JPH0240177B2 - KOGAKUHIKYUMENNOKENSAHO - Google Patents

KOGAKUHIKYUMENNOKENSAHO

Info

Publication number
JPH0240177B2
JPH0240177B2 JP22972882A JP22972882A JPH0240177B2 JP H0240177 B2 JPH0240177 B2 JP H0240177B2 JP 22972882 A JP22972882 A JP 22972882A JP 22972882 A JP22972882 A JP 22972882A JP H0240177 B2 JPH0240177 B2 JP H0240177B2
Authority
JP
Japan
Prior art keywords
ronchi
optical
grating
light intensity
aspherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22972882A
Other languages
Japanese (ja)
Other versions
JPS59116522A (en
Inventor
Toyohiko Yatagai
Hiroyoshi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP22972882A priority Critical patent/JPH0240177B2/en
Publication of JPS59116522A publication Critical patent/JPS59116522A/en
Publication of JPH0240177B2 publication Critical patent/JPH0240177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、ロンキー検査法を改良した光学非球
面の検査法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical aspheric surface inspection method that is an improved Ronchi inspection method.

ロンキー検査法は、直線格子を被検光学素子の
焦点または焦点近傍に置き、後方から観測したゆ
がんだ格子模様(ロンキー縞)を解析して収差の
有無や研磨面の良否を調べる方法で、収差量が比
較的大きい光学系の測定に適用され、その時使用
する格子は粗くて良いのが特徴である。
The Ronchi inspection method is a method in which a linear grating is placed at or near the focal point of the optical element to be tested, and the distorted lattice pattern (Ronchi fringes) observed from behind is analyzed to check for aberrations and the quality of the polished surface. It is applied to measurements of optical systems with relatively large quantities, and is characterized by the fact that the grating used at that time can be coarse.

第1図はこの様な従来のロンキー検査法の説明
図で、同図のような光学系で(ξ、η)面を被検
光学素子(レンズ)の射出瞳面1とし、その焦点
近傍に(x−y)面を設けそこに直線格子2を置
いて、後方から直線格子を通して被検光学素子の
射出瞳面1を見る。その結果第2図A,B,C,
Dの様なパターンが観測される。
Figure 1 is an explanatory diagram of such a conventional Ronchi inspection method. In the optical system as shown in the figure, the (ξ, η) plane is the exit pupil plane 1 of the optical element (lens) to be tested, and the A (xy) plane is provided, a linear grating 2 is placed there, and the exit pupil plane 1 of the optical element to be tested is viewed from behind through the linear grating. As a result, Figure 2 A, B, C,
A pattern like D is observed.

ここで第2図Aは被検レンズに球面収差があ
り、格子を被検レンズの焦点面上に配置した時に
見られるロンキー縞であり、第2図B,C,Dは
被検レンズに対して格子の位置を被検レンズの方
向に前進させた場合に得られたロンキー縞で、こ
れらは使用した格子の影である。
Here, Figure 2A shows the Ronchi fringes that are seen when the test lens has spherical aberration and the grating is placed on the focal plane of the test lens, and Figure 2B, C, and D show the Ronchi fringes for the test lens. These are the Ronchi fringes obtained when the position of the grating is advanced in the direction of the lens under test, and these are the shadows of the grating used.

この様に、従来知られていたロンキー検査法
を、収差量が大きく、格子が粗く、干渉現象を無
視しうるとして幾何学的に解析された結果を以下
に示す。
In this way, the conventionally known Ronchi inspection method is geometrically analyzed on the assumption that the amount of aberration is large, the grating is coarse, and the interference phenomenon can be ignored, and the results will be shown below.

