JPS59116149A - Optical fiber for infrared rays and its manufacture - Google Patents

Optical fiber for infrared rays and its manufacture

Info

Publication number
JPS59116149A
JPS59116149A JP57224934A JP22493482A JPS59116149A JP S59116149 A JPS59116149 A JP S59116149A JP 57224934 A JP57224934 A JP 57224934A JP 22493482 A JP22493482 A JP 22493482A JP S59116149 A JPS59116149 A JP S59116149A
Authority
JP
Japan
Prior art keywords
glass
core
rare earth
earth element
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57224934A
Other languages
Japanese (ja)
Inventor
Hidenori Mimura
三村 栄紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP57224934A priority Critical patent/JPS59116149A/en
Publication of JPS59116149A publication Critical patent/JPS59116149A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To manufacture an optical fiber for infrared rays with a small loss due to scattering by coating a core of ZrF4 glass having a specified composition with a layer of fluoride glass having a specified composition and by carrying out drawing at the m.p. of the core or above. CONSTITUTION:ZrF4 glass 2 having a composition consisting of, by mole, 50- 70% ZrF4, 25-40% BaF2, 0-10% LnF3 (Ln is Y or a rare earth element), 0- 8% AlF3 and 0-8% one or more among LiF, NaF and PbF2 and fluoride glass 1 consisting of 25-50% AlF3, 30-60% one or more among BaF2, SrF2, CaF2 and MgF2, 0-25% LnF3 (Ln is Y or a rare earth element) and 0-10% one or more among PbF2, LiF and NaF are put in a crucible 5 so that a core of the glass 2 is coated with a layer of the glass 1, and they are heated with a heater 6 to the m.p. of the core 2 or above at which the layer 1 shows viscosity suitable for drawing. Drawing is then carried out, and the resulting fiber is wound around a winding drum 8 through a capstan 7.

Description

【発明の詳細な説明】 本発明は赤外光を伝送する赤夕1月1光学ファイバ及び
その製J11.方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a J11.1 optical fiber for transmitting infrared light and a J11.1 optical fiber made therefrom. It is about the method.

フン化/ルコニウムをガラス形成剤として組成範囲が、
モルパーセントで ZrF、            50−70%BaF
、、           25−40%LnFs (
Ln=Y又は希土類元素)   0−10%AtF’3
.  0〜8% LiF、NaF、円)F2の少(とも  0−8%一つ
J:りなろ成分 (た/とし以上の成分の合h」は100%)となるよう
な多成分系フン化物ガラス(以後ZrF4系ガラスと称
す)は、赤外光にzJする透過特性が優れており、理論
的には0.1dB/Km以下の極めて低損失のファイバ
を作れる可能性がある。しかしながら、現在、実験的に
得られているファイバの損失値は最も低いもので12d
B/Kmであり、理論値よりも100倍以−1= 4?
J失が大きい。この原因は王としてファイバに含有され
る遷移金属などの不純物イオンによる吸収損失とガラス
相の中に析出する微細な結晶粒による散乱損失が大きい
ためである。
The composition range is fluoride/ruconium as a glass forming agent.
ZrF in mole percent, 50-70% BaF
,, 25-40% LnFs (
Ln=Y or rare earth element) 0-10%AtF'3
.. A multi-component fluoride with a low content of 0-8% LiF, NaF, Yen) F2 (both 0-8% one J: Rinaro component (the sum of more than 100%)) Glass (hereinafter referred to as ZrF4 glass) has excellent transmission characteristics for infrared light, and theoretically it is possible to create fibers with extremely low loss of 0.1 dB/Km or less.However, at present, , the lowest fiber loss value experimentally obtained is 12d.
B/Km, which is more than 100 times the theoretical value -1 = 4?
J loss is big. This is mainly due to the large absorption loss due to impurity ions such as transition metals contained in the fiber and the large scattering loss due to fine crystal grains precipitated in the glass phase.

