JPS59116346A - Copper alloy for damper of rotor of superconductive generator - Google Patents

Copper alloy for damper of rotor of superconductive generator

Info

Publication number
JPS59116346A
JPS59116346A JP23033682A JP23033682A JPS59116346A JP S59116346 A JPS59116346 A JP S59116346A JP 23033682 A JP23033682 A JP 23033682A JP 23033682 A JP23033682 A JP 23033682A JP S59116346 A JPS59116346 A JP S59116346A
Authority
JP
Japan
Prior art keywords
rotor
alloy
damper
copper alloy
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23033682A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Satoru Katayama
花多山 悟
Koji Arita
幸司 有田
Masanori Moribe
森部 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23033682A priority Critical patent/JPS59116346A/en
Publication of JPS59116346A publication Critical patent/JPS59116346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To provide the titled Cu alloy consisting of prescribed percentages of Cr and Zr and the balance Cu with impurities and capable of sufficiently showing characteristics necessary for material for the damper of the rotor of a superconductive generator. CONSTITUTION:This Cu alloy for the damper of the rotor of a superconductive generator consists of 0.2-1.0wt% Cr, 0.005-0.3wt% Zr and the balance Cu with impurities. The alloy may further contain 0.01-0.05wt% in total of Ti and/or Ta. The Cu alloy shows a higher value of mechanical strength, especially yield strength than the generally required value at ordinary temp. to a very low temp., e.g., at 4.2-300k. The alloy has >=75% IACS electric conductivity, <=1.02 specific magnetic permeability and high weldability.

Description

【発明の詳細な説明】 本発明は超電導発電機ロータータンパー用銅合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for a superconducting generator rotor tamper.

超電導発電機は、水力発電、火力発電及び原子力発電な
どの発電所において使用されている電磁石コイルに超電
導材料を利用したものである。
A superconducting generator uses a superconducting material in an electromagnetic coil used in power plants such as hydroelectric power generation, thermal power generation, and nuclear power generation.

−殻に発電機は、固定されたフィル(ステーター)と、
その内部で回転するコイル(ローター)とからなり、タ
ービンと直結したローターが水圧、蒸気圧などで高速間
(することによって発電するのである。
- The generator in the shell has a fixed fill (stator),
It consists of a coil (rotor) that rotates inside the turbine, and the rotor, which is directly connected to the turbine, generates electricity at high speeds using water pressure, steam pressure, etc.

そして、従来は、このコイルに銅線を使っていたか、ロ
ータ一部を超電導コイルに代替することにより、 (]) 発を効率が0.5〜1%改善されるので省エネ
ルギーになる。
Conventionally, copper wire was used for this coil, or by replacing part of the rotor with a superconducting coil, the efficiency of power generation can be improved by 0.5 to 1%, resulting in energy savings.

(2)発電機を小型、軽量化できるので輸送、据イ1が
容易になる。
(2) The generator can be made smaller and lighter, making it easier to transport and install.

笠の効果を生し、経済性が高まる。特に、百方キロワッ
ト縁の発電機を超電導化することによって、1年問に石
油が約5万バーレル(1バーレルは+591)もの燃料
を節約することができる。
It produces a shade effect and increases economic efficiency. In particular, by converting power generators with 100 kilowatts to superconductivity, it is possible to save approximately 50,000 barrels of oil (1 barrel = +591) per year.

このような、巨万キロワンド級の超電導発電磯のロータ
ーの常温及び1氏温のダン2く一材料として、各々、外
径VノIV)00IIIII+、肉1’l 15 = 
50m+n、 lさ50(10= GOO(linen
の大径管か同芯、同軸管として(リリIJされる。
As the two materials of the rotor of such a superconducting power generation rock of the gigantic kilowatt class at normal temperature and 1 degree Celsius, the outer diameter V no IV) 00 III + and the flesh 1'l 15 =
50m+n, lsa50(10=GOO(linen)
As a large diameter tube or concentric or coaxial tube (lily IJ).