第1図の様な配置に従つて、被検光学素子の射
出瞳面1がW(ξ、η)の波面収差を有する場合、
射出瞳面の(ξ、η)を出た光線は近似的に ∂W/∂ξ=−x/R (1) ∂W/∂η=−y/R (2) の様に表わせる。但し(x、y)は格子面と光線
の交点、Rは波面の曲率半径である。更に格子線
がy方向に平行であり、かつ格子の透過率分布が
正弦的であるとすると、格子は f(x)=1+γ・cos2π/dx (3) の様に表示される。但しdは格子のピツチ、γは
縞コントラストである。従つて、射出瞳の一点
(ξ、η)から出た光線が、格子面(x、y)で
格子線に当たると仮定すると、(1)、(3)から f(x)=1+γ・cos2π/d・R・αW/αξ(4) が得られるこのように、ロンキー縞は、波面収差
の一次微分(横収差)の等高線パターンである事
が解析されていた。
When the exit pupil plane 1 of the optical element to be tested has a wavefront aberration of W (ξ, η) according to the arrangement shown in FIG.
The ray exiting from the exit pupil plane (ξ, η) can be approximately expressed as ∂W/∂ξ=−x/R (1) ∂W/∂η=−y/R (2). Here, (x, y) is the intersection of the lattice plane and the light beam, and R is the radius of curvature of the wavefront. Further, assuming that the grid lines are parallel to the y direction and the transmittance distribution of the grid is sinusoidal, the grid is expressed as f(x)=1+γ·cos2π/dx (3). Here, d is the grating pitch and γ is the fringe contrast. Therefore, assuming that the ray emitted from one point (ξ, η) of the exit pupil hits the grid line on the grid plane (x, y), from (1) and (3), f(x) = 1 + γ・cos2π/ d・R・αW/αξ(4) As shown above, it has been analyzed that the Ronchi fringe is a contour pattern of the first derivative of wavefront aberration (transverse aberration).

したがつて、ロンキー縞パターンの解析結果か
ら横収差分布を得る事ができ、これを積分すれ
ば、波面収差を得ることができる。従つてロンキ
ー検査の精度は第4式から∂W/∂ξを求める精度に かかつている。
Therefore, the lateral aberration distribution can be obtained from the analysis result of the Ronchi fringe pattern, and by integrating this, the wavefront aberration can be obtained. Therefore, the accuracy of the Ronchi test depends on the accuracy of determining ∂W/∂ξ from the fourth equation.

更に、第4式の縞ピーク位置は、次の様に表示
され 2π/d・R・∂W/∂ξ=2πm(m=0±1) このため ∂W/∂ξ=d/Rm (6) よりW(ξ、η)の微分∂W/∂ξを求める事ができ る。
Furthermore, the fringe peak position in the fourth equation is expressed as follows: 2π/d・R・∂W/∂ξ=2πm (m=0±1) Therefore, ∂W/∂ξ=d/Rm (6 ), we can find the differential ∂W/∂ξ of W(ξ, η).

この様な従来公知の幾何学的解析からわかる様
に従来のロンキー検査法では縞ピークの情報のみ
を使用していた。このため縞ピークのロンキーパ
ターンからでは横収差分布の符号(凹凸)は解析
できない欠点があつた。更に従来のロンキー検査
法では粗い格子を使用してロンキー縞を発生させ
ていたので、発生するロンキー縞の縞間隔が粗く
このためロンキー縞を解析して精密に横収差分布
を求めることは不可能であつた。
As can be seen from such conventionally known geometrical analysis, the conventional Ronchi inspection method uses only information about fringe peaks. For this reason, there was a drawback that the sign (unevenness) of the lateral aberration distribution could not be analyzed from the Ronchi pattern of the fringe peaks. Furthermore, since the conventional Ronchi inspection method uses a coarse grating to generate Ronchi fringes, the fringes of the Ronchi fringes that are generated are coarse, making it impossible to precisely determine the lateral aberration distribution by analyzing the Ronchi fringes. It was hot.

