JPS59116537A - Measuring method of residual chlorine - Google Patents

Measuring method of residual chlorine

Info

Publication number
JPS59116537A
JPS59116537A JP57228148A JP22814882A JPS59116537A JP S59116537 A JPS59116537 A JP S59116537A JP 57228148 A JP57228148 A JP 57228148A JP 22814882 A JP22814882 A JP 22814882A JP S59116537 A JPS59116537 A JP S59116537A
Authority
JP
Japan
Prior art keywords
water
sample
sea water
residual chlorine
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57228148A
Other languages
Japanese (ja)
Other versions
JPH0220062B2 (en
Inventor
Akira Takahashi
昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP57228148A priority Critical patent/JPS59116537A/en
Publication of JPS59116537A publication Critical patent/JPS59116537A/en
Publication of JPH0220062B2 publication Critical patent/JPH0220062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To omit acquisition of a reagent such as sodium sulfate and periodic preparation and replenishment of a solution and to make it possible to perform continuous measurement, by adding raw material sea water or intermediate fresh water turned from the sea water into sample water, and measuring residual chlorine. CONSTITUTION:At a place where sea water can be obtained conveniently, measurement is accurately performed by the following way: the sea water is added to sample water at a rate of about 1/100; and the sample is guided to a residual chlorine meter. This method is conducted without procurement of sodium sulfate and the preparation and replenishment of a solution. In some cases, a material, which consumes chlorine, is included in the sea water. Since the amount of addition is as small as about 1/200 of the sample, the effect can be usually neglected. If the amount cannot be neglected, intermediate fresh water turned from the sea water is taken and added to the sample water. In this case, the concentration of the residual chlorine in the added sea water is low and the rate of addition is small. Therefore there is no problem. It is appropriate that a flow ratio of the sample water 3 and the sea water 4 from a sample feeding pump 1 and a sea water feeding pump 2 is about 200:1 or less.

Description

【発明の詳細な説明】 本発明は海水淡水化による製品水を被検液として該被検
液中に残存する塩素全回転金属電極によるポーラログラ
フ法によp直接定量測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for directly quantitatively measuring p, using product water produced by seawater desalination as a test liquid, by polarographic method using a fully rotating metal electrode for chlorine remaining in the test liquid.

塩素は殺菌のため飲料水や下水、プール水等に添加した
り、ボイラーの腐食防止に用いたヒドラジンの分解のた
めにその廃液中に注入したりして、各種の産業分野で広
く用いられている。
Chlorine is widely used in various industrial fields, such as by adding it to drinking water, sewage water, pool water, etc. for sterilization, and injecting it into waste liquid to decompose hydrazine used to prevent corrosion in boilers. There is.

そして飲料水の殺菌および給水末端に至るまでの清浄性
の維持など塩素注入の目的を効果的に達成するためには
塩素注入後の試料中の残留塩素濃度を常時測定し、その
濃度が適切な範囲に保たれるよう制御する必要がある。
In order to effectively achieve the purpose of chlorine injection, such as sterilizing drinking water and maintaining cleanliness all the way to the end of the water supply, the residual chlorine concentration in the sample after chlorine injection must be constantly measured to ensure that the concentration is appropriate. It is necessary to control it so that it is kept within a range.

