JPS59116522A - Method for checking optical aspherical surface - Google Patents

Method for checking optical aspherical surface

Info

Publication number
JPS59116522A
JPS59116522A JP22972882A JP22972882A JPS59116522A JP S59116522 A JPS59116522 A JP S59116522A JP 22972882 A JP22972882 A JP 22972882A JP 22972882 A JP22972882 A JP 22972882A JP S59116522 A JPS59116522 A JP S59116522A
Authority
JP
Japan
Prior art keywords
ronchi
optical
grating
abberation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22972882A
Other languages
Japanese (ja)
Other versions
JPH0240177B2 (en
Inventor
Toyohiko Yatagai
豊彦 谷田貝
Hiroyoshi Saito
斎藤 弘義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP22972882A priority Critical patent/JPH0240177B2/en
Publication of JPS59116522A publication Critical patent/JPS59116522A/en
Publication of JPH0240177B2 publication Critical patent/JPH0240177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods

Abstract

PURPOSE:To improve reading accuracy of Ronchi fringes and to measure the abberation of a nonspherical surface optical element quantitatively, automatically, and highly accurately, by intermittently moving an optical grating, which is arranged at or near the focal point of the nonspherical surface to be checked, detecting the optical intensity of a plurality of interference fringes, which are yielded at least at one fixed point on a projected surface, and judging the unevenness at the position of nonspherical surface based on the change in optical intensity with respect to a reference value. CONSTITUTION:Light from a point light source 3 is made to be parallel light 5 through a collimator 4. The parallel light is projected on a nonspherical surface lens 1 to be checked. A Ronchi grating 2 is placed at the position of paraxial focus. The Ronchi grating 2 is moved by a stage 6, which is controlled by a pulse motor, and the phase of the Ronchi grating 2 is changed. The Ronchi pattern is detected by a TV camera or a two dimensional image sensor 7, and undergoes A/D conversion by an image memory 8. The result is inputted to a computer 9. The phase of the Ronchi grating is changed and N sheets of the Ronchi patterns are recorded. Fringes are analyzed by a Fringe Scanning method. Then a traverse abberation pattern (linear differential of wavefront abberation) of the nonspherical surface lens 1 to be checked is obtained. The wavefront abberation is obtained by the integration of the patterns.

Description

【発明の詳細な説明】 面の検査法に係わるものである。[Detailed description of the invention] This relates to surface inspection methods.

ロンキー検査法は、曲線格子を被検光学素子の焦膚また
は焦点近傍に善き、彼方から歓測したゆがんだ格子模様
(ロンキー縞)を解析して収差の有無や研1t・・面の
良否を都1べる方法で、収差+0が比較的大きい光学系
の測定に適用され、その時使用する格子は粗くて浪いの
が特徴である。
The Ronchi inspection method places a curved grating at or near the focal point of the optical element under test, and analyzes the distorted lattice pattern (Ronchi fringes) observed from a distance to determine the presence of aberrations and the quality of the polished surface. This method is applied to the measurement of optical systems with relatively large aberrations of +0, and the grating used at that time is characterized by being coarse and wavy.

第1図はこの杵な従来のロンキー検査法の説明図で、同
図のような光学系で(ξ、η)面を被検光学素子(レン
ズ)の射出瞳面1とし、その知恵近傍に(x−y)面を
設けそこに直線格子2を飽いて、後方から直線格子を通
して被検光学素子の射出瞳面1を見る。その結味一第λ
図(A)、(B)、(C)、(D)の様なパターンが観
測される。
Figure 1 is an explanatory diagram of this conventional Ronchi inspection method. In the optical system shown in the figure, the (ξ, η) plane is the exit pupil plane 1 of the optical element (lens) to be tested, and the A (xy) plane is provided, and a linear grating 2 is placed there, and the exit pupil plane 1 of the optical element to be tested is viewed from behind through the linear grating. The first λ
Patterns such as those shown in Figures (A), (B), (C), and (D) are observed.

