JPH0280349A - Fluoride glass for fiber - Google Patents

Fluoride glass for fiber

Info

Publication number
JPH0280349A
JPH0280349A JP63142898A JP14289888A JPH0280349A JP H0280349 A JPH0280349 A JP H0280349A JP 63142898 A JP63142898 A JP 63142898A JP 14289888 A JP14289888 A JP 14289888A JP H0280349 A JPH0280349 A JP H0280349A
Authority
JP
Japan
Prior art keywords
fluoride
glass
fluoride glass
baf2
zrf4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63142898A
Other languages
Japanese (ja)
Inventor
Tetsuo Izumitani
泉谷 徹郎
Michimasa Matsukawa
松川 道正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP63142898A priority Critical patent/JPH0280349A/en
Publication of JPH0280349A publication Critical patent/JPH0280349A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To render superior stability to crystallization to fluoride glass for an optical fiber and to suppress light scattering by incorporating a specified percentage of P2O5 into the fluoride glass contg. ZrF4 and/or HfF4 and BaF2 as fluorides. CONSTITUTION:P2O5 is incorporated into fluoride glass contg. ZrF4 and/or HfF4 and BaF2 as essential fluoride components by >=0.1mol%, preferably 0.1-15mol% of the total amt. of all the fluoride components to obtain fluoride glass for an optical fiber. ZrF4 and/or HfF4, AlF3 and at least one among MgF2, CaF2, SrF2 and BaF2 may be contained as essential fluoride components.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はファイバー用フッ化物ガラスに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to fluoride glasses for fibers.

本発明のファイバー用フッ化物ガラスは、光通信用ファ
イバー、医療用ファイバー、工業用ファイバー等に好ま
しく用いられる。
The fluoride glass for fibers of the present invention is preferably used for optical communication fibers, medical fibers, industrial fibers, and the like.

[従来の技術およびその問題点] 光通信用ファイバーとしては、気相合成法(CVD法)
等により作製される光の損失の少ない石英ガラスファイ
バーが用いられている。しかしながら、石英ガラスファ
イバーは、波長1.5μ■の光を伝送するものである。
[Conventional technology and its problems] As fiber for optical communication, vapor phase synthesis method (CVD method)
A quartz glass fiber with low optical loss, which is manufactured by the above method, is used. However, the quartz glass fiber transmits light with a wavelength of 1.5 μι.

光の損失はレーリー散乱と赤外吸収により決まり、石英
ガラスの場合は理論損失値に近いところまで光の損失レ
ベルは到達している。
Light loss is determined by Rayleigh scattering and infrared absorption, and in the case of silica glass, the light loss level has reached a level close to the theoretical loss value.

そこで光の損失が少なくなる2゜55μmの光を伝送で
きるファイバーとしてフッ化物ガラスが注目されている
Therefore, fluoride glass is attracting attention as a fiber that can transmit light of 2°55 μm and reduces optical loss.

フッ化物ガラスとしては、ZrF4及び/又はHfFa
を必須成分として含むフッ化物ガラスがあり、このよう
なフッ化物ガラスとしては、特開昭57−92545号
公報に−ZrFa 、BaF2、NaF1YF3から成
るガラスが記載されている。
As the fluoride glass, ZrF4 and/or HfFa
There is a fluoride glass containing as an essential component, and as such a fluoride glass, a glass consisting of -ZrFa, BaF2, and NaF1YF3 is described in JP-A-57-92545.

またZrFa及び/又はHfFaを必須成分とする他の
フッ化物ガラスとしては、特開昭62−275039@
公報に、ZrF4及び/又はHfF4と、AJ!F3と
、CaF+ 、SrF2及びBaF2のうちの少なくと
も1種とから成るフッ化物ガラスが記載されている。
Other fluoride glasses containing ZrFa and/or HfFa as essential components include JP-A-62-275039@
In the publication, ZrF4 and/or HfF4 and AJ! A fluoride glass consisting of F3 and at least one of CaF+, SrF2 and BaF2 is described.

しかしながら、これらのフッ化物ガラスは、ガラスの結
晶化に対する安定性がある程度改善されているが、充分
なものではなかった。
However, although the stability of these fluoride glasses against glass crystallization has been improved to some extent, it has not been sufficient.