残留塩素濃度の測定法としては、(1) 0− )リジ
ンより により発色させて吸光度測定に涜]定する方法、(2)
試料水によう化カリウムや臭化カリウムを含む溶液を加
え、遊離したよう素または臭素を、回転金属電極を用い
るポーラログラフ法、(3)試料水に試薬を加えること
なく、試料水全直接、回転金属電極によるポーラログラ
フ法、などがある。これらのうち、(1)はれ 0−トリジンが発が扉物質であるため次第に利用されな
くなり、現在は(2)および(3)の方法が連続測定が
容易な点もあいまってひろく利用されている。特に(3
)の方法は、試薬の定期的調製・補給の手間がない上、
測定計器の価格も(2)に比し低廉となるので、広く使
われるすう勢にある。
Methods for measuring residual chlorine concentration include (1) a method in which the color is developed by 0-) lysine and is used for absorbance measurement; (2)
A solution containing potassium iodide or potassium bromide is added to the sample water, and the liberated iodine or bromine is collected using the polarographic method using a rotating metal electrode.(3) Direct rotation of the sample water without adding any reagent to the sample water. There are polarographic methods using metal electrodes, etc. Of these, (1) 0-tolidine is gradually no longer used because it is a triggering substance, and methods (2) and (3) are now widely used, partly because continuous measurements are easy. There is. Especially (3
) method does not require the regular preparation and replenishment of reagents, and
Since the price of the measuring instrument is also lower than that in (2), it is likely to be widely used.

しかし、(3)の方法で精度のよい残留塩素全測定が行
なえるためには、試料水がある程度以上の導電率を持っ
ていることが必要である。そこで本発明者らは(3)の
方法における試料水の導電率が残留塩素濃度測定に及ば
ず影響音調べ第1図の如き結果を得た。
However, in order to be able to accurately measure the total residual chlorine using method (3), it is necessary that the sample water has a certain level of electrical conductivity. Therefore, the present inventors found that the electrical conductivity of the sample water in the method (3) was not as high as the residual chlorine concentration measurement, and the results of the influence sound investigation were obtained as shown in FIG.

これかられかるように、試料水導電率が約200μS/
lyn以上あれは測定誤差は殆んどないが、試料水導電
率が150μS/σ程度〃・ら誤差があられれはじめ3
0μS/Cmになると極めて大きな誤差が生じることが
わかる。
As you will see, the sample water conductivity is approximately 200μS/
There is almost no measurement error over lyn, but when the sample water conductivity is about 150μS/σ, errors start to appear.3
It can be seen that an extremely large error occurs when the value becomes 0 μS/Cm.

そこでこのような低導電1率の試料水の残留塩素濃度を
測定する場合は、例えば硫酸ナトリウム溶液全少量づつ
試料水に添加1−ながら導電率全高めて測定を行なう方
法が採られてきた。この方法は硫酸ナトリウムがよう化
カリウムに比べて非常に低床であるから、よう化カリウ
ム溶液を用いる(2)の方法に比べてメリットはあるが
、試薬溶液の定期的調製・補給というわずられしさは解
決されない。
Therefore, when measuring the residual chlorine concentration of sample water with such a low conductivity, a method has been adopted in which, for example, a sodium sulfate solution is added to the sample water in small amounts at a time while increasing the conductivity. This method has an advantage over method (2), which uses potassium iodide solution, because sodium sulfate has a very low density compared to potassium iodide, but it does not require regular preparation and replenishment of the reagent solution. The uniqueness will not be resolved.

さて飲料水は従来上として河川水全浄化して製造されて
きたが、水資源の不足化傾向や、河川水や降水量の少な
い中近東などにおける飲料水の確保のため海水の淡水化
が次第にひろく行なわれるようになフj( ってきた。この場合でも海水の淡水化プラントにおいて
製造された製品水(飲料水)に塩素注入を行って消毒・
滅菌が行なわれており、その残留塩素濃度測定は同様に
重要である。
Drinking water has traditionally been produced by completely purifying river water, but as water resources tend to become scarce and in order to secure drinking water in places such as the Middle East where river water and precipitation are low, seawater desalination is gradually becoming more and more popular. In this case, chlorine is injected into the product water (drinking water) produced in a seawater desalination plant to disinfect and disinfect it.
Sterilization is being carried out, and measuring the residual chlorine concentration is equally important.