従って、ファイバ損失を理論値に近づけるためには、こ
れら二つの原因を除去することが不可欠である。不純物
による吸収損失の低減化は、石英系ガラスファイバの例
に見られるように、十分精製° したガラス原料を使用
することによって可能であるが、ガラス中に微結晶が析
出し、散乱損失を生じる現象はフン化物ガラスに特有の
問題であり、散乱損失を低減化する方法については何ら
の解決策も見出されていないのが現状である。ZrF4
系ガラスファイバにおいて微結晶が析出する問題は、こ
のガラスの熱的性質とファイバの製造法に密接に関連し
ている。
Therefore, in order to bring the fiber loss close to the theoretical value, it is essential to eliminate these two causes. It is possible to reduce absorption loss due to impurities by using sufficiently purified glass raw materials, as seen in the example of silica-based glass fibers, but microcrystals precipitate in the glass, causing scattering loss. This phenomenon is a problem specific to fluoride glasses, and currently no solution has been found for reducing scattering loss. ZrF4
The problem of precipitation of microcrystals in glass fibers is closely related to the thermal properties of this glass and the method of manufacturing the fiber.

図1に代表的なZrF、系ガラスの示差熱分析曲線を示
す。図中、Tgはガラス転移温度、Tcは結晶化温度、
Tmは融点を示し、殆んどのZrF、系ガラスではTg
Th 320℃、TcTh390℃、Tm:!5]0℃
である。
FIG. 1 shows a differential thermal analysis curve of a typical ZrF-based glass. In the figure, Tg is glass transition temperature, Tc is crystallization temperature,
Tm indicates the melting point, and in most ZrF-based glasses, Tg
Th 320℃, TcTh 390℃, Tm:! 5] 0℃
It is.

図かられかるように、このガラスはTcよ390℃付近
でガラスから結晶に変化してしまうため、結晶を生じさ
せないためにはTc上390℃よりできるだ 5− は低い温度でガラスを取り扱うことが必要である。
As can be seen from the figure, this glass changes from glass to crystals at Tc of around 390°C, so in order to prevent crystal formation, it is necessary to handle the glass at a lower temperature than Tc of 390°C. is necessary.

しかじながC)、通常のZrF、系ガラスファイバの製
造法では、dずプリフォームロッドを作成し、リングヒ
ークVJ二ってロッドを加熱線引きする方法がとられて
41.・す、線引に適当な粘性を得るためにプリフォー
ム・ロッドはTcよ390℃に近い温度捷で加熱され、
その結果微結晶が析出する。即ち、ZrF、系ガラスで
は結晶化温度と、ファイバの線引に必要な粘度(10°
〜104ボイズ)を得る温度が接近していることが微結
晶を生じさせる原因となっている。従って、結晶の析出
を防ぐためには、融点Tmす」二で線引するか、結晶化
温度Tcよりずっと低い温度で線引することが必要であ
るが、前者の場合は粘性が低すぎるため、1だ、後者の
場合は粘性が高すきろためいずれも線引不可能であった
However, in the usual manufacturing method of ZrF-based glass fiber, a method is used in which a preform rod is created and the rod is heated and drawn using ring heat VJ2.・In order to obtain a suitable viscosity for wire drawing, the preform rod is heated at a temperature close to 390°C above Tc.
As a result, microcrystals precipitate. That is, for ZrF-based glasses, the crystallization temperature and the viscosity (10°
~104 voids) are close in temperature, which causes microcrystals to form. Therefore, in order to prevent crystal precipitation, it is necessary to draw the line at the melting point Tm2 or at a temperature much lower than the crystallization temperature Tc, but in the former case, the viscosity is too low. 1. In the latter case, it was impossible to draw a line due to the high viscosity.