そして、ガラスの結晶化に対する安定性が充分でないと
、ガラス作製中やファイバー化するときに微結晶を生じ
易く、この微結晶が光を散乱するために得られたファイ
バーにおいて光の損失が多くなるという欠点がある。
If the glass does not have sufficient stability against crystallization, microcrystals are likely to form during glass production or fiberization, and these microcrystals scatter light, resulting in a large loss of light in the resulting fiber. There is a drawback.

従って本発明の目的は、上記フッ化物ガラスの欠点を解
消し、結晶化に対する安定性に優れているので・、ガラ
ス中に生成する微結晶を減少させることができ、結果と
して光の散乱を少なくすることが可能なファイバー用フ
ッ化物ガラスを提供することにある。
Therefore, the purpose of the present invention is to eliminate the above-mentioned drawbacks of fluoride glass, and because it has excellent stability against crystallization, it is possible to reduce microcrystals generated in the glass, and as a result, to reduce light scattering. The object of the present invention is to provide a fluoride glass for fibers that can be used for fibers.

1問題点を解決するための手段] 本発明は上述の問題点を解決するためになされたもので
あり、本発明のファイバー用フッ化物ガラスは、下記の
2つの態様のファイバー用フッ化物ガラスからなるもの
である。
[Means for Solving Problem 1] The present invention has been made to solve the above-mentioned problems, and the fluoride glass for fiber of the present invention is obtained from the following two embodiments of fluoride glass for fiber. It is what it is.

態様(A): フッ化物成分として、ZrF4及び/又はHfFaと、
BaF2とを含有し、更にP205を全フッ化物成分に
対して0.1モル%以上含有することを特徴とするフッ
化物ガラス。
Embodiment (A): ZrF4 and/or HfFa as a fluoride component,
A fluoride glass characterized by containing BaF2 and P205 in an amount of 0.1 mol% or more based on the total fluoride components.

態様(B): フッ化物成分として、ZrF4及び/又はHfFaと、
Aj!F3と、MgF2 、CaF2、SrF2及びB
aF2からなる群から選択される少なくとも1種とを含
有し、更にP205を全フッ化物成分に対して0.1モ
ル%以上含有することを特徴とするフッ化物ガラス。
Embodiment (B): ZrF4 and/or HfFa as a fluoride component,
Aj! F3, MgF2, CaF2, SrF2 and B
A fluoride glass characterized by containing at least one member selected from the group consisting of aF2, and further containing 0.1 mol% or more of P205 based on the total fluoride components.

上記態様(A)及び(B)のファイバー用フッ化物ガラ
スにおいて、P205の含有量は0.1モル%以上に限
定されるが、特に0.1〜15モル%であるのが好まし
い。
In the above embodiments (A) and (B) of the fluoride glass for fibers, the content of P205 is limited to 0.1 mol% or more, and is particularly preferably 0.1 to 15 mol%.

態様(A)のフッ化物ガラスは、フッ化物成分としTZ
rFa及び/又はHfF4と、BaF2とを必須成分と
して含有するものである。
The fluoride glass of embodiment (A) has TZ as a fluoride component.
It contains rFa and/or HfF4 and BaF2 as essential components.

このようなフッ化物ガラスとしては、上記必須成分(Z
rF4及び/又はHfF4と、3aF2)のみからなる
ものや、57〜69モル%のZrF4.26〜39モル
%のBaF2及び2〜7モル%のYF3を含むものく特
開昭57−92545号公報参照)が用いられる。
Such fluoride glass contains the above essential component (Z
JP-A No. 57-92545 contains only rF4 and/or HfF4 and 3aF2), 57-69 mol% ZrF, 26-39 mol% BaF2 and 2-7 mol% YF3. ) is used.

また態様(B)のフッ化物ガラスは、フッ化物成分とし
てZrF4及び/又はHfFaと、AlF3と、MgF
2 、CaF2.5rFz及びBaF2からなる群から
選択される少なくとも1種とを必須成分として含有する
ものである。このようなフッ化物ガラスとしては、特開
昭62−275039号公報に開示された下記の2種の
フッ化物ガラス(bl)及び(b2)が挙げられる。
Further, the fluoride glass of aspect (B) contains ZrF4 and/or HfFa, AlF3, and MgF as fluoride components.
2, CaF2.5rFz, and at least one selected from the group consisting of BaF2 as an essential component. Examples of such fluoride glasses include the following two types of fluoride glasses (bl) and (b2) disclosed in JP-A-62-275039.