本発明の目的は直線格子パターンを光軸に垂直
方向に移動させてロンキー縞を変調し、その結果
ロンキー縞の読み取り精度を向上させ、きわめて
高精度に非球面光学素子の収差を定量的に自動的
に測定する方法を提供する事である。
The purpose of the present invention is to modulate the Ronchi fringes by moving a linear grating pattern perpendicular to the optical axis, thereby improving the reading accuracy of the Ronchi fringes, and to quantitatively and automatically detect aberrations of aspherical optical elements with extremely high precision. The objective is to provide a method for measuring

この目的は本発明に従つて被検非球面の焦点位
置又はその近くに配置した光学格子を間欠的に移
動させ、投射面上の少くとも一つの固定点におい
て間欠移動により生じる複数の干渉縞の光強度を
検出し、基準値に対する光強度の変化から前記の
固定点に対応する非球面の位置における横収差の
符号を判断し、又、前記の基準値が被検非球面の
光軸に対する間欠移動前の光学格子の位置を表わ
しており、更に、投射面上の少くとも2つの固定
点において間欠移動により生じる複数の干渉縞の
光強度を検出し、一方の固定点の光強度の変化を
基準値として、この基準値に対する他方の固定点
の光強度の変化から、この他方の固定点に対応す
る非球面レンズの位置における横収差の符号を判
断する事により横収差の測定が達成される。
This purpose is to intermittently move an optical grating placed at or near the focal point of the aspherical surface to be tested according to the present invention, and to eliminate a plurality of interference fringes caused by the intermittent movement at at least one fixed point on the projection surface. The light intensity is detected, and the sign of the lateral aberration at the position of the aspherical surface corresponding to the fixed point is determined from the change in the light intensity with respect to the reference value. It represents the position of the optical grating before movement, and also detects the light intensity of multiple interference fringes caused by intermittent movement at at least two fixed points on the projection surface, and detects changes in the light intensity at one fixed point. As a reference value, measurement of the lateral aberration is achieved by determining the sign of the lateral aberration at the position of the aspherical lens corresponding to this other fixed point from the change in light intensity at the other fixed point with respect to this reference value. .

本発明の原理と特徴を詳しく解析する。 The principles and features of the present invention will be analyzed in detail.

第1図(従来のロンキー検査法の説明図)のロ
ンキー検査法で被検非球面の焦点位置又はの近く
に配置した光学格子2を光軸方向と垂直方向で格
子線に直角に移動させると、格子は、 f(x1δ)=1+γcos2π/d(x+δ) (7) と書ける。但しδは格子の移動によつて生じた位
置項である。従つてロンキー縞は f(x、δ)=1+γ・cos2π/d(R∂W/∂ξ+
δ) (8) と書ける。格子間隔をdの1/N等分に刻み δo=d/Nn(n=0、1……N−1) (9) δoだけ間欠的に格子を移動させると、第8式のロ
ンキー縞は、位相が変化し、様々な縞パターンが
得られる。つまり f(x,δo)=1+γ・cos(2π/d・R ∂W(ξ、η)/∂ξ+2πd/N・n) (10) これら位相の異なる多数のロンキー縞から所望の
情報∂W(ξ、η)/∂ξを抽出する。
In the Ronchi inspection method shown in Figure 1 (explanatory diagram of the conventional Ronchi inspection method), when the optical grating 2 placed at or near the focal point of the aspheric surface to be tested is moved perpendicular to the grating line in a direction perpendicular to the optical axis direction. , the lattice can be written as f(x 1 δ)=1+γcos2π/d(x+δ) (7). However, δ is a position term caused by the movement of the grating. Therefore, the Ronchi fringe is f(x, δ)=1+γ・cos2π/d(R∂W/∂ξ+
δ) (8) can be written. The lattice spacing is divided into 1/N equal parts of d, and δ o = d/Nn (n = 0, 1...N-1) (9) If the lattice is moved intermittently by δ o , the Ronchi of Equation 8 is obtained. The phase of the fringe changes, resulting in various fringe patterns. In other words, f (x, δ o ) = 1 + γ・cos (2π/d・R ∂W (ξ, η)/∂ξ+2πd/N・n) (10) Desired information ∂W is obtained from these many Ronchi fringes with different phases. Extract (ξ, η)/∂ξ.

前述した様に、従来法ではロンキー縞のピーク
位置のみに注目して縞の解析を行つていた。本発
明では格子の位相変化によるロンキー縞の変化を
解析することによつてきわめて高精度にロンキー
縞の解析を行う。
As mentioned above, in the conventional method, fringes are analyzed by focusing only on the peak position of the Ronchi fringes. In the present invention, the Ronchi fringe is analyzed with extremely high accuracy by analyzing the change in the Ronchi fringe due to the phase change of the grating.