これらのタンパ−H料は、非磁性のサボーI祠で固)ビ
支持されるか、回転数が:IGOOIIllらあること
から、遠心力、起動、停止による遠心力の変動、回転中
の回11i曲は、電磁力・トルク、ローターの温度」−
ガによる熱膨張熱応力、振動、常温から極低温間の熱収
縮熱応力等の種々の要因か(−1加される、−とを梯介
的に考慮すると、タンパ−祠料としては、少なくとも常
温における導電率が7S%IA (l S以1−142
〜:300Kにおける耐力か40に8r/In +11
 ”以1.で、か−)、比透磁率が1.(12以下の特
性を」l!備えたちのを選定しなければならな0゜また
、タンパーは上記したように大径管であるか呟通常の設
置1iiiて製作Cることは困t1[であるので、リン
クロール加−1−等による大径の短尺管を溶接により艮
尺化したり、可能ならは抽伸加−ににより製作すること
らできる。
These tamper-H materials are rigidly supported by a non-magnetic sabot I, or because the rotation speed is: The song is about electromagnetic force, torque, and rotor temperature.
Considering various factors such as thermal expansion thermal stress caused by moths, vibration, thermal contraction thermal stress between room temperature and cryogenic temperature (-1 added, The electrical conductivity at room temperature is 7S%IA (l S 1-142
~: Proof strength at 300K or 40 to 8r/In +11
In addition, as mentioned above, the tamper must be a large diameter pipe. However, it is difficult to manufacture the pipe using normal installation methods, so it is necessary to weld a short pipe with a large diameter using link rolls, etc., or, if possible, produce it by drawing. I can do it.

本発明は上記に説明したような超電導発電(幾のロータ
ーグンパー用祠料としての必要な特性を充分発揮するこ
とかできろ超電導発電機ローターダンパー用銅合金を提
供することにある。
The object of the present invention is to provide a copper alloy for a rotor damper of a superconducting power generator, which can sufficiently exhibit the necessary properties as an abrasive for a rotor damper of a superconducting power generator as described above.

本発明に係る超電導発電機ロータータ゛ンパー用11・
1合金は、(])Cr0.2〜1.0…I%、7.r 
(1,0(15−O,3+ut%を含み、残部C1及び
不純物からなることを特徴とする超電導発電機ローター
ダンパー用11・1合金を第1の発明とし、(2)  
Cr O,2−]、O+u1%、Z r O,(105
= 0.3+u1.%を含み、更に′V1、′1゛aの
1tl又ハ2 種ヲ合itlテ0.01−0.0511
1L%ヲ含ミ、’d 部(コ(1及び不純物からなるこ
とを特徴とする超電導発電(幾ローターグンパー用銅合
金を第2の発明とし、(3)  Cr O,2−1,(
lu+1%、Z r (1,(1(15−0,3u+1
%を含み、更に、l\l、 S i、 N i、 Zn
、A8.111、Snの1種又は2種以−1−を合金で
0.01・−〇、bu1%を含み、残部Cu及U不純物
からなることを特徴とする超電導発電(幾ロータータ゛
ンパー用銅合金を第3の発明とする3つの発明よりなる
ものである。
11 for superconducting generator rotor damper according to the present invention.
1 alloy has (]) Cr0.2-1.0...I%, 7. r
(11.1 alloy for a rotor damper of a superconducting generator characterized by containing 1,0(15-O,3+ut%, and the remainder consisting of C1 and impurities) is defined as a first invention, (2)
Cr O,2-], O+u1%, Z r O, (105
= 0.3+u1. %, and also 'V1, '1'a's 1tl or Ha2 species itlte 0.01-0.0511
The second invention is a superconducting power generation (copper alloy for rotor pumper) characterized by comprising 1L%, 1L%, 1% and impurities, (3) CrO, 2-1, (
lu+1%, Z r (1, (1(15-0,3u+1
%, and further includes l\l, S i, N i, Zn
, A8.111, an alloy containing one or two or more types of Sn, containing 0.01. This invention consists of three inventions, with the third invention being a copper alloy.

本発明に係る超電導発電(幾ローターグンパー用銅合金
、即ち、Cu −Cr −Z r系合金において、4.
2−3CIOKにおける耐力の向−には、金属Cr及び
C11] 7. rの両(ji出物によるものである。
4. In the superconducting power generation according to the present invention (copper alloy for rotor pumper, that is, Cu-Cr-Zr alloy).
2-3 Metals Cr and C11 are used for yield strength in CIOK] 7. Both (ji) of r are due to the product.

本発明に係る超電導発電(戊ロータータンバー用i同合
金の含有成分及び成分?1す介について説明する。
The components and components of the superconducting power generation (rotor tambour) alloy according to the present invention will be explained.