本発明の1−1的はZ r F4系ガラスの融点Tmよ
り高い温度で線づ巨1丁能であり、そのため微結晶の析
出が少(散乱損失の小さい赤外用光学ファイバおよびそ
の製造方法を提供することにある。
1-1 of the present invention is capable of being wired at a temperature higher than the melting point Tm of ZrF4 glass, and as a result, there is little precipitation of microcrystals (an infrared optical fiber with low scattering loss and a method for manufacturing the same). It is about providing.

Jン下木発明の詳細な説明する。J. Shimogi's invention will be explained in detail.

前述したように、ZrF、系ガラスファイバにおける微
結晶の析出を防ぐためにはTrr+”510℃より高温
で線引できれば良いが、通常の線引きを行うためには粘
性が低すぎる。このような粘性の低い液体を線引きする
方法としては、液体を直接線引きするのではなく、適度
な粘度を有する被覆材内に封入し、被覆材と共に線引き
する方法が考えられる。通常は、このような被覆材とし
ては、石英ガラス、パイレックスガラス、ソーダガラス
等のガラス類、又はナイロン、テフロン等のプラスチッ
ク類が利用できるが、Z r F4系ガラスファイバの
被覆拐料としてはこれらの材料は一切適用することがで
きない。即ち、Z r F、系ガラスファイバに適用で
きる被覆材の条件は、0500〜600℃で線引きに適
度な粘性を有すること、■フッ化物に腐食されないこと
、■赤外透過特性の良いこと、■Z r F。
As mentioned above, in order to prevent the precipitation of microcrystals in ZrF-based glass fibers, it is sufficient to draw at a temperature higher than Trr + 510°C, but the viscosity is too low for normal drawing. A possible method for drawing low-temperature liquids is not to draw the liquid directly, but to enclose it in a coating material with an appropriate viscosity and draw it together with the coating material.Normally, such coating materials are Glasses such as quartz glass, Pyrex glass, and soda glass, and plastics such as nylon and Teflon can be used, but none of these materials can be used as a coating material for Z r F4 glass fibers. In other words, the conditions for the coating material that can be applied to ZrF-based glass fibers are: 1. It must have an appropriate viscosity for drawing at 0500 to 600°C, 2. It should not be corroded by fluoride, 2. It should have good infrared transmission characteristics, and 2. Z r F.

系ガラスより低屈折率であること、■耐候性の良いこと
などが不可欠の条件であるが、前述の被覆材でこれらの
条件をいずれも満足するものはなく、かかる被覆相の欠
如のためにZ r F、系ガラスの融液線引きが行われ
なかったともいえろ。そこで、前記条件を満たす被覆材
について種々の検討を行った結果、次の組成を有するフ
ッ化物ガラスあるいは7ノ燐酸カラスが条件を満たすこ
とを見出した。
The essential conditions are that the refractive index is lower than that of glass, and that it has good weather resistance, but none of the above-mentioned coating materials satisfies all of these conditions, and due to the lack of such a coating phase, It can also be said that melt drawing of the Z r F type glass was not performed. Therefore, as a result of conducting various studies on coating materials that satisfy the above conditions, it was found that fluoride glass or heptanophosphate glass having the following composition satisfies the conditions.

(モル%) AtF325〜50 LnF”3(L+1:Y又は希土類元素)   O〜2
5ただし各成分の合計は100モル係で、各成分は以下
のような組成範囲内である。
(mol%) AtF325~50 LnF"3 (L+1: Y or rare earth element) O~2
5 However, the total of each component is 100 moles, and each component is within the following composition range.