第3図は非球面レンズのロンキー縞の例であ
り、(a)から(f)は格子の位相を変化させてある。こ
のロンキー縞パターンの一断面(第3図では
AA′断面)の強度分布を測定して、格子位相δo
パラメータとして表示すると第4図が得られる。
AA′断面の特定の2点に注目してそれらの点にお
ける強度変化を位相δoをパラメータとして表示す
ると第5図が得られる。ロンキー縞強度は第10式
が示す様に、nの変化に対して正弦的に変化す
る。従つてこの図の曲線から正弦関数の初期位相
がわかる。この初期位相をδpとすると、 2π/dR∂W(ξ、η)/∂W=δp (11) より ∂W(ξ、η)/∂ξ=δp/2π・d/R (12) として横収差が求まる。
Figure 3 shows an example of Ronchi fringes of an aspherical lens, and (a) to (f) show that the phase of the grating is changed. A cross section of this Ronchi stripe pattern (in Figure 3
When the intensity distribution of the AA' cross section is measured and the grating phase δ o is expressed as a parameter, Figure 4 is obtained.
If we focus on two specific points on the AA' cross section and express the intensity changes at those points using the phase δ o as a parameter, we obtain FIG. 5. As shown by Equation 10, the Ronchi fringe intensity changes sinusoidally with respect to the change in n. Therefore, the initial phase of the sine function can be found from the curve in this figure. If this initial phase is δ p , then 2π/dR∂W (ξ, η)/∂W=δ p (11) From ∂W (ξ, η)/∂ξ=δ p /2π・d/R (12 ) can be used to find the lateral aberration.

この操作をAA′の断面の各点に対して行なえば
横収差分布が得られ、これを積分すればAA′断面
の収差曲線が得られる。
By performing this operation for each point on the cross section of AA', a transverse aberration distribution can be obtained, and by integrating this, an aberration curve of the cross section AA' can be obtained.

この手続の一例を数学的に記述すると次の様に
なる。まず第10式をxについてフーリエ展開する
と、 f(x、δo)=a0/2+r=1 ar・cos2π/N ・r+r=1 brsin2π/N・r (13) 但し ar=2/NN-1r=0 f(x、δo)・cos2π/N (14) br=2/NN-1r=0 f(x、δo)・sin2π/Nr (15) 従つて a1=γ・cos2π/d・R∂W(ξ、η)/∂ξ (16) b1=γ・sin2π/d・R∂W(ξ、η)/∂ξ (17) よつて ∂W(ξ、η)/∂ξ=1/2π・d/Rtan-1b1/a0
(18) として∂W(ξ、η)/∂ξが得られる。
An example of this procedure can be described mathematically as follows. First, by Fourier expanding equation 10 with respect to x, f(x, δ o )=a 0 /2+ r=1 a r・cos2π/N ・r+ r=1 b r sin2π/N・r (13 ) However, a r = 2/N N-1r=0 f(x, δ o )・cos2π/N (14) b r = 2/N N-1r=0 f(x, δ o )・sin2π/Nr (15) Therefore, a 1 = γ・cos2π/d・R∂W (ξ, η)/∂ξ (16) b 1 = γ・sin2π/d・R∂W (ξ, η)/∂ ξ (17) Therefore ∂W (ξ, η)/∂ξ=1/2π・d/Rtan -1 b 1 /a 0
(18) ∂W(ξ, η)/∂ξ is obtained.

これらの意味するところは、第9式の様に、格
子の一周期dを1/N等分した量だけ間欠的に格子 を振動させ、その各々の場合に得られるロンキー
縞の光強度を検出し、その縞強度に格子移割量に
相当する重み量cos2π/Nr又はsin2π/Nr(r=0
、 1、2………N−1)を乗算し、それの総和を計
算し、それをもとに第16式に従つて波面収差量の
微分が求まるということである。
What these mean is that, as shown in Equation 9, the grating is intermittently vibrated by an amount equal to 1/N of one period d of the grating, and the light intensity of the Ronchi fringe obtained in each case is detected. Then, the fringe intensity is given a weight amount cos2π/Nr or sin2π/Nr (r=0
, 1, 2...N-1), calculate the total sum, and then calculate the differential of the amount of wavefront aberration based on Equation 16.