ここで第2図(Alは被検レンズに球面収差があり、格
子を被検レンズの無点面上に配置した時に見られるロン
キー縞であり、第2図(B)、(C)、(D)は被検レ
ンズに対して格子の位置を被検レンズの方向に前進させ
た場合に得られたロンキー糾で、これは使用した格子の
彰である。
Here, Fig. 2 (Al is a Ronchi fringe that is seen when the test lens has spherical aberration and the grating is placed on the pointless surface of the test lens; Fig. 2 (B), (C), ( D) is the Ronchi density obtained when the position of the grating is moved forward in the direction of the lens to be tested, and this is the result of the grating used.

この様に、従来知られていたロンキー検査法を、収差埜
が大きく、格子が粗く、干#現象を無捗しうるとして幾
伺学的に解析された結果を以下に示す。
In this way, the conventionally known Ronchi inspection method has a large aberration, a coarse lattice, and the results of a somewhat complex analysis are shown below, assuming that the dryness phenomenon can be prevented.

第1図の様な配置に従って、被検光学素子の射出瞳面1
がW(ξ、η)の波面収差を有する場合、射出瞳面の(
ξ、η)を出た元価:は近似的にαW       x αξ   R          (11の様に表わせ
る。但しくx,y)は格子面と光線の交点、Rは波面の
曲率半径である。更に格子線がy方向に平行であり、か
つ格子の透過率分布が正弦的であるとすると、格子は の様に表示される。但しdは格子のピッチ、γは縞コン
トラストである。従って、射出瞳の一点(ξ、η)から
出た光線が、格子面(X%V)で格子HK肖たると仮定
すると、(I)、(3)からが得,られる(このように
、ロンキー縞は、波面収差の一次微分(横収差)の等高
itiIパターンである沖が解析されていた。) したがって、ロンキー縦パターンの解析結果から横収差
分布を得る事ができ、これを積分すれば、波面収差を得
ることができる。従ってロンキー横αW 肴の粘度は第7式から  を求める精度にかがっコ ている。
Exit pupil plane 1 of the optical element to be tested according to the arrangement shown in Figure 1.
has a wavefront aberration of W(ξ, η), the exit pupil plane (
ξ, η) can be approximately expressed as αW x αξ R (11), where x, y) is the intersection of the lattice plane and the light beam, and R is the radius of curvature of the wavefront. Further, assuming that the grid lines are parallel to the y direction and the transmittance distribution of the grid is sinusoidal, the grid is displayed as follows. Here, d is the grating pitch and γ is the fringe contrast. Therefore, if we assume that the ray emitted from one point (ξ, η) of the exit pupil is like a lattice HK on the lattice plane (X%V), we obtain from (I) and (3), (The fringes were analyzed as an equal-height itiI pattern of the first derivative (lateral aberration) of wavefront aberration.) Therefore, the lateral aberration distribution can be obtained from the analysis results of the Ronchi vertical pattern, and by integrating this, , wavefront aberration can be obtained. Therefore, the viscosity of Ronchi horizontal αW is dependent on the accuracy of calculating from equation 7.

更に、第9式の縞ピーク位置の精度は、次の様に表示さ
れ このため αWd (6) αξ   R 従来のロンキー検査法では縞ピークの情報のみを使用し
ていた。このため縞ピークのロンキーパターンからでは
横収差分布の符号(凹凸)は解析できない欠点があった
。T9−に従芽のロンキー検査法では府1い格子を使用
してロンキー縞を発生させていたので、発生するロンキ
ー縞の線間隔が粗くこのためロンキー縞を解析して梢密
に札j収差分布を求めることは不可能であった。
Further, the precision of the fringe peak position in Equation 9 is expressed as follows, and therefore αWd (6) αξ R In the conventional Ronchi inspection method, only information on the fringe peak was used. For this reason, there was a drawback that the sign (unevenness) of the lateral aberration distribution could not be analyzed from the Ronchi pattern of the fringe peaks. In the Ronchi inspection method for T9-following buds, Ronchi fringes were generated using a large grid, so the line spacing of the generated Ronchi fringes was coarse. It was impossible to determine the distribution.