(モル%) BaF20〜30 SrF20〜30 CaF2      0〜50 MgF2      0〜30 PbF、       0〜10 LiF        O〜1O NaF        O〜10 また、」二記ンノ化物成分は、例えばAAFs→AtP
O4r BaF、 −+ Ba3(PO4)2 のよう
に、リン酸塩と置換することも可能である。この場合置
換量は屈折率nDがコアガラスの屈折率nDより小さい
範囲で、通常フン化物とリン酸塩のモル比で50%以内
である。−例として本発明のファイバにおける被覆ガラ
スとコアガラスの特性例を以下に示す。
(mol %) BaF20-30 SrF20-30 CaF2 0-50 MgF2 0-30 PbF, 0-10 LiF O-1O NaF O-10 In addition, the two phosphorus compound components are, for example, AAFs→AtP
It is also possible to substitute with a phosphate, such as O4r BaF, -+ Ba3(PO4)2. In this case, the amount of substitution is within a range where the refractive index nD is smaller than the refractive index nD of the core glass, usually within 50% of the molar ratio of fluoride and phosphate. - By way of example, the characteristics of the coating glass and core glass in the fiber of the invention are shown below.

40 [(]−x)AlF3+xklPoイ〕−20B
aF2−25CaF2−15YF3 (被覆ガラス)6
2ZrF4−30BaF28LaF、   (コアガラ
ス)ただし、noは屈折率、ηは550℃における粘度
を示す。
40 [(]-x)AlF3+xklPo]-20B
aF2-25CaF2-15YF3 (coated glass) 6
2ZrF4-30BaF28LaF, (core glass) where no is the refractive index and η is the viscosity at 550°C.

 9− 上に示すように、被覆ガラスはコアガラスより小さな屈
折率を有し、コアガラスの融点Tmより高い温度で線引
きに適当な粘度をもち、赤外光の透過特性も優れている
。また、フン化物に対する耐腐食性、耐候471も良好
で前述した条件をすべて満足している。従って、かかる
被覆ガラスとコアガラスを組合わせに本発明のファイバ
は、被覆ガラス内にコアガラスを封入することにより、
コアガラスの融点より高い温度で線引することが可能で
ある。そのため、線引時に微結晶が析出せず、散乱損失
の小さなファイバを得ることができる。
9- As shown above, the coated glass has a lower refractive index than the core glass, a suitable viscosity for drawing at temperatures above the melting point Tm of the core glass, and excellent infrared light transmission properties. In addition, the corrosion resistance against fluorides and weather resistance 471 were also good, and all the above-mentioned conditions were satisfied. Therefore, in the fiber of the present invention, which combines such a coated glass and a core glass, by encapsulating the core glass within the coated glass,
It is possible to draw at temperatures above the melting point of the core glass. Therefore, microcrystals do not precipitate during drawing, and a fiber with low scattering loss can be obtained.

本発明のファイバは、図2にファイバ断面を示す如く前
記組成範囲の被覆ガラス1をクラッド層とし、ZrF4
系ガラスをコア2とするfalの二層構造の他に、組成
の幾分異なるZrF、系ガラスでコア2とクラッド層;
(を構成しその外側を前記組成範囲の被覆ガラス1で被
覆するかtb+、コア2をZrF4系ガラスで形成し、
クラッド層4とその外側の被覆層1に前記組成範囲の組
成の幾分異なる被覆ガラスを用いろ三層構造のファイバ
(clを含む。三層構造にする利点は、コアカラスとク
ラッド層ガラスを同系統のガラスで構成することにより
、線膨張系数、赤外透過波長域を一致させることが容易
なことである。
The fiber of the present invention, as shown in the cross section of the fiber in FIG.
In addition to the two-layer structure of FAL with a core 2 made of glass, there is also a core 2 and cladding layer made of ZrF and glass of a somewhat different composition;
(and the outside thereof is covered with a coating glass 1 having the above composition range, or tb+, the core 2 is formed of ZrF4 glass,
The cladding layer 4 and the coating layer 1 outside the cladding layer 1 are coated with glass having slightly different compositions within the above composition range. By constructing the glass with a certain type of glass, it is easy to match the linear expansion coefficient and the infrared transmission wavelength range.