上に述べた方法は、格子の位相変化量を第18式
より、ロンキー縞の位相頂を求め、場所xに関し
て表示すれば、第6図が得られる。第6図は計算
の都合で、tan-1が0から2πまでの主値が得られ
るため、0から2πの範囲に折りたたまれている。
この折りたたまれた曲線の2πの位相飛びを補正
すると第7図が得られる。この第第7図が被測定
光学素子の横収差曲線である。この曲線を積分す
ると第8図の収差曲線が得られる。第8図の破線
は、第7図の曲線の積分そのものでTiltの成分が
含まれている。これを除去すると第8図の実線が
得られる。
In the method described above, if the phase peak of the Ronchi fringe is obtained from the amount of phase change of the grating using Equation 18, and expressed with respect to the location x, FIG. 6 is obtained. In Fig. 6, tan -1 is collapsed into the range from 0 to 2π for convenience of calculation, since the principal values are obtained from 0 to 2π.
Figure 7 is obtained by correcting the 2π phase jump of this folded curve. FIG. 7 shows the lateral aberration curve of the optical element to be measured. By integrating this curve, the aberration curve shown in FIG. 8 is obtained. The broken line in FIG. 8 is the integral of the curve in FIG. 7 and includes the Tilt component. When this is removed, the solid line in FIG. 8 is obtained.

上に述べた方法は、格子の位相変化量を知つて
その時のロンキー縞の変化から、横収差を求める
方法であつたが、ロンキー縞パターンの二点に注
目し、一方の点を基準点としてこの点に対する一
方の点におけるロンキー縞の強度変化を知つて横
収差量を求める事ができる。第4図はこの様な方
法の説明図で二点x=x1とx=x2におけるロンキ
ー縞度を図示すると第5図が得られる。
The method described above was to find the lateral aberration from the change in the Ronchi fringe by knowing the amount of phase change in the grating, but by focusing on two points on the Ronchi fringe pattern and using one point as a reference point. By knowing the intensity change of the Ronchi fringe at one point with respect to this point, the amount of transverse aberration can be determined. FIG. 4 is an explanatory diagram of such a method, and when the Ronchi fringe degree at two points x=x 1 and x=x 2 is illustrated, FIG. 5 is obtained.

第5図よりいずれの点における縞強度も周期的
に変化している事が分る。これら二つの曲線の位
相差を求める方法としては、例えばこれら二つの
信号データをD/A変換しアナログ位相計に入力
して位相差を求める方法、もしくは、このアナロ
グ位相計の作用をデイジタル計算機により代行
し、位相差を求める方法、さらには、これら2つ
の信号を最小2乗法により正弦関数で近似しその
正弦関数の位相をもつて両者の位相差とする方法
などが考えられる。
It can be seen from FIG. 5 that the fringe intensity at any point changes periodically. To find the phase difference between these two curves, for example, you can D/A convert these two signal data and input it to an analog phase meter to find the phase difference, or you can measure the action of this analog phase meter using a digital computer. Possible methods include a method of calculating the phase difference instead, or a method of approximating these two signals with a sine function using the method of least squares and using the phase of the sine function as the phase difference between the two signals.

第9図は、本発明を実現するための装置のブロ
ツク図である。点光源3の光をコリメーター4に
通し平行光5とし、この平行光を被検非球面レン
ズ1に当て、近軸焦点位置にロンキー格子2を置
く。このロンキー格子2をパルスモータで制御さ
れたステージ6で動かし、ロンキー格子2の位相
を変化させる。ロンキーパターンは、TVカメラ
又は二次元イメージセンサー7で検出し、画像メ
モリー8でA/D変換されコンピユーター9に入
力される。
FIG. 9 is a block diagram of an apparatus for implementing the present invention. Light from a point light source 3 is passed through a collimator 4 to form parallel light 5, and this parallel light is applied to an aspherical lens 1 to be tested, and a Ronchi grating 2 is placed at the paraxial focal position. This Ronchi grating 2 is moved by a stage 6 controlled by a pulse motor to change the phase of the Ronchi grating 2. The Ronchi pattern is detected by a TV camera or a two-dimensional image sensor 7, A/D converted by an image memory 8, and input to a computer 9.