(山はCu中に微細な金属C「として41T出させるこ
とによって、耐力が向I・、するものであり、含イ1m
か(1,2IIIL%未満では溶1本化処理、補出処理
を行なっても析出する金属(lr量か小ないため耐力の
向にか期待できす、また、I、(1+u1%を越えて含
有されると(コ(1中・\の飛火固溶限を越え金属C+
として晶出し、そして、二の晶出物は巨大であるため剛
力の向1−には寄与しない。よって、Cr含有量は0.
2〜l、(la+L%とする。
(The peak is due to the fact that 41T is produced as a fine metal C in the Cu, and the yield strength is increased by 1 m.)
If it is less than 1,2III%, metal will precipitate even if melting treatment or supplementation treatment is performed (because the amount of lr is small, it can be expected that the yield strength will improve. If it is contained, metal C+ exceeds the flying solid solubility limit of (1)
The second crystallized substance is so large that it does not contribute to the stiffness direction. Therefore, the Cr content is 0.
2~l, (la+L%).

Z、はCI+中に微細な(:uIZrの形で析出させる
ことによって、・1.2〜3(IOKにおける耐力が向
上するものであるか、含有量が0.005u+L%未満
では溶体化処理、時効処理を行なっても(: u:lZ
 rの析出電は少なく耐力の向には期待できず、また、
0.31111%を越えて含有されると(九中における
固溶限を越えCu、Zrが晶出し、Crで説明したと同
様にこの晶出物は耐力の向上には全く寄りしなり・。よ
って、Zr含有量は0.005−0.3u+1%とする
By precipitating Z in the form of fine (:uIZr) in CI+, the yield strength at 1.2 to 3 (IOK) is improved, or if the content is less than 0.005u+L%, solution treatment, Even after aging treatment (: u:lZ
The precipitated charge of r is small and cannot be expected to improve yield strength, and
If the content exceeds 0.31111% (exceeding the solid solubility limit in Cr), Cu and Zr will crystallize, and as explained for Cr, these crystallized substances will not improve yield strength at all. Therefore, the Zr content is set to 0.005-0.3u+1%.

1゛1、Taは鋳塊の組織4:微細化し、熱間加工性を
向上させる元素であるが、含有量が(1、0+ +u 
1%未満ではこの効果がなく、また、0.05…L%を
越えて含有されると導電率が低下する。よって、i’ 
i、′「aの含有量は 1種又は2種を合計で(1、+
l I〜0.05u+1%とする。
1.1, Ta is an element that refines the ingot structure 4 and improves hot workability, but the content is (1,0+ +u
If the content is less than 1%, this effect will not be obtained, and if the content exceeds 0.05...L%, the conductivity will decrease. Therefore, i'
i, 'The content of a is 1 or 2 types in total (1, +
l I~0.05u+1%.

A L S i、 Mn、Ni、Zn、A8、In、S
nは含有量か(1,0]u+L%未満では耐力向上の効
果はなく、また、0.11%を越えて含有されると導電
率が低下する。
A L Si, Mn, Ni, Zn, A8, In, S
If the content of n is less than (1,0]u+L%, there is no effect of improving the yield strength, and if the content exceeds 0.11%, the conductivity decreases.

よって、A1.5iJ4n、Ni、Zn、A8、In、
Snは1種又は2種以上を合計で0.01−〇、1us
t%とする。
Therefore, A1.5iJ4n, Ni, Zn, A8, In,
Sn is one or more types in total 0.01-〇, 1 us
It is assumed to be t%.

H2は、超電導発電機ローターダンパー用銅合金に要求
される高品質の溶接部を得るためには0.0006%、
即ち、6plun以下に規制することが望ましい。
H2 is 0.0006% in order to obtain the high quality welds required for copper alloys for superconducting generator rotor dampers.
In other words, it is desirable to limit the amount to 6 plun or less.

本発明に係る超電導発電磯ロータータンパ−の実施例を
説明[る。
An embodiment of the superconducting power generation rock rotor tamper according to the present invention will be described.

実ルatやり 第1表に示1含有成分及び成分即]合となるように以ド
説明する製法によって、本発明に係る超電導発電(幾ロ
ーターダンパ用銅合金鋳塊を製造した。
A copper alloy ingot for a superconducting power generator (rotor damper) according to the present invention was manufactured by the manufacturing method described below so as to obtain the ingredients shown in Table 1.