フッ化物ガラス(bl)・・・ZrF4及び/又はHf
Faと、AlF3と、MgF2 、CaF2、SrF2
及びBaF、+からなる群から選択される少なくとも1
種とを、下記組成 ZrF4及び/又はHf F a   O,5〜25%
A1.F3          20〜45MOF2 
           0〜15CaF2      
     0〜42SrF2           0
〜25BaF2           0〜25MgF
2、CaF2、SrF2 及びBaF2の合間20〜70 で含有するフッ化物ガラス。
Fluoride glass (bl)...ZrF4 and/or Hf
Fa, AlF3, MgF2, CaF2, SrF2
and at least one selected from the group consisting of BaF, +
seeds with the following composition ZrF4 and/or Hf F a O, 5 to 25%
A1. F3 20~45MOF2
0-15CaF2
0~42SrF2 0
~25BaF2 0~25MgF
2. Fluoride glass containing between 20 and 70% of CaF2, SrF2 and BaF2.

フッ化物ガラス(b2)・・・上記フッ化物(bl)に
さらに下記成分 YF3及び/又は ランタノイド元素 のフッ化物 ZnF+ CaF2 nF3 aF3 bF2 θ〜25 0〜20 0〜20 0〜10 0〜10 0〜25 アルカリ金属の フッ化物            0〜20をこれらの
追加成分の合間が1〜55%となるように加えたフッ化
物ガラス。
Fluoride glass (b2)...The above fluoride (bl) further contains the following components YF3 and/or fluoride of lanthanide element ZnF+ CaF2 nF3 aF3 bF2 θ~25 0~20 0~20 0~10 0~10 0~ 25 Fluoride glass containing 0 to 20 alkali metal fluorides such that the content of these additional components is 1 to 55%.

又、態様(B)のフッ化物ガラスとして、ZrF4及び
/又はHfFaと、AjF3と、BaF2と、LaFa
と、NaFとから成るもの(特開昭61−63544号
公報参照)を用いることもできる。
Further, as the fluoride glass of aspect (B), ZrF4 and/or HfFa, AjF3, BaF2, LaFa
and NaF (see Japanese Patent Laid-Open No. 61-63544).

上記態様(A)及び(B)のフッ化物ガラスは必須成分
としてR205を含有するものである。
The fluoride glasses of embodiments (A) and (B) above contain R205 as an essential component.

フッ化物ガラスの結晶化に対づる安定性の低下は、ガラ
スの溶融条件、例えば溶融雰囲気中の酸素や水分の存在
や、フッ化物原料中の酸化物等にも依存するが、本質的
には、フッ化物ガラスはイオン結合性が強く、低粘性で
あるためにイオンの拡散が起り易いことに依存する。本
発明においてフッ化物ガラス中に含有させたP2O5は
修飾酸化物を溶解する能力、従って酸化物などの不純物
を溶解する能力が大きく、かつ網目形成酸化物であるた
め、粘性を大ぎくしイオンの拡散をおさえることにより
、フッ化物ガラスの結晶化に対する安定性を高めるもの
と考えられる。
The decrease in stability of fluoride glass due to crystallization depends on the glass melting conditions, such as the presence of oxygen and moisture in the melting atmosphere, and the presence of oxides in the fluoride raw material, but essentially This depends on the fact that fluoride glass has strong ionic bonding properties and low viscosity, which facilitates ion diffusion. In the present invention, the P2O5 contained in the fluoride glass has a great ability to dissolve modified oxides, and therefore impurities such as oxides, and is a network-forming oxide, so it greatly reduces the viscosity and ions. It is thought that by suppressing diffusion, the stability of the fluoride glass against crystallization is increased.

フッ化物ガラス中に含有されるP2O5の量は0.1モ
ル%未満ではガラスの結晶化に対する安定性を高くする
効果を得ることができないが、0゜1モル%以上ならば
、上記効果を得ることができる。好ましいR205の含
有量は0.1〜15モル%である。R205が15モル
%を超えると、R20sに由来するPとOの結合による
吸収が短波長に拡がり波長2.55μmにまで吸収によ
る光の損失が影響するようになるので、好ましくない。
If the amount of P2O5 contained in the fluoride glass is less than 0.1 mol%, the effect of increasing the stability against crystallization of the glass cannot be obtained, but if it is 0.1 mol% or more, the above effect can be obtained. be able to. The preferred content of R205 is 0.1 to 15 mol%. If R205 exceeds 15 mol %, the absorption due to the bond between P and O originating from R20s will spread to shorter wavelengths, and the loss of light due to absorption will affect wavelengths up to 2.55 μm, which is not preferable.