本発明の目的は直静1誹格子パターンを光軸に垂偉方向
に移動させてロンキー縞を変調し、その結果ロンキー縞
の読み取り精度を向上させ、きわめて高精度に非球面光
学素子の収差を定量的に自動的に測定する方法を提供す
る弗である。
The purpose of the present invention is to modulate the Ronchi fringe by moving a straight-static one-curve grating pattern in the vertical direction along the optical axis, thereby improving the reading accuracy of the Ronchi fringe and eliminating aberrations of aspherical optical elements with extremely high precision. This is a method that provides a quantitative and automatic measurement method.

この目的は本発明に従って被検非球面の焦点位置又はそ
の近くに配置した光学格子を間欠的に移動させ、投射面
上の少くとも一つの固定点におt・てjl’+欠救動に
より生じる枚数の干渉縞の光強度を検出し、基71′5
11C1に対する光強度の変化から前記の1ノ一1定点
に対応する非球面のイ☆屑における凹凸を判漬し、又、
前衛1の基準値が被検非球面の光軸に対する間欠移師前
の光学格子の位置を表わしており、史に、投射面上の少
くとも一つの固定点において間欠移%!により生じるネ
リ触の干渉縞の光強度を検出し、一方のl’71+定点
の光強度の変化をス((・ム植として、この基準値に対
する他方の固定点の光強度の変化かも、この他方のトイ
定点に対応する非球面レンズの位置における凹凸を判断
する年により達成される。
The purpose of this is to intermittently move an optical grating placed at or near the focal point of the aspherical surface to be tested according to the present invention, so that at least one fixed point on the projection surface is touched by t. The light intensity of the generated number of interference fringes is detected, and the base 71'5
From the change in light intensity with respect to 11C1, determine the irregularities in the aspherical I☆ scraps corresponding to the above-mentioned 1-1 fixed point, and
The reference value of Vanguard 1 represents the position of the optical grating in front of the intermittent shifter with respect to the optical axis of the aspheric surface to be tested, and the intermittent shift%! at least one fixed point on the projection surface! Detect the light intensity of the interference fringes of the Neri touch caused by This is achieved by determining the unevenness at the position of the aspherical lens corresponding to the other toy fixed point.

本4西明の原理と特徴を詳しく解析する。Book 4 Analyze the principles and characteristics of Western Mei in detail.

第1図(従来のロンキーtS!査法の説明図)のロンキ
ー検査法で被検非球面の焦点位心又はその近くに配置し
た光学格子2を光軸方向と垂面方向((と方向)に移臣
ノTさせると、格子は、/(X1δ)−1+r CO9
””(x十δ)(7)と書ける。俳しδは格子の移動に
よって生じたと與ける。格子間隔dの一等分に刻み δ。= −n (n = 011’−N −1)   
   (9!δ。たけ間欠的に格子をv、動させると、
第g式のロンキー縞は、位相が変化し、わ・々な糾パタ
ーンが得られる。つまり 前述じた様に、従来法ではロンキー縞のピーク位置のみ
に注目して縞の解析を行っていた。本発明では格子の位
相変化によるロンキー縞の変化を解析することによって
きわめて高精度にロンキー縞の解析を行う。
In the Ronchi inspection method shown in Figure 1 (explanatory diagram of the conventional Ronchi tS! inspection method), an optical grating 2 placed at or near the focal point of the aspheric surface to be inspected is placed in the optical axis direction and vertical direction ((and direction)). When the vassal is transferred to T, the lattice becomes /(X1δ)-1+r CO9
It can be written as “” (x 10 δ) (7). It is assumed that the difference δ is caused by the movement of the lattice. Increment δ into equal parts of the grid spacing d. = −n (n = 011'−N −1)
(9!δ.If you move the grid intermittently by v,
The phase of the g-th Ronchi fringe changes, and various patterns can be obtained. In other words, as mentioned above, in the conventional method, fringes are analyzed by focusing only on the peak position of the Ronchi fringes. In the present invention, the Ronchi fringe is analyzed with extremely high accuracy by analyzing the change in the Ronchi fringe due to the phase change of the grating.