ロンキー格子2の位相を変えて、N枚のロンキ
ーパターンを記録し13式以後に述べた方法で縞解
析すれば、被検非球面レンズ1の横収差パターン
(波面収差の一次微分)が求まる。これを積分す
れば、波面収差が求まる。
By changing the phase of the Ronchi grating 2, recording N Ronchi patterns, and performing fringe analysis using the method described after Equation 13, the transverse aberration pattern (first-order differential of wavefront aberration) of the aspherical lens 1 to be tested can be determined. By integrating this, the wavefront aberration can be found.

この様に、本発明は、従来のロンキー法に比較
して、収差量の読み取り精度が高く、更にロンキ
ー縞のピーク位置以外の縞次数も決定できる(縞
の内挿ができる。)ことが特長で、従つてこれら
を積分して得られる破面収差の測定精度も高い。
As described above, the present invention has a feature that the accuracy of reading the amount of aberration is higher than that of the conventional Ronchi method, and that it is also possible to determine fringe orders other than the peak position of Ronchi fringes (interpolation of fringes is possible). Therefore, the measurement accuracy of the fracture surface aberration obtained by integrating these values is also high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のロンキー検査法の説明図、第2
図A,B,C,Dは従来方法により得られたロン
キー縞。第3図は本発明の非球面レンズへの適用
により得られたロンキー縞、第4図はこのロンキ
ー縞の一断面の強度分布を測定し、格子位相δo
パラメータとして表示した図、第5図は一断面の
2つの特定位置に注目してそれらの点における強
度変化を位相をパラメーターに表した図、第6図
はロンキー縞の位相頂を求め場所xに関して表示
した図、第7図は被測定素子の横収差曲線。第8
図は収差曲線。第9図は本発明を実現するための
ブロツク図。(図中1は被光学素子の射出瞳面、
2はロンキー格子、3は点光源、4はコリメータ
ー、5は平殊光、6はステージ、7はTVカメラ
又は二次元イメージセンサー、8は画像メモリ
ー、9はコンピユーター。)
Figure 1 is an explanatory diagram of the conventional Ronchi test method, Figure 2
Figures A, B, C, and D are Ronchi fringes obtained by the conventional method. Fig. 3 shows Ronchi fringes obtained by applying the present invention to an aspherical lens, Fig. 4 shows the intensity distribution of one cross-section of the Ronchi fringes measured and the grating phase δ o is displayed as a parameter, and Fig. 5 The figure shows intensity changes at two specific positions in a cross section expressed using the phase as a parameter, Figure 6 shows the phase peak of the Ronchi fringe and displays it with respect to location x, and Figure 7 Transverse aberration curve of the device under test. 8th
The figure shows the aberration curve. FIG. 9 is a block diagram for realizing the present invention. (1 in the figure is the exit pupil plane of the optical element,
2 is a Ronchi grating, 3 is a point light source, 4 is a collimator, 5 is a flat light beam, 6 is a stage, 7 is a TV camera or two-dimensional image sensor, 8 is an image memory, and 9 is a computer. )

Claims (1)