このように本発明のフッ化物ガラスはR20sの量が少
1t(0,1モル%以上、好ましくは0゜1〜15モル
%)でもガラスの結晶化に対する安定性を高めることが
でき、また多量のR20sを添加したことによる上記悪
影響を排除できる点で優れている。
As described above, the fluoride glass of the present invention can improve the stability against crystallization of the glass even with a small amount of R20s of 1 t (0.1 mol% or more, preferably 0.1 to 15 mol%), and even with a large amount of R20s. It is excellent in that it can eliminate the above-mentioned adverse effects caused by the addition of R20s.

(実施例) 以下、本発明の実施例について説明するが、本発明はこ
れらの実施例に限定されるものではない。
(Examples) Examples of the present invention will be described below, but the present invention is not limited to these Examples.

なお%は特記しない限りモル%を示すものとする。Note that % indicates mol% unless otherwise specified.

実施例−1 出発原料として、ZrF4、BaF2、LaF3、Na
F、、Ba (POa )2を用いた。
Example-1 ZrF4, BaF2, LaF3, Na as starting materials
F,,Ba(POa)2 was used.

これらをZrF4  :53.0%、BaF2 :23
゜0%、LaF3  :4.0%、NaF:20.0%
(全フッ化物で100%)およびP2O5:1゜5%と
なるように混合した。得られた混合物を白金ルツボに入
れたのち、アルゴン雰囲気とした約850℃の電気炉中
で約2時間加熱溶融した。溶融後、電気炉内から白金ル
ツボを取り出し、約270℃まで放冷した。その後、約
270℃のアニール炉に入れ徐冷して50jwφ、厚さ
11mの無色透明のガラスを得た。
These were ZrF4: 53.0%, BaF2: 23%
゜0%, LaF3: 4.0%, NaF: 20.0%
(total fluoride: 100%) and P2O5:1.5%. The resulting mixture was placed in a platinum crucible and then heated and melted for about 2 hours in an electric furnace at about 850° C. in an argon atmosphere. After melting, the platinum crucible was taken out from the electric furnace and allowed to cool to about 270°C. Thereafter, it was placed in an annealing furnace at about 270° C. and slowly cooled to obtain a colorless and transparent glass having a diameter of 50 jw and a thickness of 11 m.

ガラスの結晶化に対づる安定性は、示差走査熱量計(D
SC)を用いて、約20ayのガラスを室温から10℃
/Sinの剪温速度で550℃まで昇温したときの結晶
化による発熱量を測定することにより行った。第1図に
DSG曲線を示す。その結果、本実施例のガラスは発熱
量が5.39cal/gと少なく、結晶化に対する安定
性が高いことが明らかとなった。
The stability of glass against crystallization can be measured using differential scanning calorimetry (D
About 20 ay of glass was heated from room temperature to 10℃ using SC).
This was done by measuring the amount of heat generated by crystallization when the temperature was raised to 550° C. at a shearing rate of /Sin. FIG. 1 shows the DSG curve. As a result, it was revealed that the glass of this example had a low calorific value of 5.39 cal/g and had high stability against crystallization.

光の散乱の測定は、波長488 nm及び514゜5s
mのArイオンレーザ−1波長623.8smのHe−
Neレーザーの光を、15svX 10smX 20J
IM+の大きさに大面研摩したガラスに入射させ、上記
3つの波長に対する、90°方向の散乱(レーリー比:
R90°)を測定し、これらをプロットして、波長(n
m)を変動させた場合のレーリー比の直線を求めた。そ
の結果、この直線は石英ガラスのレーリー比の直線に近
いことが判明した。
The measurement of light scattering was performed at a wavelength of 488 nm and 514°5 seconds.
m Ar ion laser - 1 wavelength 623.8 sm He -
Ne laser light, 15svX 10smX 20J
Scattering in the 90° direction for the above three wavelengths (Rayleigh ratio:
Measure the wavelength (n
A straight line of Rayleigh ratio was determined when m) was varied. As a result, it was found that this straight line was close to the Rayleigh ratio straight line of silica glass.