即ち、溶量21.onの真空高周波溶解炉を使用し、電
解銅の溶落後1 (1−’111111118真空中、
] 3(10℃の温度でCu  10%Crの中間合金
、CLI  、’lO%Z「中間合金、更に、種//の
添加材を投入し、これらの添加材料の溶込みを確認した
後、Arカ゛スを吹込み、] (,1−’ mm I 
I 6真空とし、]]70’CにテCu −50%へ1
8を所定量添加し、更に、ノ\rガスを吹込み5(10
m+nIIgで沈静後]−注き法にて、頭部:1vさ3
90 mln、1’f+’+ 700+n+n、底部:
1゛7さ340+n+n、輻610+n111、艮す1
16(lIIIInの鋳塊を得た。
That is, the amount of solubility is 21. After melting off the electrolytic copper using a vacuum high-frequency melting furnace with
] 3 (Cu 10% Cr intermediate alloy, CLI, 'lO% Z' intermediate alloy at a temperature of 10°C, and additional materials of seeds// were added, and after confirming the penetration of these additive materials, Inject Ar gas,] (,1-' mm I
I 6 vacuum, ]] 70'C to -50% 1
Add a predetermined amount of No. 8, and then blow in gas to add No.
After subsidence with m+nIIg]-By pouring method, head: 1vsa3
90 mln, 1'f+'+ 700+n+n, bottom:
1゛7sa340+n+n, 輻610+n111, 艮su1
An ingot of No. 16 (lIIIn) was obtained.

、=)l+表i:おいて、脱酸剤としては、へ旬、13
、IうC1IIをf集用した。
,=)l+Table i: As a deoxidizing agent, 13
, I used C1II as a collection.

このようにして9りられた鋳塊を、950’Cで熱間鍛
造を11ない、厚3 )tO5In+IIX幅51 (
1+nm X長さ18(10In Illに加]ニし、
外部表面欠陥を深さ約10 m +n切削して除去し、
その後950°Cで厚さ20+n+nまで熱間圧延を行
なった。、−の材料を再度95(1’cで] lit溶
木化処理後水中冷却腰50%加]二十で冷間圧延を11
なって厚3 ]0+nmとし、伺0’Cで211r時効
処理を行ない1.J]SI3号B、厚3 4 +nmの
試験片に加二にし、液体窒素温度及び常温にて引張試験
を行なった。その結果を第2表に示す。また、第3表に
20’Cにおける導電率の測定結果を示す。
The ingot thus obtained was hot-forged at 950'C for 11 minutes to obtain a thickness of 3)tO5In+IIX width of 51 (
1+nm x length 18 (in addition to 10In Ill),
Remove external surface defects by cutting to a depth of approximately 10 m +n,
Thereafter, hot rolling was performed at 950°C to a thickness of 20+n+n. , - material was cold-rolled again at 95 (at 1'c) lit in water after melting treatment with 50% cooling strength] at 20 at 11
The thickness was set to 3]0+nm and subjected to 211r aging treatment at 0'C. J] A test piece of SI No. 3 B with a thickness of 3 4 +nm was used and a tensile test was conducted at liquid nitrogen temperature and room temperature. The results are shown in Table 2. Further, Table 3 shows the measurement results of electrical conductivity at 20'C.

さらに、第1表のNo、6合金の2.4+nmφ×2.
41111111の試験片を使用して、株式会社神戸製
鋼所製の超電導マグネットにて発生させた25,800
ガウスの磁場中に入れ、4.2K及び77にの温度にて
、プリンストン・アプライド・リサーチセンター材製の
磁力計により、比透磁率を測定した。その結果を第4表
に示す。
Furthermore, 2.4+nmφ×2. of No. 6 alloy in Table 1.
25,800 was generated using a superconducting magnet manufactured by Kobe Steel, Ltd. using a test piece of 41111111.
The relative permeability was measured with a magnetometer manufactured by Princeton Applied Research Center Materials in a Gaussian magnetic field at a temperature of 4.2 K and 77°C. The results are shown in Table 4.

第3表 第4表 また、本発明合金No、6の厚さ20+nm、幅100
 m+n、長さ200(面の板材に加速電圧+50KV
、ビーム電流60+n A 、溶接速度20cm/分、
ワークディスタンス400 m+n、abイ直0.95
、オノシレーションパターン×=()、Y二1m11、
オノシレーション周波数100(I )−1zの条1!
1で電子ビーム溶接試験を行ない、ビード外観調査、X
線非破壊検査、ビード部横断面および縦断面のマクロ組
織を調べた結果欠陥もなく良好であった。
Table 3 Table 4 Also, the invention alloy No. 6 has a thickness of 20+nm and a width of 100 nm.
m+n, length 200 (acceleration voltage +50KV on the surface plate material
, beam current 60+nA, welding speed 20cm/min,
Work distance 400 m+n, ab straight 0.95
, Onosillation pattern x = (), Y21m11,
Article 1 of onoscillation frequency 100(I)-1z!
In step 1, conduct an electron beam welding test, investigate the bead appearance,
The results of non-destructive line inspection and examination of the macrostructure of the cross section and longitudinal section of the bead portion revealed no defects and were in good condition.