第3図は非球面レンズのロンキー縞の例であり、(a)
から(nは格子の位相を変化させである。このロンキー
縞パターンの一断面(第3図ではA A’  断面)の
強°度分布を′61’+定して、格子位相δ をノぐう
メータとして表示すると旭り図が得られる。A A’断
面の特定位置に注目してその点における強度変化を位相
δ を/やラメータとして表示するとg 3[ン1が州
られる。ロンキー11強度は第70式が示す様に、nの
変化に対して正弦的に変化する。従ってこの図の曲線か
ら正弦Ni数の初叫1位相が分る。
Figure 3 is an example of Ronchi fringes of an aspherical lens, (a)
From (n is the phase of the grating).The intensity distribution of one cross section of this Ronchi fringe pattern (A A' cross section in Fig. 3) is set as +'61', and the grating phase δ is calculated. If you display it as a meter, you will get a rising and falling diagram.If you focus on a specific position on the AA' cross section and display the intensity change at that point as a phase δ and/or a parameter, you will get g3[n1.The Ronchi 11 intensity is As shown by Equation 70, it changes sinusoidally with respect to the change in n.Therefore, from the curve in this figure, the first cry 1 phase of the sine number Ni can be found.

この初期位相をδ。とすると、 より として4黄収差が求まる。Let this initial phase be δ. Then, Than The four-yellow aberration can be found as

この操作をAA’の断面の各点に対して行なえばt【1
収差分布が有られ、これを積分すればAA’断面の収差
囲動が得られる。
If this operation is performed for each point on the cross section of AA', t[1
There is an aberration distribution, and by integrating this, the aberration circumference of the AA' section can be obtained.

この手続の一例を数学的にWj’述すると次の様になる
。まず第1θ式をXについてフーリエ展開すると、 世し 従って よって αζ これらの冶味するところは、第9式の様に、格振動させ
、その各々の鳩舎に得られるロンキー縞の光強(6)を
検出し、その縞強関に格子移割モ)に相・・・・・・N
−1)を莱算し、それの総和を計算し、それをもとに第
1乙式に従って波面収差量の微分が求まるということで
ある。
An example of this procedure Wj' can be expressed mathematically as follows. First, by Fourier expanding the first θ equation with respect to Detected, and its fringe intensity corresponds to the lattice shift mode)...N
-1), calculate the total sum, and based on that, the differential of the amount of wavefront aberration is found according to the first equation.

上に述べた方法は、格子の位相変化量を第1g式より、
ロンキー縞の位相質を求め、場所×に関して表示すれば
、第4図が得られる。第4図は計迎の都合で、tan”
”が0から2πまでの主鎖が得られるため、0から2π
の師団に折りたたまれている。この折りたたまれた曲線
の2πの位相飛びを相1正すると第7図が得られる。こ
の第7図が被枦1j定光学素子の杷収差曲線である。こ
の曲線を和分すると第gシ1の収差回報が得られろ。第
3図のeかう4は、塩7図の曲線の持分そのものでTi
1t  の成分が含まれている。これを除去すると第3
図の失脚が得られろ。
The method described above calculates the amount of phase change of the grating using the first g equation,
If the phase quality of the Ronchi fringe is determined and expressed with respect to location x, Figure 4 is obtained. Figure 4 is “tan” due to scheduling reasons.
” is obtained from 0 to 2π, so from 0 to 2π
It has been folded into divisions. If the phase jump of 2π of this folded curve is corrected by phase 1, FIG. 7 is obtained. FIG. 7 shows the loquat aberration curve of the 1j constant optical element. By summing this curve, the g-th 1st aberration report can be obtained. In Figure 3, eKa4 is the share of the curve in Figure 7, which is Ti
Contains 1t of components. If you remove this, the third
Get the figure's downfall.