実施例−2 R205の聞を2.5モル%にした以外は実施例1と同
様に実施して、ファイバー用フッ化物ガラスを得た。
Example 2 A fluoride glass for fibers was obtained in the same manner as in Example 1 except that the content of R205 was 2.5 mol %.

冑られたフッ化物ガラスを実施例−1と同様の方法で、
結晶化による発熱量を測定した。得られたDSC曲線を
第1図に示す。発熱量は2.05cat/gであり、実
施例−1におtプる発熱量よりも更に少ないものであっ
た。
The crushed fluoride glass was treated in the same manner as in Example-1,
The amount of heat generated by crystallization was measured. The obtained DSC curve is shown in FIG. The calorific value was 2.05 cat/g, which was even smaller than the calorific value of Example-1.

さらに、このフッ化物ガラスについて実施例−1と同様
の方法で、光の散乱を測定したところ、そのレーリー比
の直線が実施例−1の場合よりも石英ガラスのレーリー
比の直線にさらに近いことが判明した。
Furthermore, when the light scattering of this fluoride glass was measured in the same manner as in Example-1, it was found that the Rayleigh ratio straight line was closer to the Rayleigh ratio straight line of silica glass than in Example-1. There was found.

比較例−1 出発原料として、Ba (PO3)2を用いなかった以
外は実施例−1と同様にして、フッ化物成分の種類およ
び組成(モル%)が実施例−1と同一で、P205を含
まない無色透明のガラスを得た。
Comparative Example-1 The same procedure was used as in Example-1 except that Ba (PO3)2 was not used as the starting material, the type and composition (mol%) of the fluoride component were the same as in Example-1, and P205 was used. A colorless and transparent glass containing no chlorine was obtained.

得られたガラスについて実施例−1と同様の方法で結晶
化による発熱量を測定した。得られた030曲線を第1
図に示す。発熱量は14.27cal/gと極めて多い
ものであった。
The amount of heat generated by crystallization of the obtained glass was measured in the same manner as in Example-1. The obtained 030 curve is the first
As shown in the figure. The calorific value was extremely high at 14.27 cal/g.

また、実施例−1と同様の方法で、光の散乱を測定した
。得られたレーリー比の直線は石英ガラスのそれと著し
く隔てられており、光の散乱が顕著に認められた。
Furthermore, light scattering was measured in the same manner as in Example-1. The obtained Rayleigh ratio straight line was significantly different from that of silica glass, and light scattering was observed significantly.

実施例−3 出発原料として、実施例−1のフッ化物成分とともにH
fF4を用い、HfF4  :39.8%、ZrFa 
:13.2%、BaF2:23.0%、LaF3 :4
.0%、NaF:20.0%(全フッ化物で100%)
およびP205  :0.5%となるように混合したの
ち、実施例−1と同様の方法で無色透明のフッ化物ガラ
スを得た。
Example-3 As a starting material, along with the fluoride component of Example-1, H
Using fF4, HfF4: 39.8%, ZrFa
: 13.2%, BaF2: 23.0%, LaF3: 4
.. 0%, NaF: 20.0% (100% with total fluoride)
and P205: 0.5%, and then a colorless and transparent fluoride glass was obtained in the same manner as in Example-1.

得られたフッ化物ガラスについて実施例−1と同様の方
法で結晶化による発熱量を測定した。得られた030曲
線を第2図に示す。発熱量は4゜85Cal/gと少な
いものであった。
The amount of heat generated by crystallization of the obtained fluoride glass was measured in the same manner as in Example-1. The obtained 030 curve is shown in FIG. The calorific value was as low as 4°85 Cal/g.

さらに、実施例−1と同様の方法で光の散乱を測定した
。その結果、実施例−1と同様の結果が得られた。
Furthermore, light scattering was measured in the same manner as in Example-1. As a result, the same results as in Example-1 were obtained.

実施例−4 P20sの聞を1.0%とした以外は実施例−3と同様
の方法で無色透明のフッ化物ガラスを得た。
Example 4 A colorless and transparent fluoride glass was obtained in the same manner as in Example 3 except that the P20s content was 1.0%.