これらの結果から、本発明に係る超電導発電酸ローター
グンパー用合金は、常温から極低温F、例えば、4.2
に〜300Kにおいて、機械的強度、特に耐力が通常要
求される以上の数イ1aを示し、また、導電率も75%
lAC3以上であり、さらに、比透磁率は1.02以下
であり、溶接性ら良好であるという優れた特性を有して
いることがわかる。
From these results, the superconducting power generation acid rotor pumper alloy according to the present invention can be
At ~300K, the mechanical strength, especially the proof stress, was 1a, which is higher than normally required, and the electrical conductivity was 75%.
It can be seen that it has excellent properties such as lAC3 or more, relative magnetic permeability of 1.02 or less, and good weldability.

Claims (1)

【特許請求の範囲】 (] )  Cr O,271,O+u1%、Z r 
O,0(15−+1. :lu+1%を含み、残部Cu
及υ不純物からなることを特徴とする超電導発電数ロー
ターダンパー用銅合金。 (2)  Cr O,2−1,Ou+1%、Z、r O
,(1(15〜()、:(u+t%を含み、更に、i’
 i 、 i’ aの1種又は2種を合81で0.01
〜(1,05wt%を含み、残部Cu及び];純物から
なることを特徴とする超電導発電機ローターダンパー用
銅合金。 (3)  Cr O,2−1,oulL%、7. r 
O,005= 0.3+II1%を含み、更に、ALS
i、Ni、Zll、ノ〜8、In、出1のL神父1i2
fQilJノ、1−ヲ合Nl’r O,Of −(1,
I+II1%を含み、残部Cu及び不純物からなること
を特徴とする超電導発電はローターダンパー用銅合金。
[Claims] (] ) Cr O, 271, O+u1%, Z r
O,0(15-+1.: Contains lu+1%, remainder Cu
A copper alloy for use in a superconducting power generation rotor damper, characterized by comprising impurities. (2) CrO, 2-1, Ou+1%, Z, rO
, (1(15~(), :(including u+t%, furthermore, i'
The sum of one or two of i, i' a is 81 and 0.01
A copper alloy for a rotor damper of a superconducting generator characterized by comprising ~(1.05 wt%, balance Cu and]; pure). (3) CrO, 2-1, oulL%, 7. r
O,005=0.3+II1%, furthermore, ALS
i, Ni, Zll, No ~ 8, In, Ex 1 Father L 1i2
fQilJノ,1-woifNl'r O,Of -(1,
Superconducting power generation is a copper alloy for rotor dampers, which is characterized by containing 1% of I+II and the remainder consisting of Cu and impurities.
JP23033682A 1982-12-24 1982-12-24 Copper alloy for damper of rotor of superconductive generator Pending JPS59116346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23033682A JPS59116346A (en) 1982-12-24 1982-12-24 Copper alloy for damper of rotor of superconductive generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23033682A JPS59116346A (en) 1982-12-24 1982-12-24 Copper alloy for damper of rotor of superconductive generator

Publications (1)

Publication Number Publication Date
JPS59116346A true JPS59116346A (en) 1984-07-05

Family

ID=16906239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23033682A Pending JPS59116346A (en) 1982-12-24 1982-12-24 Copper alloy for damper of rotor of superconductive generator

Country Status (1)

