diagram of the present invention, and Fig. 3 shows the main parts of an embodiment of the present invention. Perspective view, 4th
The figure is an explanatory diagram of an embodiment in which the present invention is combined with an air component 1'lI device. In the diagram: 1... Vertical-1 part, 2... Piping, 3...
Liquid storage tank, 4... Heat exchanger, 5... Low temperature liquefied gas, 6
...Normal temperature gas for cold heat recovery, 6...Oxygen gas supply pipe,
7... Room temperature gas, f... Argon gas extraction pipe, 8
... Piping, 4... Liquefied gas for heat notification and recovery, 9...
” Part of two-part header, 10...Liquid argon supply pipe, 1
1... Gas-liquid separator, 12, 1.3... Piping, 14.
・・Part of the lower header, 15. '16...Pressure equalization pipe, 17
...Reducing pressure expansion valve. Applicant Kyodo Sanso Co., Ltd. Agent [H Yoshihisa (fund) Figure 1 Pb 2 Figure 3) TS) 6'

Claims (1)

【特許請求の範囲】[Claims] 低温液化ガスをガス化するための熱交換器において、加
熱側の等寺秦會冷熱回収用ガス通路の出側に、立上り部
を有する配管を介して液貯槽を接合したことを特徴とす
る低温液化ガスの冷熱回収装置。
A heat exchanger for gasifying low-temperature liquefied gas, characterized in that a liquid storage tank is connected to the outlet side of the gas passage for cold heat recovery on the heating side via piping having a rising part. Liquefied gas cold recovery equipment.
JP57233884A 1982-12-23 1982-12-23 Cold and heat reclaiming device for low-temperature liquefied gas Granted JPS59117999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233884A JPS59117999A (en) 1982-12-23 1982-12-23 Cold and heat reclaiming device for low-temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233884A JPS59117999A (en) 1982-12-23 1982-12-23 Cold and heat reclaiming device for low-temperature liquefied gas

Publications (2)

Publication Number Publication Date
JPS59117999A true JPS59117999A (en) 1984-07-07
JPS6257879B2 JPS6257879B2 (en) 1987-12-03

Family

ID=16962064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233884A Granted JPS59117999A (en) 1982-12-23 1982-12-23 Cold and heat reclaiming device for low-temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPS59117999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068728A (en) * 2007-09-10 2009-04-02 Hoshizaki Electric Co Ltd Cooling apparatus
KR102458920B1 (en) * 2022-02-21 2022-10-25 삼성전자주식회사 Fluid supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839975B2 (en) * 2015-12-28 2021-03-10 株式会社神戸製鋼所 Intermediate medium vaporizer
WO2017115723A1 (en) * 2015-12-28 2017-07-06 株式会社神戸製鋼所 Intermediate medium carburetor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140999A (en) * 1981-02-25 1982-08-31 Showa Denko Kk Storing method of cold heat radiated from liquefied gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140999A (en) * 1981-02-25 1982-08-31 Showa Denko Kk Storing method of cold heat radiated from liquefied gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068728A (en) * 2007-09-10 2009-04-02 Hoshizaki Electric Co Ltd Cooling apparatus
KR102458920B1 (en) * 2022-02-21 2022-10-25 삼성전자주식회사 Fluid supply device

Also Published As

Publication number Publication date
JPS6257879B2 (en) 1987-12-03

Similar Documents

Publication Publication Date Title
KR102666264B1 (en) Process for fueling of vehicle tanks with compressed hydrogen comprising heat exchange of the compressed hydrogen with chilled ammonia
US9528758B2 (en) Method and system for regulation of cooling capacity of a cooling system based on a gas expansion process
RU2304746C2 (en) Method and device for liquefying natural gas
JPH04502196A (en) Power generation from LNG
TW201105787A (en) Refrigerant composition control
JP3586501B2 (en) Cryogenic liquid and boil-off gas processing method and apparatus
CN101238322B (en) Configurations and methods for power generation in lng regasification terminals
WO2015036697A2 (en) Method and device for separation at sub-ambient temperature
JPS59117999A (en) Cold and heat reclaiming device for low-temperature liquefied gas
JPH07218033A (en) Cooling device for lng tank
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
US1922217A (en) Refrigerating means and method
JPS635322B2 (en)
JPH0718611B2 (en) Weight reduction operation method of cryogenic liquefaction refrigeration system
JP4747001B2 (en) Cold supply system
JPS6338632B2 (en)
JPH10196895A (en) Gas storage facilities for hydrated natural gas
JP4879606B2 (en) Cold supply system
JPH0784961B2 (en) Helium liquefier
JP3393675B2 (en) City gas liquefaction vaporizer and operating method thereof
JPH0579717A (en) Helium refrigerator
JPH10220695A (en) Gas storing facility by hydrating natural gas
JPH029274B2 (en)
CN117514385A (en) Carbon dioxide energy storage and power generation system
JPS6357713B2 (en)