次に、本発明のファイバの製造方法について図3、図4
に基づいて述べる。図3(a)は二層構造のファイバ、
(blは三層構造のファイバをるつぼ線引きによって製
造する方法を示す。図中、1,2.3は対応する部分の
材料を示しており、5はるつぼ、6は加熱、ヒータ、7
はキャプスタン、8は巻き取りドラムを示す。本発明の
ファイバでは、前述した特定の被覆ガラスを最も外側の
被覆イ」として用いているため従来は不可能であったコ
アガラスの融点より高い温度での線引きが可能である。
Next, FIGS. 3 and 4 will be explained regarding the method of manufacturing the fiber of the present invention.
Based on this. Figure 3(a) shows a two-layer fiber;
(bl indicates a method for producing a fiber with a three-layer structure by crucible drawing. In the figure, 1, 2, and 3 indicate the materials of corresponding parts, 5 is a crucible, 6 is a heating element, 7 is a heater, and 7 is a crucible.
8 indicates a capstan, and 8 indicates a winding drum. In the fiber of the present invention, since the above-mentioned specific coating glass is used as the outermost coating, it is possible to draw the fiber at a temperature higher than the melting point of the core glass, which was previously impossible.

図4は、予め作成しておいたプリフォームロッドカラフ
ァイバを線引きする方法を示す。図中、9はプリフォー
ムロッドの送り機構を示す。この場合も、最も外側の被
覆層に前述の被覆ガラスを使用しているためコアガラス
の融点より高い温度での線引きが可能である。
FIG. 4 shows a method of drawing a preform rod colored fiber prepared in advance. In the figure, 9 indicates a preform rod feeding mechanism. Also in this case, since the above-mentioned coating glass is used for the outermost coating layer, drawing can be performed at a temperature higher than the melting point of the core glass.

以上説明したように、本発明のファイバはコアを形成す
るZrF、系ガラスの融点より高い温度での線引きが可
能であるため、フン化物ガラスファイバの本質的な欠点
とされていた線引時の微結晶の析出を防ぐことができ、
そのため散乱損失の小さな(] db/Km以下)赤外
用ガラスファイバを実現できろ。このように、本発明の
ファイバでは本質的な損失要因を除去できろため、理論
損失値に近い極めて低(11失の赤外用ファイバなイn
ることかできる。
As explained above, the fiber of the present invention can be drawn at a temperature higher than the melting point of the ZrF-based glass that forms the core. Can prevent precipitation of microcrystals,
Therefore, it is possible to realize an infrared glass fiber with low scattering loss (less than ] db/Km). As described above, since the fiber of the present invention can eliminate essential loss factors, the infrared fiber has an extremely low loss (11 losses) close to the theoretical loss value.
I can do that.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明に用いるガラスの示差熱分析曲線を示す特
性図、図2は本発明の実施例を示す横断面図、図3及び
図4は本発明による製造方法を説明するための系統図で
ある。 1・・・被検ガラス、  2・・・ZrF4系ガラス(
コア)、3.4・・・クランド層、  5・・・るつぼ
、 6・・・加熱ヒータ、  7・・・キャプスタン、
  8・・・巻取りドラム、 9・・・プリフォームロ
ッドの送り機構。 図 3 (0) (b) 閃  4 2、 (0) (b)
FIG. 1 is a characteristic diagram showing the differential thermal analysis curve of the glass used in the present invention, FIG. 2 is a cross-sectional view showing an example of the present invention, and FIGS. 3 and 4 are system diagrams for explaining the manufacturing method according to the present invention. It is. 1... Test glass, 2... ZrF4-based glass (
core), 3.4... Crucible layer, 5... Crucible, 6... Heater, 7... Capstan,
8... Winding drum, 9... Preform rod feeding mechanism. Figure 3 (0) (b) Flash 4 2, (0) (b)

Claims (2)