得られたフッ化物ガラスについて実施例−1と同様の方
法で、結晶化による発熱量を測定した。
The amount of heat generated by crystallization of the obtained fluoride glass was measured in the same manner as in Example-1.

得られた030曲線を第2図に示す。発熱Wは2゜12
cal /gであり、実施例−3の場合よりも更に少な
いものであった。
The obtained 030 curve is shown in FIG. Heat generation W is 2°12
cal/g, which was even smaller than that in Example-3.

さらに、このフッ化物ガラスについて実施例=1と同様
の方法で光の散乱を測定したところ、実施例−3と同様
の結果が得られた。
Furthermore, when the light scattering of this fluoride glass was measured in the same manner as in Example 1, the same results as in Example 3 were obtained.

比較例−2 出発原r1として、Ba (PO3)2を用いなかった
以外は実施例−3と同様にして、フッ化物成分の種類お
よび組成(モル%)が実施例−3と同一で、P20sを
含まない無色透明のフッ化物ガラスを得た。
Comparative Example-2 The same procedure was used as in Example-3 except that Ba (PO3)2 was not used as the starting material r1, the type and composition (mol%) of the fluoride component were the same as in Example-3, and P20s A colorless and transparent fluoride glass containing no fluoride was obtained.

得られたフッ化物ガラスについて実施例−1と同様の方
法で、結晶化による発熱−を測定した。
The heat generated by crystallization of the obtained fluoride glass was measured in the same manner as in Example 1.

冑られた030曲線を第2図に示す。発熱部は11 、
13cal /9と極めて多いものであった。
The broken 030 curve is shown in Figure 2. The heat generating part is 11,
The amount was extremely high at 13 cal/9.

さらにこのフッ化物ガラスについて実施例−1と同様の
方法で、光の散乱を測定した。得られたレーり比の直線
は石英ガラスのそれと茗しく隔てられており、光の散乱
が顕著に認められた。
Furthermore, light scattering of this fluoride glass was measured in the same manner as in Example-1. The obtained lay ratio straight line was slightly different from that of silica glass, and light scattering was observed significantly.

実施例−5 出発原料として、実施例−1のフッ化物成分とともにA
j!F3、YF3 、MgF2 、CaF2、SrF2
、Al(PO3)3を用い、ZrFa:10.2%、A
lF3 :30.2%、YF3  :8゜3%、MgF
2 :3.5%、CaF+  :20.3%、SrF2
13.2%、BaF2 : 10.5%、NaF:3.
8%(全フッ化物で100%)およびP2O5ニア、5
%となるように混合した。得られた混合物を白金ルツボ
に入れ、アルゴン雰囲気とした約900℃の電気炉中で
約2時間加熱溶融した。溶融後、電気炉内から白金ルツ
ボを取り出し、約380℃まで放冷した。その後、約3
80℃のアニール炉に入れ徐冷して50jIIφ、厚さ
13#lIの無色透明のフッ化物ガラスを得た。
Example-5 As a starting material, A along with the fluoride component of Example-1
j! F3, YF3, MgF2, CaF2, SrF2
, using Al(PO3)3, ZrFa: 10.2%, A
lF3: 30.2%, YF3: 8°3%, MgF
2: 3.5%, CaF+: 20.3%, SrF2
13.2%, BaF2: 10.5%, NaF: 3.
8% (100% total fluoride) and P2O5 near, 5
%. The obtained mixture was placed in a platinum crucible and heated and melted for about 2 hours in an electric furnace at about 900° C. in an argon atmosphere. After melting, the platinum crucible was taken out from the electric furnace and allowed to cool to about 380°C. After that, about 3
The glass was placed in an annealing furnace at 80°C and slowly cooled to obtain a colorless and transparent fluoride glass having a diameter of 50jIIφ and a thickness of 13#lI.

得られたフッ化物ガラスを実施例−1と同様の方法で、
結晶化による発熱量を測定した。得られた030曲線を
第3図に示す。発熱量は5.05cal/9と少ないも
のであった。
The obtained fluoride glass was treated in the same manner as in Example-1,
The amount of heat generated by crystallization was measured. The obtained 030 curve is shown in FIG. The calorific value was as low as 5.05 cal/9.