この海水淡水化によって得られた製品水の導電率は50
μS/cm以下で、場合によっては25μS/z程度の
場合も多く、その捷\(3)の方式で残留塩素測定潰1
1定を行なうことはできず、硫酸ナトリウム溶液など全
添加しながらの測定が必要となる。しかしこのようなプ
ラントはアラブ諸国など降雨量の少ない中近東地域にお
ける建設が多い。そしてこれらの地域の国は発展途上国
が大部分で、化学薬品が之しく貴重品であり、またこれ
を所定の濃度に定期的に調製し、補給作業を期待するの
は必ずしも現実的ではない。
The conductivity of the product water obtained by this seawater desalination is 50
It is less than μS/cm, and in many cases it is around 25 μS/z, and residual chlorine can be measured using method (3).
It is not possible to perform a constant measurement, and it is necessary to perform measurements while adding all the sodium sulfate solution, etc. However, many of these plants are constructed in the Middle East, where rainfall is low, such as in Arab countries. Most of the countries in these regions are developing countries, where chemicals are extremely valuable, and it is not necessarily realistic to expect them to be regularly prepared and replenished to a predetermined concentration. .

本発明は、海水淡水化プラント周辺に無尽蔵に存在する
海水を、試料水の導電率増加に利用すれば、硫酸ナトリ
ウムなどの試薬の入手、溶液の定期的調製・補給などの
操作が不要となり、連続測定上大きなメリットになるこ
とから実現したものである。
The present invention proposes that if seawater, which exists inexhaustibly around seawater desalination plants, is used to increase the conductivity of sample water, operations such as obtaining reagents such as sodium sulfate and periodic preparation and replenishment of solutions will become unnecessary. This was realized because it offers a great advantage in continuous measurement.

さて海水の導電率は約40,000μS/cmであり、
試料水に対し17200最以上を添加すれば試料水の導
電率は約200μS 7cm以上に高壕り、導電率的に
は(3)の方法による残留塩素測定において誤差が生じ
ないことになる。
Now, the conductivity of seawater is about 40,000μS/cm,
If 17200 or more is added to the sample water, the electrical conductivity of the sample water will be as high as about 200 μS 7 cm or more, and in terms of electrical conductivity, no error will occur in the measurement of residual chlorine by method (3).

一方、海水中には塩化ナトリウムから生じているラムイ
オン、カルシウムイオンなどが少量ではあるが含まれて
いる。そこでこれらの共存物質が残留塩素濃度測定に際
して影@′!ヲ及ぼさないがどうが、導電率の低い試料
水に実際に海水を1./100の割合で添加して、残留
塩素計に導ひき誤差の有無kAべてみた。その結果は第
2図に示したとおりであり、計器指示は真の濃度と極め
てよく一致した。
On the other hand, seawater contains small amounts of rum ions and calcium ions generated from sodium chloride. Therefore, these coexisting substances have a negative impact on the measurement of residual chlorine concentration. I don't care if it doesn't affect the water, but seawater is actually added to sample water with low conductivity. /100 and checked the presence or absence of a lead error kA on a residual chlorine meter. The results are shown in Figure 2, and the meter readings were in excellent agreement with the true concentrations.

この結果から、海水淡水化による淡水製造における残留
塩素一度i1′111定など、海水が手軽に得られる場
所においては、硫酸ナトリウムの購入、溶解調製、補給
の操作を行なうことなく、海水全試料水に対し1/10
0程度の動台で添加しつつ残留塩素計に導ひくことによ
り精度よく測定を行なうことができ、実用土その効果大
である。
From this result, in places where seawater is easily obtained, such as when residual chlorine is determined in freshwater production by seawater desalination, all seawater sample water can be used without purchasing, dissolving, and replenishing sodium sulfate. 1/10 against
By introducing the residual chlorine into a residual chlorine meter while adding the residual chlorine with a moving table of about 0, it is possible to measure with high accuracy, which is very effective for practical use.

