JPH0220062B2 - - Google Patents

Info

Publication number
JPH0220062B2
JPH0220062B2 JP57228148A JP22814882A JPH0220062B2 JP H0220062 B2 JPH0220062 B2 JP H0220062B2 JP 57228148 A JP57228148 A JP 57228148A JP 22814882 A JP22814882 A JP 22814882A JP H0220062 B2 JPH0220062 B2 JP H0220062B2
Authority
JP
Japan
Prior art keywords
water
seawater
residual chlorine
sample water
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228148A
Other languages
Japanese (ja)
Other versions
JPS59116537A (en
Inventor
Akira Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP57228148A priority Critical patent/JPS59116537A/en
Publication of JPS59116537A publication Critical patent/JPS59116537A/en
Publication of JPH0220062B2 publication Critical patent/JPH0220062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は海水淡水化による製品水を被検液とし
て該被検液中に残存する塩素を回転金属電極によ
るポーラログラフ法により直接定量測定する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for directly quantitatively measuring chlorine remaining in a test liquid using product water produced by desalination of seawater by a polarographic method using a rotating metal electrode.

塩素は殺菌のため飲料水や下水、プール水等に
添加したり、ボイラーの腐食防止に用いたヒドラ
ジンの分解のためにその廃液中に注入したりし
て、各種の産業分野で広く用いられている。
Chlorine is widely used in various industrial fields, such as by adding it to drinking water, sewage water, pool water, etc. for sterilization, and injecting it into waste liquid to decompose hydrazine used to prevent corrosion in boilers. There is.

そして飲料水の殺菌および給水末端に至るまで
の清浄性の維持など塩素注入の目的を効果的に達
成するためには塩素注入後の試料中の残留塩素濃
度を常時測定し、その濃度が適切な範囲に保たれ
るよう制御する必要がある。
In order to effectively achieve the purpose of chlorine injection, such as sterilizing drinking water and maintaining cleanliness all the way to the end of the water supply, the residual chlorine concentration in the sample after chlorine injection must be constantly measured to ensure that the concentration is appropriate. It is necessary to control it so that it is kept within a range.

残留塩素濃度の測定法としては、(1)0−トリジ
ンにより発色させて吸光度測定により測定する方
法、(2)試料水によう化カリウムや臭化カリウムを
含む溶液を加え、遊離したよう素または臭素を、
回転金属電極を用いるポーラログラフ法、(3)試料
水に試薬を加えることなく、試料水を直接、回転
金属電極によるポーラログラフ法、などがある。
これらのうち、(1)は0−トリジンが発がん性物質
であるため次第に利用されなくなり、現在は(2)お
よび(3)の方法が連続測定が容易な点もあいまつて
ひろく利用されている。特に(3)の方法は、試薬の
定期的調製・補給の手間がない上、測定計器の価
格も(2)に比し低廉となるので、広く使われるすう
勢にある。
The residual chlorine concentration can be measured by (1) developing color with 0-tolidine and measuring absorbance; (2) adding a solution containing potassium iodide or potassium bromide to the sample water and measuring the free iodine or Bromine,
There are polarographic methods that use a rotating metal electrode, and (3) polarographic methods that use a rotating metal electrode to directly apply sample water without adding reagents to the sample water.
Among these, method (1) is gradually no longer used because 0-tolidine is a carcinogenic substance, and methods (2) and (3) are now widely used, partly because continuous measurement is easy. In particular, method (3) does not require the periodic preparation and replenishment of reagents, and the price of the measuring instrument is lower than that of method (2), so it is on the verge of becoming widely used.

しかし、(3)の方法で精度のよい残留塩素濃度測
定が行なえるためには、試料水がある程度以上の
導電率を持つていることが必要である。そこで本
発明者らは(3)の方法における試料水の導電率が残
留塩素濃度測定に及ぼす影響を調べ第1図の如き
結果を得た。
However, in order to be able to accurately measure the residual chlorine concentration using method (3), the sample water must have a certain level of electrical conductivity. Therefore, the present inventors investigated the influence of the electrical conductivity of sample water on the measurement of residual chlorine concentration in method (3) and obtained the results shown in FIG. 1.

これからわかるように、試料水導電率が約
200μS/cm以上あれば測定誤差は殆んどないが、
試料水導電率が150μS/cm程度から誤差があらわ
れはじめ30μS/cmになると極めて大きな誤差が
生じることがわかる。
As you can see, the sample water conductivity is approximately
If it is 200 μS/cm or more, there will be almost no measurement error, but
It can be seen that errors begin to appear when the sample water conductivity reaches about 150 μS/cm, and extremely large errors occur when it reaches 30 μS/cm.