【特許請求の範囲】[Claims] (1)モルパーセントで Z r F450〜70% BaF2           25〜40%IJnF
3(Ln−Y又(・1希土類元素)   0−10%A
tF3           0〜8%LiF、NaF
’、PbF2の少くとも  0〜8%一つよりなる成分 (たたし以−Lの成分の合計は10(1%)の組成範囲
のガラスをコアとし、 モルパーセン1で At1i”3           25〜50%1、
nF3(I、n;:Y又は希土類元素)   0−25
%(たたし以−にの成分の合削は100%)であり、そ
の51っ次の成分の組成範囲が BaF20〜30% S r F20〜30% CaF2             0〜50 %Mg
 F20〜30% pbp2o〜10% Nal5O〜10% LiF       O〜10係 であイ)フン化物ガラス、又は、前記各成分の一部を相
当するリン酸塩で置換(−たフッ燐酸ガラスを最も夕1
側の被槽層ど(−で、散乱損失を小さくした赤外用光学
〕・アイバ。
(1) In mole percent Z r F450-70% BaF2 25-40% IJnF
3 (Ln-Y or (・1 rare earth element) 0-10%A
tF3 0-8%LiF, NaF
', a component consisting of at least 0 to 8% of PbF2 (the sum of the components of L is 10 (1%)), with a core of glass having a composition range of 10 (1%), At1i"3 with 1 mole percent 25 to 50 %1,
nF3 (I, n;: Y or rare earth element) 0-25
% (the grinding of the following components is 100%), and the composition range of the 51st component is BaF20-30% S r F20-30% CaF2 0-50% Mg
F20-30% pbp2o-10% Nal5O-10% LiFO-10 1
The side covered layer (infrared optics with - reduced scattering loss) - Eyeva.
(2)モルバーセン]・で Z r F4           50〜70%11
aF、            25−40%LnF、
 (Ln=Y又は希土類元素)  0〜10%A、tF
、            0〜8%Li1i”、Na
F、pbF2の少くとも  0〜8%−・つまりなる成
分 (た/どじ以にの成分の合泪は100%)の組成範囲の
ガラスがコアどなり、 モルパーセントで AlF2             25〜50%L 
n F3(Ln = y又は希土類元素)   0〜2
5%(ただし以」二の成分の合泪は100係)であり、
そのうち次の成分の組成範囲が BaF20−30% 5rF20〜30% CaF2      0−50 % MgFz       O〜30% PbF20〜10% NaF       0−10% 1、J + F       0〜10%である7ノ化
物ガ、ラス、又は、前記各成分の一部を相当するリン酸
塩で置換したフン燐酸ガラスを最も外側の被覆層となる
ように、前記コアの融点以上で前記被覆層が線引きに適
する粘度を示す温度で線引きすることを特徴とする赤外
用光学ファイバの製造方法。
(2) Molversen] Z r F4 50-70%11
aF, 25-40% LnF,
(Ln=Y or rare earth element) 0-10%A, tF
, 0-8% Li1i”, Na
Glasses with a composition range of at least 0 to 8% of F, pbF2 - 25 to 50% of AlF2 in mole percent L
n F3 (Ln = y or rare earth element) 0 to 2
5% (however, the ratio of the second component is 100%),
Among them, the composition range of the following components is BaF20-30% 5rF20-30% CaF2 0-50% MgFz O-30% PbF20-10% NaF 0-10% 1, J + F 0-10% , lath, or phosphoric acid glass in which a portion of each of the above components is replaced with a corresponding phosphate, as the outermost coating layer, and the coating layer exhibits a viscosity suitable for drawing at a temperature equal to or higher than the melting point of the core. A method for manufacturing an infrared optical fiber, which is characterized by drawing at a temperature.
JP57224934A 1982-12-23 1982-12-23 Optical fiber for infrared rays and its manufacture Pending JPS59116149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224934A JPS59116149A (en) 1982-12-23 1982-12-23 Optical fiber for infrared rays and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224934A JPS59116149A (en) 1982-12-23 1982-12-23 Optical fiber for infrared rays and its manufacture

Publications (1)