なお、海水中には塩素全消費する物質が含まれている場
合があるが、その添加量が試料の1/200程度と少な
いので通常は無視できる。若し無視できない程度である
場合には海水淡水化プラントの工程において塩素全添加
して塩素消費物質をなくする工程があるので、その後の
パイプから淡水化中間水全分取し、これを試料水に添加
する方法をとればよい。
Note that seawater may contain substances that consume all of the chlorine, but since the amount added is as small as about 1/200 of the sample, it can usually be ignored. If the level is not negligible, there is a step in the seawater desalination plant to add all chlorine to eliminate chlorine-consuming substances, so all of the intermediate desalination water is taken from the pipe after that, and this is used as sample water. What is necessary is to add it to

この場合の添加海水中の残留塩素濃度は低い上に、添加
率も小さいので何ら問題はない。
In this case, the residual chlorine concentration in the added seawater is low and the addition rate is also small, so there is no problem.

第3図は本発明の実施例である。一点鎖線より上に記し
た■の部分は公知の無試薬残留塩素計、一点鎖線より下
に記した■の部分が本発明全実施するために付加した部
分である。試料水送入ポンプ(1)と海水送入ポンプ(
2)による試料水(3)と海水(4)のそれぞれの流量
比は200以下:工程度に選ぶのが適当である。
FIG. 3 shows an embodiment of the invention. The part marked ■ above the one-dot chain line is a known reagentless residual chlorine meter, and the part marked ■ below the one-dot chain line is a part added to carry out the entire invention. Sample water feed pump (1) and seawater feed pump (
According to 2), it is appropriate to select the flow rate ratio of sample water (3) and seawater (4) to 200 or less: process level.

又定流量ポンプ(1)(2) ’に使用せず、それぞれ
ヘッドタンク全相い、適当な絞シによって流量比全20
0以下:工程度にし、測定槽(5)に導び〈方法金とっ
てもよい。
In addition, it is not used for constant flow pumps (1), (2), and each head tank is connected to all phases, and the flow rate ratio is 20% by appropriate throttling.
0 or less: It is possible to reduce the process level and introduce it into the measuring tank (5).

なお、図中(6)は回転金属電極、(7)はその検知極
、(8)は対極、(9)は電極(6)を回転するモータ
で、(10)は残留塩素濃度指示計を示す。
In the figure, (6) is the rotating metal electrode, (7) is its detection electrode, (8) is the counter electrode, (9) is the motor that rotates the electrode (6), and (10) is the residual chlorine concentration indicator. show.

第4図は本発明の例の実施例を示し、この例では海水淡
水化プラント(CIにおける塩累添加後のパイプから淡
水化中間水をパイプ(1,1,)ffi通して分取し、
残留塩素濃度に添加している。(12)は塩素注入機、
(13)はポンプ、(14)は海水淡水化プラン) (
C)への海水採取管、(15)は試料水添加用海水採取
管である。また(16)は製品水ライン、(17)はそ
の供給ラインである。
FIG. 4 shows an example of the present invention, in which desalination intermediate water is separated from a pipe after salt addition in a seawater desalination plant (CI) through a pipe (1, 1,)ffi,
It is added to the residual chlorine concentration. (12) is a chlorine injection machine,
(13) is a pump, (14) is a seawater desalination plan) (
(15) is a seawater sampling tube for adding sample water. Further, (16) is a product water line, and (17) is its supply line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料水の導電率と残留塩素濃度との関係を示す
図表、第2図は本発明法による場合の誤差のA・・・・
・・・・・無添加残留塩素計B・・・・・・・・・海水
添加装置 C・・・・・・・・・海水淡水化プラント1.2・・・
定量ポンプ 6・・・・・・・・・回転金属電極 11・・・・・・塩素注入後海水を試料水に添加する場
合の配管
Figure 1 is a chart showing the relationship between the conductivity of sample water and the residual chlorine concentration, and Figure 2 is the error A when using the method of the present invention.
......Additive-free residual chlorine meter B...Seawater addition device C...Seawater desalination plant 1.2...
Metering pump 6...Rotating metal electrode 11...Piping for adding seawater to sample water after chlorine injection