そこでこのような低導電率の試料水の残留塩素
濃度を測定する場合は、例えば硫酸ナトリウム溶
液を少量づつ試料水に添加しながら導電率を高め
て測定を行なう方法が採られてきた。この方法は
硫酸ナトリウムがよう化カリウムに比べて非常に
低廉であるから、よう化カリウム溶液を用いる(2)
の方法に比べてメリツトはあるが、試薬溶液の定
期的調製・補給というわずらわしさは解決されな
い。
Therefore, when measuring the residual chlorine concentration in sample water with such low conductivity, a method has been adopted in which, for example, a sodium sulfate solution is added little by little to the sample water to increase the conductivity. This method uses potassium iodide solution because sodium sulfate is much cheaper than potassium iodide (2).
Although this method has advantages over the previous method, it does not solve the trouble of regularly preparing and replenishing reagent solutions.

さて飲料水は従来主として河川水を浄化して製
造されてきたが、水資源の不足化傾向や、河川水
や降水量の少ない中近東などにおける飲料水の確
保のため海水の淡水化が次第にひろく行なわれる
ようになつてきた。この場合でも海水の淡水化プ
ラントにおいて製造された製品水(飲料水)に塩
素注入を行つて消毒・滅菌が行なわれており、そ
の残留塩素濃度測定は同様に重要である。
Drinking water has traditionally been produced primarily by purifying river water, but as water resources tend to become scarce and in order to secure drinking water in the Middle East and elsewhere, where river water and rainfall are low, desalination of seawater is gradually becoming more widespread. It has started to be practiced. Even in this case, the product water (drinking water) produced in a seawater desalination plant is disinfected and sterilized by injecting chlorine, and measurement of the residual chlorine concentration is equally important.

この海水淡水化によつて得られた製品水の導電
率は50μS/cm以下で、場合によつては25μS/cm
程度の場合も多く、そのまゝ(3)の方式で残留塩素
濃度測定を行なうことはできず、硫酸ナトリウム
溶液などを添加しながらの測定が必要となる。し
かしこのようなプラントは降雨量の少ない地域に
おける建設が多い。そしてこれらの地域の国は発
展途上国が大部分で、化学薬品が乏しく貴重品で
あり、またこれを所定の濃度に定期的に調製し、
補給作業を期待するのは必ずしも現実的ではな
い。
The electrical conductivity of the product water obtained through this seawater desalination is less than 50 μS/cm, and in some cases 25 μS/cm.
In many cases, it is not possible to measure the residual chlorine concentration using method (3) as is, and it is necessary to measure while adding a sodium sulfate solution or the like. However, such plants are often constructed in areas with little rainfall. Most of the countries in these regions are developing countries, and chemicals are scarce and valuable, and they are regularly prepared to a predetermined concentration.
It is not necessarily realistic to expect replenishment operations.

本発明は、海水淡水化プラント周辺に無尽蔵に
存在する海水を、試料水の導電率増加に利用すれ
ば、硫酸ナトリウムなどの試料の入手、溶液の定
期的調製・補給などの操作が不要となり、連続測
定上大きなメリツトになることから自現したもの
である。
The present invention proposes that if the seawater that exists inexhaustibly around seawater desalination plants is used to increase the conductivity of sample water, operations such as obtaining samples such as sodium sulfate and periodic preparation and replenishment of solutions will become unnecessary. This was realized because it offers a great advantage in continuous measurement.

さて海水の導電率は40000μS/cmであり、試料
水に対し1/200量以上を添加すれば試料水の導
電率は約200μS/cm以上に高まり、導電率的には
(3)方法による残留塩素測定において誤差が生じな
いことになる。
Now, the electrical conductivity of seawater is 40,000 μS/cm, and if more than 1/200 of the amount is added to the sample water, the electrical conductivity of the sample water increases to about 200 μS/cm or more, and in terms of electrical conductivity,
(3) Errors will not occur in residual chlorine measurement using this method.