Country Link
JP (1) JPS59116346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810468A (en) * 1986-10-17 1989-03-07 Wieland-Werke Ag Copper-chromium-titanium-silicon-alloy
JP2019031713A (en) * 2017-08-08 2019-02-28 三芳合金工業株式会社 Chromium-zirconium copper alloy forged plate material and method for manufacturing the same
CN114836648A (en) * 2022-06-08 2022-08-02 安阳工学院 Preparation method of copper-manganese-based temperature-control sound-changing alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1165876B (en) * 1956-03-26 1964-03-19 Osnabruecker Kupfer Und Draht Use of a copper-chromium alloy for the production of electrically, mechanically and thermally highly stressed workpieces
JPS5378921A (en) * 1976-12-23 1978-07-12 Toshiba Corp Metallic product and its manufacture and use
JPS55104449A (en) * 1979-02-02 1980-08-09 Hitachi Ltd High-strength high-electrically-conductive copper alloy with superior weldability
JPS565291A (en) * 1979-06-26 1981-01-20 Mitsui Eng & Shipbuild Co Ltd Joint structure of plate girder in marine structure
JPS5620136A (en) * 1979-07-30 1981-02-25 Toshiba Corp Copper alloy member
JPS56102537A (en) * 1980-01-16 1981-08-17 Toshiba Corp Copper alloy member
JPS5717929A (en) * 1980-07-07 1982-01-29 Minolta Camera Co Ltd Camera capable of flash photographing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1165876B (en) * 1956-03-26 1964-03-19 Osnabruecker Kupfer Und Draht Use of a copper-chromium alloy for the production of electrically, mechanically and thermally highly stressed workpieces
JPS5378921A (en) * 1976-12-23 1978-07-12 Toshiba Corp Metallic product and its manufacture and use
JPS55104449A (en) * 1979-02-02 1980-08-09 Hitachi Ltd High-strength high-electrically-conductive copper alloy with superior weldability
JPS565291A (en) * 1979-06-26 1981-01-20 Mitsui Eng & Shipbuild Co Ltd Joint structure of plate girder in marine structure
JPS5620136A (en) * 1979-07-30 1981-02-25 Toshiba Corp Copper alloy member
JPS56102537A (en) * 1980-01-16 1981-08-17 Toshiba Corp Copper alloy member
JPS5717929A (en) * 1980-07-07 1982-01-29 Minolta Camera Co Ltd Camera capable of flash photographing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810468A (en) * 1986-10-17 1989-03-07 Wieland-Werke Ag Copper-chromium-titanium-silicon-alloy
JP2019031713A (en) * 2017-08-08 2019-02-28 三芳合金工業株式会社 Chromium-zirconium copper alloy forged plate material and method for manufacturing the same
CN114836648A (en) * 2022-06-08 2022-08-02 安阳工学院 Preparation method of copper-manganese-based temperature-control sound-changing alloy

Similar Documents

Publication Publication Date Title
CN108486433B (en) Al-Mg-Sc-Zr series aluminum alloy composition for selective laser melting technology and preparation method of formed part
CN108425037B (en) A kind of powder metallurgy superalloy and preparation method thereof
US20180015573A1 (en) Aluminum-based metallic glass cladding layer and preparation method thereof
EP3511432A1 (en) Softening resistant copper alloy, preparation method, and application thereof
CN113020598B (en) Selective laser melting formed nickel-based high-temperature alloy and preparation method thereof
CN111188034A (en) Preparation method of corrosion-resistant medium-entropy alloy laser cladding coating with good low-temperature performance
CN110172620A (en) Selective laser melting process Al-Si-Mg alloy and its product preparation method
CN108374132A (en) Powder used in a kind of novel corrosion-resistant stainless steel containing Nb of laser gain material manufacture
CN113293370A (en) High-entropy alloy coating for laser cladding of aluminum alloy surface and preparation method
CN1776997A (en) Large-capacity steam turbine generator rotor copper alloy slot wedge and its preparing method
CN106048667B (en) A kind of connection method of the same race or dissimilar metal based on plating
JPS59116346A (en) Copper alloy for damper of rotor of superconductive generator
JP2017519643A (en) Malleable boron-supported nickel-based welding material
CN108326287B (en) Corrosion-resistant laser cladding powder and cladding method and application thereof
CN104233031A (en) Microalloying AZ91 magnesium alloy with high strength and proper solderability and preparation method thereof
CN109604861B (en) Iron-based solder for connecting TiAl alloy and Ni-based high-temperature alloy
CN113996970B (en) AlCrCuFe2.5NiTix corrosion-resistant high-entropy overlaying alloy and preparation method thereof
CN113278968B (en) High-temperature oxidation resistant Al-Si composite addition modified nickel-based high-temperature alloy coating and preparation method thereof
US5425912A (en) Low expansion superalloy with improved toughness
Krenz Corrosion of Aluminum-Nickel Type Alloys In High Temperature Aqueous Service
CN113234962A (en) Plasma cladding modified nickel-based high-temperature alloy coating for repairing surface and preparation method thereof
Prus et al. Boron Stainless Steel Alloys
CN112024869A (en) SMTGH5188 spherical powder for 3D printing and preparation method and application thereof
Xiao et al. Influence of yttrium on the structure and magnetostriction of Fe83Ga17 alloy
CN108728724B (en) Method for improving radiation resistance of ferritic steel by adding trace Au