Publication Number Publication Date
JPS59116149A true JPS59116149A (en) 1984-07-04

Family

ID=16821466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224934A Pending JPS59116149A (en) 1982-12-23 1982-12-23 Optical fiber for infrared rays and its manufacture

Country Status (1)

Country Link
JP (1) JPS59116149A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874222A (en) * 1986-03-31 1989-10-17 Spectran Corporation Hermetic coatings for non-silica based optical fibers
JPH0280349A (en) * 1988-06-10 1990-03-20 Hoya Corp Fluoride glass for fiber
US5432131A (en) * 1992-05-01 1995-07-11 Sumitomo Electric Industtries, Ltd. Lead-containing fluoride glass, optical fiber and process for producing it
EP1018492A1 (en) * 1999-01-05 2000-07-12 Corning Incorporated Current measuring method and device
US6292292B1 (en) * 2000-02-18 2001-09-18 Photon-X Rare earth polymers, optical amplifiers and optical fibers
US6538805B1 (en) 1999-02-19 2003-03-25 Photon-X, Inc. Codopant polymers for efficient optical amplification

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874222A (en) * 1986-03-31 1989-10-17 Spectran Corporation Hermetic coatings for non-silica based optical fibers
JPH0280349A (en) * 1988-06-10 1990-03-20 Hoya Corp Fluoride glass for fiber
US5432131A (en) * 1992-05-01 1995-07-11 Sumitomo Electric Industtries, Ltd. Lead-containing fluoride glass, optical fiber and process for producing it
US5695880A (en) * 1992-05-01 1997-12-09 Sumitomo Electric Industries, Ltd. Lead-containing fluoride glass, optical fiber and process for producing it
EP1018492A1 (en) * 1999-01-05 2000-07-12 Corning Incorporated Current measuring method and device
US6538805B1 (en) 1999-02-19 2003-03-25 Photon-X, Inc. Codopant polymers for efficient optical amplification
US6292292B1 (en) * 2000-02-18 2001-09-18 Photon-X Rare earth polymers, optical amplifiers and optical fibers
EP1275179A4 (en) * 2000-02-18 2005-02-02 Photon X Inc Rare earth polymer optical amplifier or fiber

Similar Documents

Publication Publication Date Title
JP3088752B2 (en) Heavy metal oxide glass optical fiber for use in laser medical surgery and method of making same
US4674835A (en) Fluoride glass optical fiber
US4380588A (en) Glass for infrared ray-transmitting optical fibers and optical fibers formed from said glass
US4445755A (en) Infrared transmitting optical wave guide
US5148510A (en) Optical fiber made of galliobismuthate glasses and optical devices using same
JPS59116149A (en) Optical fiber for infrared rays and its manufacture
EP0249886A1 (en) Method of manufacturing hollow core optical fibers
US5093287A (en) Galliobismuthate glasses
US5695880A (en) Lead-containing fluoride glass, optical fiber and process for producing it
JPH08133779A (en) Infrared rays transmission glass
JPH0952731A (en) Fluorophosphoric acid glass, optical fiber using the same and its production
JP3145136B2 (en) Infrared transparent fluoride glass
JPH11343139A (en) Clad glass composition for halide core glass and glass composition for coating halide core glass
JPS63144141A (en) Fluorophosphate optical glass
Harrington Mid-IR and Infrared Fibers
JPH05279077A (en) Fluoride glass
Charron et al. New glass compositions containing alkali metal derived from BIGaZYbT
JPH02283636A (en) Low-melting glass composition
JPH0812370A (en) Germanium oxide based glass composition
KR0183492B1 (en) Fluoride glass fiber
JPS627139B2 (en)
Maze et al. Fluoride glass infrared fibers for light transmission up to 5 pm
JPH02293347A (en) Optical fiber fluoride glass
JPH03242349A (en) Infrared ray transmitting fiber
JPS5849644A (en) Glass fiber material for infrared transmission