JPS59115725A - Concentrating method of oxygen - Google Patents

Concentrating method of oxygen

Info

Publication number
JPS59115725A
JPS59115725A JP57230386A JP23038682A JPS59115725A JP S59115725 A JPS59115725 A JP S59115725A JP 57230386 A JP57230386 A JP 57230386A JP 23038682 A JP23038682 A JP 23038682A JP S59115725 A JPS59115725 A JP S59115725A
Authority
JP
Japan
Prior art keywords
adsorption
oxygen
gas
nitrogen
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57230386A
Other languages
Japanese (ja)
Other versions
JPH0353965B2 (en
Inventor
Masahito Kawai
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP57230386A priority Critical patent/JPS59115725A/en
Publication of JPS59115725A publication Critical patent/JPS59115725A/en
Publication of JPH0353965B2 publication Critical patent/JPH0353965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To recover the oxygen adsorbed in an adsorption column and to improve the recovery rate for gaseous oxygen in a method for producing oxygen by a pressure swing adsorption method by washing the adsorption column, upon ending of an adsorption stage, with gaseous nitrogen. CONSTITUTION:An adsorption column is changed over by a selector valve to stages for pressure adsorption, vacuum regeneration and repressurization so that the gaseous nitrogen in raw material air is adsorbed and gaseous oxygen is continuously produced. The adsorption column upon ending of the pressure adsorption stage of a method for producing oxygen by a pressure swing adsorption method is washed with gaseous nitrogen, and slightly concd. gaseous oxygen is obtd. The gas contg. the concd. oxygen is reutilized as a gaseous raw material. The recovery rate for the gaseous oxygen of the product is thus improved.

Description

【発明の詳細な説明】 この発明はプレッシャースイング吸着法によって空気か
ら酸素ガスを分離製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and producing oxygen gas from air by pressure swing adsorption.

空気を原¥<1として酸素を製造する酸素製造方法とし
てプレッシャースイング吸着法(以下、PSA法と略記
する)がある。第7図に示す方法は、従来公知の一例を
示したもので、原料空気は管1によシ圧縮機2に送られ
、ここで約j ](q/cr/lに加圧された後、管3
を経て、切換弁4a 、 5a 、 aaによって、そ
れぞれ切換え使用される3基の吸着塔7,8.9の内の
7つの吸着塔7に送シ込まれる。各吸着塔7 、8 、
9にはゼオライトなどの窒素を選択的に吸着する吸着材
が充填されておシ、加圧状態で導入された空気中の窒素
が吸着され、吸着塔7の出口には酸素を主成分とする製
品酸素ガスが得られる。この製品酸素ガスは切換弁10
b1管13、流惜調節弁14を経て、供給先に送られる
。「加圧吸着工程」 一方、上記のようにして窒素を吸着して飽和し、再生工
程にある吸着塔8tj:減圧した後上記製品酸素ガスの
一部が管15よシ分岐され、圧力−整弁16により/k
r/C11程度の圧力圧されたガス(パージガス)が、
管17、切換弁11aを経て該塔8内を逆流される。こ
のパージガスは吸着剤から窒素を脱着し、自からは窒素
ガスを含む廃ガスとなって切換弁5b、管18より、大
気中に放出される。「低圧再生工程」 また、吸着塔9け低圧再生工程延より・パージされた後
、製品酸素ガスの一部がさらに導入され、約j kq 
/cr!程度に再加圧された状態にされておシ、次の吸
着工程に対し待機している。「再加圧工程」このように
、PSA法による酸素製造方法は、例えば3つの吸着塔
7.8.9を順次、加圧吸着、低圧再生、再加圧の各工
程に切換えることによシ、連続的忙製品酸素ガスが得ら
れるように構成されている。
There is a pressure swing adsorption method (hereinafter abbreviated as PSA method) as an oxygen production method for producing oxygen using air with an original value of <1. The method shown in FIG. 7 is an example of a conventionally known method, in which raw air is sent through a pipe 1 to a compressor 2, where it is pressurized to approximately j] (q/cr/l). , tube 3
Then, it is sent to seven adsorption towers 7 out of the three adsorption towers 7, 8.9 which are used selectively by the switching valves 4a, 5a and aa. Each adsorption tower 7, 8,
The column 9 is filled with an adsorbent such as zeolite that selectively adsorbs nitrogen, and the nitrogen in the air introduced under pressure is adsorbed, and the outlet of the adsorption column 7 is filled with an adsorbent that selectively adsorbs nitrogen. Product oxygen gas is obtained. This product oxygen gas has a switching valve 10
It is sent to the supply destination via the b1 pipe 13 and the flow control valve 14. "Pressurized adsorption step" On the other hand, the adsorption tower 8tj, which has been saturated by adsorbing nitrogen as described above and is in the regeneration step: After being depressurized, a part of the product oxygen gas is branched through the pipe 15, and the pressure is adjusted. By valve 16/k
Gas (purge gas) under pressure of about r/C11 is
It flows back through the column 8 via the pipe 17 and the switching valve 11a. This purge gas desorbs nitrogen from the adsorbent and becomes waste gas containing nitrogen gas, which is released into the atmosphere through the switching valve 5b and the pipe 18. "Low-pressure regeneration process" In addition, after being purged from the 9-layer low-pressure regeneration process in the adsorption tower, a part of the product oxygen gas is further introduced, and approximately j kq
/cr! It is kept in a state where it is repressurized to a certain degree and is waiting for the next adsorption step. "Repressurization step" As described above, the oxygen production method using the PSA method is performed by sequentially switching the three adsorption towers 7.8.9 to the pressure adsorption, low pressure regeneration, and repressurization steps. , so that a continuous flow of oxygen gas is obtained.