さらに、実施例−1と同様の方法で光の散乱を測定した
ところ、実施例−1と同様の結果が得られた。
Furthermore, when light scattering was measured in the same manner as in Example-1, the same results as in Example-1 were obtained.

比較例−3 出発原料として、Al (POa )aとBa (PO
3)2を用いなかった以外は実施例−5と同様にして、
フッ化物成分の種類および組成(モル%)が実施例−5
と同一で、P2O5を含まない無色透明のフッ化物ガラ
スを得た。
Comparative Example-3 As starting materials, Al (POa)a and Ba (PO
3) Same as Example-5 except that 2 was not used,
The type and composition (mol%) of the fluoride component are as in Example-5.
A colorless and transparent fluoride glass containing no P2O5 was obtained.

得られたフッ化物ガラスについて実施例−1と同様の方
法で、結晶化による発熱量を測定した。
The amount of heat generated by crystallization of the obtained fluoride glass was measured in the same manner as in Example-1.

得られたDSC曲線を第3図に示す。発熱量は33、1
cal /gと多いものであった。
The obtained DSC curve is shown in FIG. Calorific value is 33.1
The amount was as high as cal/g.

さらに、実施例−1と同様の方法で、光の散乱を測定し
たところ、得られたレーリー比の直線は石英ガラスのそ
れと著しく隔てられており、光の散乱が顕著に認められ
た。
Furthermore, when light scattering was measured in the same manner as in Example 1, the obtained Rayleigh ratio straight line was significantly different from that of quartz glass, and light scattering was clearly observed.

実施例−6〜66 実施例−1と同様の方法で、表−1の実施例−6〜66
欄に示したような組成から成る無色透明のフッ化物ガラ
スを得た。
Examples-6 to 66 Examples-6 to 66 in Table-1 were prepared in the same manner as in Example-1.
A colorless and transparent fluoride glass having the composition shown in the column was obtained.

得られた実施例−6〜66のガラスについて実施例−1
と同様な方法で結晶化による発熱量及びレーリー比の測
定を行ったが、すべてのガラスについて、発熱量が少な
くレーリー比の直線が石英ガラスに近いものであった。
Example-1 for the obtained glasses of Examples-6 to 66
The calorific value and Rayleigh ratio due to crystallization were measured in the same manner as above, and all of the glasses showed a small calorific value and a straight line of Rayleigh ratio similar to that of quartz glass.

(以下余白) [発明の効果] 以上述べたように、本発明のフッ化物ガラスは、結晶化
に対する安定性が高く、ガラス中に生成する微結晶を減
少させ、光散乱を少なくできるという効果を有する。従
って光通信用ファイバー母材として極めて有用である。
(The following is a blank space) [Effects of the Invention] As described above, the fluoride glass of the present invention has high stability against crystallization, reduces microcrystals generated in the glass, and has the effect of reducing light scattering. have Therefore, it is extremely useful as a fiber base material for optical communications.

又、化学的耐久性及び熱的安定性にも優れているため医
療用ファイバー工業用ファイバーとしても有用である。
Furthermore, since it has excellent chemical durability and thermal stability, it is also useful as a medical fiber industrial fiber.

さらに適量のP20sを含む本発明のフッ化物ガラスは
、ZrF4とBaF2を主成分とするガラスより熱膨脹
係数が小さくかつ屈折率も低いので、ZrF4とBaF
2を主成分とするフッ化物ガラスのクラッド用ガラスと
しても極めて適している。
Furthermore, the fluoride glass of the present invention containing an appropriate amount of P20s has a smaller coefficient of thermal expansion and a lower refractive index than glass whose main components are ZrF4 and BaF2.
It is also extremely suitable as a cladding glass for fluoride glass containing fluoride glass as the main component.

なお、本発明のフッ化物ガラスは、レンズやプリズム等
の光学ガラスとしても利用可能である。
Note that the fluoride glass of the present invention can also be used as optical glass for lenses, prisms, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例−1、実施例−2及び比較例−1で得
られたフッ化物ガラスのDSC曲線図、第2図は、実施
例−3、実施例−4及び比較例−2で得られたフッ化物
ガラスのDSC曲線図、第3図は、実施例−5及び比較
例−3で得られたDSC曲線図である。
Fig. 1 is a DSC curve diagram of the fluoride glasses obtained in Example-1, Example-2, and Comparative Example-1, and Fig. 2 is a DSC curve diagram of the fluoride glasses obtained in Example-3, Example-4, and Comparative Example-2. FIG. 3 is a DSC curve diagram of the fluoride glass obtained in Example-5 and Comparative Example-3.