一方、海水中には塩化ナトリウムから生じてい
るナトリウムイオン、塩素イオンのほか、臭素イ
オン、硫酸イオン、炭酸水素イオン、ふつ素イオ
ン、マグネシウムイオン、カルシウムイオンなど
が少量ではあるが含まれている。そこでこれらの
共存物質が残留塩素濃度測定に際して影響を及ぼ
さないかどうか、導電率の低い試料水に実際に海
水を1/100の割合で添加して、残留塩素計に導
びき誤差の有無を調べてみた。その結果は第2図
に示したとおりであり、計器指示は真の濃度と極
めてよく一致した。
On the other hand, seawater contains small amounts of bromine ions, sulfate ions, bicarbonate ions, fluoride ions, magnesium ions, calcium ions, etc. in addition to sodium ions and chloride ions produced from sodium chloride. Therefore, in order to check whether these coexisting substances have any effect on the measurement of residual chlorine concentration, we actually added seawater at a ratio of 1/100 to sample water with low conductivity and introduced it into a residual chlorine meter to check for errors. I tried it. The results are shown in Figure 2, and the meter readings were in excellent agreement with the true concentrations.

この結果から、海水淡水化による淡水製造にお
け残留塩素濃度測定など、海水が手軽に得られる
場合においては、硫酸ナトリウムの購入、溶解調
製、補給の操作を行なうことなく、海水を試料水
に対し1/100程度の割合で添加しつつ残留塩素
計に導びくことにより精度よく測定を行なうこと
ができ、実用上その効果大である。
Based on this result, when seawater is easily obtained, such as when measuring residual chlorine concentration in freshwater production by seawater desalination, it is possible to use seawater as a sample water without purchasing, dissolving, or replenishing sodium sulfate. By adding chlorine at a ratio of about 1/100 and introducing it into a residual chlorine meter, accurate measurements can be made, which is very effective in practice.

なお、海水中には塩素を消費する物質が含まれ
ている場合があるが、その添加量は試料の1/
200程度と少ないので通常は無視できる。若し無
視できない程度である場合には海水淡水化プラン
トの工程において塩素を添加して塩素消費物質を
なくする工程があるので、その後のパイプから淡
水化中間水を分取し、これを試料水に添加する方
法をとればよい。この場合の添加海水中の残留塩
素濃度は低い上に、添加率も小さいので何ら問題
はない。
Note that seawater may contain substances that consume chlorine, but the amount added is 1/1 of the sample.
Since it is small at around 200, it can usually be ignored. If the level is not negligible, there is a step in the seawater desalination plant to add chlorine to eliminate chlorine-consuming substances, so the desalination intermediate water is separated from the subsequent pipe and used as sample water. What is necessary is to add it to In this case, the residual chlorine concentration in the added seawater is low and the addition rate is also small, so there is no problem.

第3図は本発明の実施例である。一点鎖線より
上に記したの部分は公知の試料薬残留塩素計、
一点鎖線より下に記したの部分が本発明を実施
するために付加した部分である。試料水入送入ポ
ンプ1と海水送入ポンプ2による試料水3と海水
4のそれぞれの流量比は200以下:1程度に選ぶ
のが適当である。又定流量ポンプ1,2を使用せ
ず、それぞれヘツドタンクを用い、適当な絞りに
よつて流量比を200以下:1程度にし、測定槽5
に導びく方法をとつてもよい。
FIG. 3 shows an embodiment of the invention. The part written above the dashed line is a known sample drug residual chlorine meter,
The parts written below the dashed line are the parts added to carry out the present invention. It is appropriate that the flow rate ratio of the sample water 3 and seawater 4 by the sample water inlet pump 1 and the seawater inlet pump 2 is approximately 200:1 or less. Also, without using constant flow pumps 1 and 2, use a head tank for each, and set the flow rate ratio to 200 or less: 1 with an appropriate restriction, and the measuring tank 5
You may find a way to lead to this.

なお、図中6は回転金属電極、7はその検知
極、8は対極、9は電極6を回転するモターで、
10は残留塩素濃度指示計を示す。
In the figure, 6 is a rotating metal electrode, 7 is its detection electrode, 8 is a counter electrode, and 9 is a motor that rotates the electrode 6.
10 indicates a residual chlorine concentration indicator.