Claims (1)

【特許請求の範囲】[Claims] (1)海水淡水化による製品水を試料水としてその中の
残留塩素を直接回転金属電極によるポーラログラフ法に
よって測定するに当り、上記試料水に原料海水またはそ
の淡水化中間水を添加してその残留塩素全測定すること
を特徴とする残留塩素測定方法。
(1) When measuring the residual chlorine in product water from seawater desalination as sample water by the polarographic method using a direct rotating metal electrode, raw seawater or its desalination intermediate water is added to the sample water and the residual chlorine is measured. A residual chlorine measurement method characterized by measuring total chlorine.
JP57228148A 1982-12-24 1982-12-24 Measuring method of residual chlorine Granted JPS59116537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228148A JPS59116537A (en) 1982-12-24 1982-12-24 Measuring method of residual chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228148A JPS59116537A (en) 1982-12-24 1982-12-24 Measuring method of residual chlorine

Publications (2)

Publication Number Publication Date
JPS59116537A true JPS59116537A (en) 1984-07-05
JPH0220062B2 JPH0220062B2 (en) 1990-05-08

Family

ID=16871975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228148A Granted JPS59116537A (en) 1982-12-24 1982-12-24 Measuring method of residual chlorine

Country Status (1)

Country Link
JP (1) JPS59116537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340415B1 (en) 1998-01-05 2002-01-22 Applied Materials, Inc. Method and apparatus for enhancing a sputtering target's lifetime

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340415B1 (en) 1998-01-05 2002-01-22 Applied Materials, Inc. Method and apparatus for enhancing a sputtering target's lifetime

Also Published As

Publication number Publication date
JPH0220062B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
Richardson et al. Residual oxidant decay and bromate formation in chlorinated and ozonated sea-water
Navone Proposed method for nitrate in potable waters
US3413199A (en) Method for measurement of residual chlorine or the like
US4129479A (en) Method of analyzing residual chlorine
Platte et al. Photometric determination of zinc with zincon. Application to water containing heavy metals
Galimova et al. Inversion-chronopotentiometric analysis of mercury in water
US11549888B2 (en) Method for measuring monochloramine in seawater
Yamamoto et al. Solvent extraction-spectrophotometric determination of anionic surfactants in sea water
Veríssimo et al. Determination of the total hardness in tap water using acoustic wave sensors
JPS59116537A (en) Measuring method of residual chlorine
Hara et al. Effect of surfactants on the determination of nitrate in stream waters by using a nitrate ion-selective electrode
Trojanowicz Continuous potentiometric determination of sulphate in a differential flow system
CN115436130B (en) Standard substance for simulating free residual chlorine and preparation method thereof
Daly et al. Copper toxicity to Paratya australiensis: III. Influence of dissolved organic matter
Matsunaga et al. Differential-pulse anodic voltammetric determination of dissolved and adsorbed phosphate in turbid natural waters
Hulanicki et al. Application of ion-selective electrodes in water analysis
EP4001909A1 (en) Water quality measuring system
Voulgaropoulos et al. Use of ion exchangers for the voltammetric determination of NTA and EDTA in natural waters
US4278507A (en) Method for amperometric measurement of the free-chlorine content in a solution
Chen et al. A bespoke reagent-free amperometric bromide sensor for seawater
Khustenko et al. Rapid determination of mercury in water by stripping voltammetry at a gold-modified carbon electrode
JP2705247B2 (en) How to measure free chlorine
Boos A volumetric micro determination of organically bound sulphur and organic and inorganic sulphates
Sollo Jr et al. Determination of free chlorine by methyl orange
Fayyad Indirect trace determination of nitrilotriacetic acid in water by potentiometric stripping analysis