Claims (1)

【特許請求の範囲】 1、フッ化物成分として、ZrF_4及び/又はHfF
_4と、BaF_2とを含有し、更にP_2O_5を全
フッ化物成分に対して0.1モル%以上含有することを
特徴とするファイバー用フッ化物ガラス。 2、フッ化物成分として、ZrF_4及び/又はHfF
_4と、AlF_3と、MgF_2、CaF_2、Sr
F_2及びBaF_2からなる群から選択される少なく
とも1種とを含有し、更にP_2O_5を全フッ化物成
分に対して0.1モル%以上含有することを特徴とする
ファイバー用フッ化物ガラス。
[Claims] 1. ZrF_4 and/or HfF as a fluoride component
_4 and BaF_2, and further contains P_2O_5 in an amount of 0.1 mol% or more based on the total fluoride components. 2. ZrF_4 and/or HfF as a fluoride component
_4, AlF_3, MgF_2, CaF_2, Sr
A fluoride glass for fibers, comprising at least one selected from the group consisting of F_2 and BaF_2, and further containing 0.1 mol% or more of P_2O_5 based on the total fluoride components.
JP63142898A 1988-06-10 1988-06-10 Fluoride glass for fiber Pending JPH0280349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142898A JPH0280349A (en) 1988-06-10 1988-06-10 Fluoride glass for fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142898A JPH0280349A (en) 1988-06-10 1988-06-10 Fluoride glass for fiber

Publications (1)

Publication Number Publication Date
JPH0280349A true JPH0280349A (en) 1990-03-20

Family

ID=15326165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142898A Pending JPH0280349A (en) 1988-06-10 1988-06-10 Fluoride glass for fiber

Country Status (1)

Country Link
JP (1) JPH0280349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007068A1 (en) * 1995-08-15 1997-02-27 British Technology Group Ltd. Infrared transmitting optical fibre materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654249A (en) * 1979-10-04 1981-05-14 Ohara Inc Fluoride glass
JPS59116149A (en) * 1982-12-23 1984-07-04 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber for infrared rays and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654249A (en) * 1979-10-04 1981-05-14 Ohara Inc Fluoride glass
JPS59116149A (en) * 1982-12-23 1984-07-04 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber for infrared rays and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007068A1 (en) * 1995-08-15 1997-02-27 British Technology Group Ltd. Infrared transmitting optical fibre materials
US6037285A (en) * 1995-08-15 2000-03-14 Btg International Limited Infrared transmitting optical fiber materials

Similar Documents

Publication Publication Date Title
US4768859A (en) Cladding glass for optical fiber
JP3088752B2 (en) Heavy metal oxide glass optical fiber for use in laser medical surgery and method of making same
EP0312084B1 (en) Halide glass
US4761387A (en) Fluoride glass
JPS6363500B2 (en)
JPH07157330A (en) Chlorine-containing fluorophosphate glass
JPH0280349A (en) Fluoride glass for fiber
JP2000264675A (en) Glass for optical fiber
JP3749276B2 (en) Infrared transmission glass
JPH0428655B2 (en)
JPS582173B2 (en) Glass material for optical glass fiber
JP3145136B2 (en) Infrared transparent fluoride glass
Poulain Fluoride glass composition and processing
JPH0952731A (en) Fluorophosphoric acid glass, optical fiber using the same and its production
JP3080708B2 (en) New AlF3-based fluoride glass
JP2585715B2 (en) Infrared transmission glass
JPH11343139A (en) Clad glass composition for halide core glass and glass composition for coating halide core glass
JP3667798B2 (en) Fluoride glass
JP3367624B2 (en) Optical fiber
JPH0455337A (en) Ultraviolet ray transmitting glass
Qui et al. Influence of various divalent metal fluorides on the properties of glasses in the ZrF4-AlF3 system
Bruce Glasses
Charron et al. New glass compositions containing alkali metal derived from BIGaZYbT
JPH05279077A (en) Fluoride glass
JPH0812370A (en) Germanium oxide based glass composition