【特許請求の範囲】 1 被検光学非球面の焦点位置又はその近くに配
置した光学格子を間欠的に移動させ、投射面上の
少くとも1つの固定点において間欠移動により生
じる複数の干渉縞の光強度を検出し、基準値に対
する光強度の変化から前記の固定点に対応する光
学非球面の位置における凹凸を判断することを特
徴とした光学非球面の検査法。 2 前記の基準値が被検光学非球面の光軸に対す
る間欠移動前の光学格子の位置を表わしている特
許請求の範囲第1項に記載の光学非球面の検査
法。 3 投射面上の少くとも2つの固定点において間
欠移動により生じる複数の干渉縞の光強度を検出
し、一方の固定点の光強度の変化を基準値とし
て、この基準値に対する他方の固定点の光強度の
変化からこの他方の固定点に対応する光学非球面
の位置における凹凸を判断する特許請求の範囲第
1項に記載の光学非球面の検査法。
[Claims] 1. An optical grating placed at or near the focal point of an optical aspherical surface to be tested is moved intermittently, and a plurality of interference fringes generated by the intermittent movement are generated at at least one fixed point on the projection surface. 1. A method for inspecting an optical aspherical surface, comprising detecting light intensity and determining irregularities at a position of the optical aspherical surface corresponding to the fixed point based on a change in the light intensity with respect to a reference value. 2. The method for inspecting an optical aspherical surface according to claim 1, wherein the reference value represents the position of the optical grating before intermittent movement with respect to the optical axis of the optical aspherical surface to be inspected. 3 Detect the light intensity of a plurality of interference fringes caused by intermittent movement at at least two fixed points on the projection surface, use the change in light intensity of one fixed point as a reference value, and calculate the change in the light intensity of the other fixed point with respect to this reference value. The method for inspecting an optical aspherical surface according to claim 1, wherein the unevenness at the position of the optical aspherical surface corresponding to the other fixed point is determined from the change in light intensity.
JP22972882A 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO Expired - Lifetime JPH0240177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22972882A JPH0240177B2 (en) 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22972882A JPH0240177B2 (en) 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO

Publications (2)

Publication Number Publication Date
JPS59116522A JPS59116522A (en) 1984-07-05
JPH0240177B2 true JPH0240177B2 (en) 1990-09-10

Family

ID=16896760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22972882A Expired - Lifetime JPH0240177B2 (en) 1982-12-24 1982-12-24 KOGAKUHIKYUMENNOKENSAHO

Country Status (1)

Country Link
JP (1) JPH0240177B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288392A (en) * 2011-07-29 2011-12-21 温州医学院 Two-dimensional Ronchi grating-based freeform surface spectacle lens focal power measuring device
CN112114501B (en) * 2020-10-23 2023-06-02 东方晶源微电子科技(北京)有限公司深圳分公司 Method for calculating Langerhans shearing interference image in photoetching projection objective

Also Published As

Publication number Publication date
JPS59116522A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
EP2212681B1 (en) Fourier transform deflectometry system and method
JP3811709B2 (en) Method and apparatus for absolute measurement of the geometric or optical structure of an optical element
US4340306A (en) Optical system for surface topography measurement
EP1869401B1 (en) Method for accurate high-resolution measurements of aspheric surfaces
JP5021054B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
US5625454A (en) Interferometric method for optically testing an object with an aspherical surface
US4387994A (en) Optical system for surface topography measurement
CA2311014A1 (en) In situ projection optic metrology method and apparatus
DE102013203883B4 (en) Method for measuring an aspherical surface, device for measuring an aspherical surface, device for producing an optical element and optical element
US9255879B2 (en) Method of measuring refractive index distribution, method of manufacturing optical element, and measurement apparatus of refractive index distribution
Trivedi et al. Measurement of focal length using phase shifted moiré deflectometry
JP5575161B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
Schulz Topography measurement by a reliable large-area curvature sensor
Dhanotia et al. Focal length and radius of curvature measurement using coherent gradient sensing and Fourier fringe analysis
Dhanotia et al. Improved accuracy in slope measurement and defect detection using Fourier fringe analysis
JPH03128411A (en) Optical form measuring instrument
JPH0240177B2 (en) KOGAKUHIKYUMENNOKENSAHO
Chang et al. Collimation testing and calibration using a heterodyne Moiré method
CN108267094A (en) A kind of non-cylindrical interference splicing measuring systems and method based on rotation CGH
JP7293078B2 (en) Analysis device, analysis method, interference measurement system, and program
JP6395582B2 (en) Phase singularity evaluation method and phase singularity evaluation apparatus
RU2491525C1 (en) Method for interferometric control of image quality and distortion of optical systems at operating wavelength
Wyant Precision optical testing
De Nicola et al. Interferometric focal length measurement of power-distributed lenses
JPH08320205A (en) Evaluation apparatus for interference fringes and inspection method of diffraction interference optical system employing the apparatus