上に述べた方法(・ま、格子の位相りゞ化桁を知ってそ
の時のロンキー縞の変化から、和収差を求める方法であ
ったが、ロンキー縞パターンの二点に注目し、一方の点
を基準点としてこの点に対する一方の点におけるロンキ
ー糾の強度骨化を知って小収差士牙を求める事ができる
。第ダ図はこの様な方法の説、明図で二点X ” X 
1  とX ” X2  におけろロンキー縞強度を図
示すると第51¥1が得られる。
The method described above (well, the method was to find the sum aberration from the change in the Ronchi fringe by knowing the phase digitization of the grating, but by focusing on two points in the Ronchi fringe pattern, one point By using this point as a reference point and knowing the strength ossification of Ronchi at one point with respect to this point, the small aberration ratio can be determined. Figure 1 is an explanation of such a method.
1 and X''X2, the 51st yen is obtained.

第3図よりいずれの点における糾強度も周期的に変化し
ている事が分る。これら二つの曲線の位相差を求める方
法としては、例えはこれら二つの信号データをD/A変
換しアナログ位相計に入力して位相差を求める方法、も
しくは、このアナログ位相計の作用をデイノタル計算本
とにより伏行し、位相差を求める方法、さらには、これ
らλつの信号を11.:小−乗法により正弦関ダyで近
似しその正弦1η1り′Jの位相をもって両者の位相差
とする方法などがり・えろねる。
From FIG. 3, it can be seen that the cracking strength at any point changes periodically. To find the phase difference between these two curves, for example, you can D/A convert these two signal data and input it to an analog phase meter to find the phase difference, or you can calculate the action of this analog phase meter by deinotal calculation. A method for determining the phase difference using the book 11. : There is a method of approximating the sine function y using the submultiple method and using the phase of the sine 1η1 þ'J as the phase difference between the two.

築)(スは、本発明を実親するための装置のブロック図
である。点光源3の光をコリメーター4に;i+i L
、 号F行光5とし、この平行光をネIIF検非球面レ
ンズ1に肖て、近軸釧点位jf−tにロンキー格子2を
1141く。このロンキー格子2をパルスモータで制御
されたステーノロで+hhかし、ロンキー格子20位相
ケ変化させる。ロンキーパターンは、TVカメラ又は二
次元イメージセンサー7で検出し、1LIII像メモリ
ー8でA/D変換されコンピューター9に入力される。
Construction) (S is a block diagram of a device for implementing the present invention. Light from a point light source 3 is sent to a collimator 4; i+i L
, No. F line light 5, this parallel light is taken as an IIF aspherical lens 1, and a Ronchi grating 2 is placed at the paraxial position jf-t. This Ronchi grating 2 is turned +hh by a stainless steel rotor controlled by a pulse motor to change the phase of the Ronchi grating 20. The Ronchi pattern is detected by a TV camera or a two-dimensional image sensor 7, A/D converted by a 1LIII image memory 8, and input to a computer 9.

ロンキー格子20位相を変えて、Nhのロンキーパター
ンを記録しFringe、 5can+ningの方法
で輸触イノ1すれば、被検非球面レンズ1のtffj収
差パターン(波面収光の一次微分)が求まる。これを積
分すれば、波押収差が求まる。
By changing the phase of the Ronchi grating 20, recording an Nh Ronchi pattern, and inverting it using the Fringe, 5can+ning method, the tffj aberration pattern (first-order differential of wavefront convergence) of the aspherical lens 1 to be tested can be found. By integrating this, the wave seizure difference can be found.

この柿に、本発明は、従来のロンキー法に比較して、収
差量の紛み取り精度が高く、史にロンキーgのピーク位
t6以外の6、・、次数も決定できる( Qの内挿がで
きる。)ことが晰長で、(疋ってこれらを積分して紹ら
れる波面収差の泗・雷オ′吉ル”も晶い。
In addition, compared to the conventional Ronchi method, the present invention has higher accuracy in removing aberrations, and can also determine orders of 6, . ) is a clear long, and the wavefront aberration introduced by integrating these is also crystal clear.