第4図は本発明の例の実施例を示し、この例で
は海水淡水化プラントCにおける塩素添加後のパ
イプから淡水化中間水をパイプ11を通して分取
し、残留塩素計Aに添加している。12は塩素注
入機、13はポンプ、14は海水淡水化プラント
Cへの海水採取管、15は試料水添加用海水採取
管である。また16は製品水ライン、17はその
供給ラインである。
FIG. 4 shows an example of the present invention. In this example, desalinated intermediate water is collected from a pipe after chlorine addition in a seawater desalination plant C through a pipe 11, and is added to a residual chlorine meter A. . 12 is a chlorine injection machine, 13 is a pump, 14 is a seawater sampling pipe to seawater desalination plant C, and 15 is a seawater sampling pipe for adding sample water. Further, 16 is a product water line, and 17 is its supply line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料水の導電率と残留塩素濃度との関
係を示す図表、第2図は本発明法による場合の誤
差の有無を調べた結果を示す図表、第3図及び第
4図は本発明法の各実施例を示す説明図である。 A……無添加残留塩素計、B……海水添加装
置、C……海水淡水化プラント、1,2……定量
ポンプ、6……回転金属電極、11……塩素注入
後海水を試料水に添加する場合の配管。
Figure 1 is a chart showing the relationship between the conductivity of sample water and the residual chlorine concentration, Figure 2 is a chart showing the results of examining the presence or absence of errors when using the method of the present invention, and Figures 3 and 4 are from this book. It is an explanatory view showing each example of an invention method. A... Additive-free residual chlorine meter, B... Seawater addition device, C... Seawater desalination plant, 1, 2... Metering pump, 6... Rotating metal electrode, 11... Seawater after chlorine injection as sample water Piping when adding.

Claims (1)

【特許請求の範囲】[Claims] 1 海水淡水化による製品水を試料水としてその
中の残留塩素を直接回転金属電極によるポーラロ
グラフ法によつて測定するに当り、上記試料水に
原料海水またはその淡水化中間水を添加してその
残留塩素を測定することを特徴とする残留塩素測
定方法。
1. When measuring the residual chlorine in product water from seawater desalination as sample water by the polarographic method using a direct rotating metal electrode, raw seawater or its desalination intermediate water is added to the sample water to measure the residual chlorine. A residual chlorine measuring method characterized by measuring chlorine.
JP57228148A 1982-12-24 1982-12-24 Measuring method of residual chlorine Granted JPS59116537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228148A JPS59116537A (en) 1982-12-24 1982-12-24 Measuring method of residual chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228148A JPS59116537A (en) 1982-12-24 1982-12-24 Measuring method of residual chlorine

Publications (2)

Publication Number Publication Date
JPS59116537A JPS59116537A (en) 1984-07-05
JPH0220062B2 true JPH0220062B2 (en) 1990-05-08

Family

ID=16871975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228148A Granted JPS59116537A (en) 1982-12-24 1982-12-24 Measuring method of residual chlorine

Country Status (1)

Country Link
JP (1) JPS59116537A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340415B1 (en) 1998-01-05 2002-01-22 Applied Materials, Inc. Method and apparatus for enhancing a sputtering target's lifetime

Also Published As

Publication number Publication date
JPS59116537A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
Richardson et al. Residual oxidant decay and bromate formation in chlorinated and ozonated sea-water
US4129479A (en) Method of analyzing residual chlorine
RU2579383C2 (en) Device and method for reduction of content of hydrogen peroxide and peracetic acid in water flow
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
US11549888B2 (en) Method for measuring monochloramine in seawater
Black et al. Use of iodine for disinfection
Yamamoto et al. Solvent extraction-spectrophotometric determination of anionic surfactants in sea water
Somer et al. Preparation and application of iodide–mercury selective membrane electrode based on ion exchangers
US6054030A (en) System for monitoring biocide treatments
JPH0220062B2 (en)
Kinani et al. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 2: Sampling, Sample Preparation and Non-Chromatographic and Mass Spectrometric-Based Methods
US4278507A (en) Method for amperometric measurement of the free-chlorine content in a solution
Gumbi et al. Direct spectrophotometric detection of the endpoint in metachromatic titration of polydiallyldimethylammonium chloride in water
JP2705247B2 (en) How to measure free chlorine
Hicks et al. Rate of solution of air and rate of transfer for sewage treatment by activated sludge processes.
Morrow et al. Advances in Chlorine‐Residual Analysis
Nagy et al. Halogens
JPH0610663B2 (en) Residual chlorine measurement method
Calvert Treatment with copper sulfate, chlorine and ammonia
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
KR100759531B1 (en) Residual chlorine analyzer of ventilation form
Rideal et al. An electrochemical indicator for oxidising agents
Al-Hitti et al. Estimation of Hypochlorites in Commercial Bleaching Solutions by Cl-ISE and Platinum Electrode
JP3702125B2 (en) Equipment for measuring residual chlorine in sewage treated water
JPS6156465B2 (en)