【図面の簡単な説明】[Brief explanation of the drawing]

館17図は従来のロンキー検食法の説明図、第一しi 
(A) (s) (C) (olは従来方法により得ら
れたロンキー縞。 舘3図は本発明の非球面レンズへの運用により得られた
ロンキー縞、第り図はこのロンキー縞の一断面の強度分
布を6111定し、格子位オナ(δ をパラン−タとし
て表示した図、鉛S図は一断面の特定位ff’?に注目
してその点におけるケl IgF変化を位相をパラメー
ターに表した図、第6図はロンキー縞の位相項を求め場
所Xにレーして表示したンi、第71ン)は41q ?
11+、l定素子の相収差曲線。第3図は収差曲e−〇
第9図は本発明を実籾、するためのブロック図。(図中
1は被光学素子の射出ロー1)而、2はロンキー格子、
3は虚光源、4はコリメーター、5は平殊光、6はステ
ージ、7はTVカメラ又は二次元イメージセンサ−18
は画像メモリー、9はコンピューター。) 7)   第1図 旬 買 図面の浄書ζ内容に変更なし) 第2図 (△)           (8) 図面の浄書(内容に変更 なL) (C) 第5図 第6図 イi1   置 特許庁長官 殿 ■、事件の表示 昭和37  年 特許願 第22?7
.2♂号2、発明の名称    光学非球面の検査法3
、補正をする者 事件との関係  出願人 名称 (679)理化学研究所 4、代理人 5、補正命令の日付   自   発
Figure 17 is an explanatory diagram of the conventional Ronchi testing method.
(A) (s) (C) (ol is the Ronchi fringe obtained by the conventional method. Figure 3 is the Ronchi fringe obtained by applying the present invention to an aspherical lens. Figure 2 is one of the Ronchi fringes. The intensity distribution of the cross section is set at 6111, and the lattice position ona (δ is expressed as a parantha).The P S diagram is a diagram that focuses on a specific position ff'? In the figure shown in Figure 6, the phase term of the Ronchi fringe is calculated and displayed by raying it at the location X.
Phase aberration curve of 11+, l constant element. Fig. 3 shows the aberration curve e-〇 Fig. 9 is a block diagram for carrying out the present invention. (1 in the figure is the exit row 1 of the optical element) and 2 is the Ronchi grating,
3 is an imaginary light source, 4 is a collimator, 5 is a plane light, 6 is a stage, 7 is a TV camera or a two-dimensional image sensor 18
is an image memory, and 9 is a computer. ) 7) Figure 1 Engraving of the purchased drawing ζ No change in content) Figure 2 (△) (8) Engraving of the drawing (L with no change in content) (C) Figure 5 Figure 6 Ii1 Patent Office located Mr. Commissioner■, Indication of the case 1962 Patent application No. 22?7
.. 2♂ No. 2, Title of invention Inspection method for optical aspheric surfaces 3
, Relationship with the person making the amendment Applicant name (679) RIKEN 4, Agent 5, Date of amendment order Voluntary

Claims (1)

【特許請求の範囲】 /)被検光学非球面の焦点位置又はその近くに配置した
光学格子を(IA1欠的に移動させ、投射面上の少くと
も7つの固定点においてjtJl欠移匍1により生じる
籾数の干渉縞の光強度を検出し、夫、準値に対する光強
度の変化から前記のP・1定点に対応する光学非球面の
位#へにおける凹凸を1′41断することを特徴とした
光学非球面の検食法。 2)前記の基準価がネル様光学非球面の光車山に対する
間欠移’Mh rIiJの光学格子の位置を表わしてい
る心・帽−fiNj求の柿囲第1項に記載の光学非球面
の検査法。 3)投射面上の少(とも2つの同定点において間欠移動
により生じる複数の干渉縞の光強度を櫟出し、一方の固
定点の光強度の変化を基準値として、この基準値に対す
る他方の固定廣の光弁間の変化からこの他方の固定点に
対応する光学非球面の付活における凹凸を判断する特許
請求の範囲第1項に記載の光学非球面の検彌−法。
[Claims] /) An optical grating placed at or near the focal point of the optical aspherical surface to be tested is moved intermittently (IA1), and at least seven fixed points on the projection surface are It is characterized by detecting the light intensity of the interference fringes of the number of rice grains produced, and cutting out the unevenness at position # of the optical aspherical surface corresponding to the above-mentioned P.1 fixed point by 1'41 from the change in light intensity with respect to the quasi-value. 2) The above-mentioned reference value represents the position of the optical grating of the intermittent transition 'Mh rIiJ with respect to the optical peak of the flannel-like optical aspheric surface. The method for inspecting an optical aspheric surface according to item 1. 3) Calculate the light intensity of multiple interference fringes caused by intermittent movement at two identified points on the projection surface, use the change in light intensity at one fixed point as a reference value, and fix the other with respect to this reference value. The optical aspherical surface inspection method according to claim 1, wherein irregularities in the activation of the optical aspherical surface corresponding to the other fixed point are determined from changes between the wide light valves.
JP22972882A 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO Expired - Lifetime JPH0240177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22972882A JPH0240177B2 (en) 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22972882A JPH0240177B2 (en) 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO

Publications (2)

Publication Number Publication Date
JPS59116522A true JPS59116522A (en) 1984-07-05
JPH0240177B2 JPH0240177B2 (en) 1990-09-10

Family

ID=16896760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22972882A Expired - Lifetime JPH0240177B2 (en) 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO

Country Status (1)

Country Link
JP (1) JPH0240177B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288392A (en) * 2011-07-29 2011-12-21 温州医学院 Two-dimensional Ronchi grating-based freeform surface spectacle lens focal power measuring device
WO2022083735A1 (en) * 2020-10-23 2022-04-28 深圳晶源信息技术有限公司东方晶源微电子科技(北京)有限公司深圳分公司 Method for calculating ronchi shear interference image in photolithography projection objective

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288392A (en) * 2011-07-29 2011-12-21 温州医学院 Two-dimensional Ronchi grating-based freeform surface spectacle lens focal power measuring device
WO2022083735A1 (en) * 2020-10-23 2022-04-28 深圳晶源信息技术有限公司东方晶源微电子科技(北京)有限公司深圳分公司 Method for calculating ronchi shear interference image in photolithography projection objective

Also Published As

Publication number Publication date
JPH0240177B2 (en) 1990-09-10

Similar Documents

Publication Publication Date Title
Dyson Circular and spiral diffraction gratings
Lecordier et al. The EUROPIV synthetic image generator (SIG)
US8345262B2 (en) Method and apparatus for determining a deviation of an actual shape from a desired shape of an optical surface
US8525982B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
US20120229814A1 (en) Method of measuring a shape of an optical surface and interferometric measuring device
JPH07190885A (en) Absolute measuring method and execution device of geometrical or optical structure of optical device
JP2005530144A (en) Single structure optical measurement
KR102518289B1 (en) Method and Apparatus for Optimizing Optical Performance of Interferometry
CN108431694B (en) Apparatus and method for wavefront analysis
JPS62105026A (en) Device and method of inspecting wave front quality
Fortmeier et al. Traceability of form measurements of freeform surfaces: metrological reference surfaces
US10365164B2 (en) Optical system phase acquisition method and optical system evaluation method
JPS59116522A (en) Method for checking optical aspherical surface
Cornejo-Rodriguez et al. Wavefront slope measurements in optical testing
Paakkari On-line flatness measurement of large steel plates using moiré topography
JPH03128411A (en) Optical form measuring instrument
Chang et al. Collimation testing and calibration using a heterodyne Moiré method
Beisswanger et al. Tilted wave interferometer in common path configuration: challenges and realization
Sohn et al. Köhler illumination for high-resolution optical metrology
Jayaswal et al. Design and analysis of modified version of double aperture speckle interferometer consisting of holographic optical element: application to measurement of in plane displacement component
Doerband et al. Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF)
Zhimuleva et al. Development of telecentric objectives for dimensional inspection systems
Eriksson Development of a Software Tool for Mid-Spatial Frequency Analysis
Zavyalov et al. Application of diffractive elements for improving the efficiency of systems for cylindrical surface inspection
JP4127952B2 (en) Aberration measurement method and aberration evaluation apparatus