ところで、このPSA法による酸素製造方法においては
、吸着材の再生のために多汁の製品酸素ガスが必要であ
り、寸だ、この「低圧再生工程」に入るために吸着塔の
圧抜きが行なわれるが、この時、吸着塔内に吸着されて
存在する酸素分が外部へ排出される等のことよυ製品酸
素ガスの収量が悪く、かつ動力費が高くつくという欠点
があろっ上記欠点を解消する手段の主なものとして下記
の一点を挙げることができる。
By the way, in this oxygen production method using the PSA method, a rich product oxygen gas is required to regenerate the adsorbent, and in order to enter this "low-pressure regeneration process", the pressure in the adsorption tower must be depressurized. However, at this time, the oxygen content adsorbed in the adsorption tower is discharged to the outside, which has the drawbacks of poor yield of product oxygen gas and high power costs. The following points can be cited as the main means of solving this problem.

(イ)製品酸素ガスを使用せずに窒素の脱着が行がえる
ようにする。
(a) Make it possible to desorb nitrogen without using product oxygen gas.

(向 吸着材に吸着されて捨てられる酸素ガス偕をなる
べく少なくする、 上記(イ)の観点に立って従来行なわれている改良方法
として真空再生法がある。、この真空再生法で一般に行
なわれる方法は、吸着工程を終了した塔を、Tc空引き
忙よシ吸着ガス(窒素)を脱着し、再生するもので吸着
剤の再生にパージガスを全く使用しないため、製品の回
収率は向上する。
(Towards) Vacuum regeneration is a conventional improvement method that has been used from the viewpoint of (a) above to reduce as much as possible the amount of oxygen gas that is adsorbed by the adsorbent and discarded. In this method, the tower that has completed the adsorption step is emptied of Tc, and the adsorbed gas (nitrogen) is desorbed and regenerated. Since no purge gas is used to regenerate the adsorbent, the product recovery rate is improved.

一方、上記←)は「加圧吸着工程」から「低圧再生工程
」への移行に際して減圧(圧抜き)によって、吸着塔内
に存在する酸素分が外部へ排気されるので、この排気さ
れる量を減らそうということである。この観点に立って
従来行なわれている改良方法としては、第2図に示すよ
うな工程のものがある。この方法では、図に示すように
、一部均圧工程を採用するとともに製品酸素ガスの抜取
りを原料空気を流入させることなく行なうよう妊構成さ
れており、そのため塔内圧力は次第に低下することにな
る。その結果、再生工程へ移行するために行なう圧抜き
は、ごくわずかで済み、外部へ捨てる酸素ガスを少なく
することができるととKなる。
On the other hand, in the above ←), the oxygen present in the adsorption tower is exhausted to the outside due to pressure reduction (pressure release) during the transition from the "pressure adsorption process" to the "low pressure regeneration process", so the amount of oxygen that is exhausted is The aim is to reduce the As an improvement method that has been conventionally carried out from this point of view, there is a process as shown in FIG. As shown in the figure, this method employs a partial pressure equalization process and is designed to remove product oxygen gas without introducing feedstock air, so the pressure inside the column gradually decreases. Become. As a result, only a small amount of depressurization is required in order to proceed to the regeneration process, and the amount of oxygen gas disposed of to the outside can be reduced.

ところで、上記のような改良がなされた結果としての製
品の回収率を見ると、り(7%濃度の製品酸素ガスを得
る場合、前記真空再生法では60〜70チ〔「合成ゼオ
ライトによる吸着分離」竹林「分離技術」第21巻j号
(/り1/)p//〜より〕となっており、後記パージ
法では約SOチ[、r!’SA分離による大気中酸素の
濃縮」竹林、森下、「東洋曹達研究報告」第26巻7号
c)2F、2)p9〜よυ〕となっている。しかし、依
然として動力費が大きい割合を占める状況が続いておシ
、動力費削減のための回収率の向上がさらに望まれてい
るのが現状である。
By the way, when looking at the product recovery rate as a result of the above improvements, it is found that when obtaining a product oxygen gas with a concentration of 7%, the vacuum regeneration method described above yields 60 to 70 g. ” Takebayashi “Separation Technology” Vol. 21 No. J (/1/) p//~], and the purge method described later can be used to condense atmospheric oxygen by using SA separation. , Morishita, ``Toyo Soda Research Report'' Vol. 26 No. 7 c) 2F, 2) p9 ~ yoυ]. However, the current situation is that power costs still account for a large proportion, and there is a need for further improvement in the recovery rate in order to reduce power costs.

本発明渚らは、PSA法によって空気から酸素ガスを回
収する方法忙おいて、酸素ガスの回収率を向上させるた
めに加圧吸着工程から低圧再生工程忙移行する際の圧抜
き忙よυ外部へすてられる酸素分を大幅に減らす方法に
ついて種々考究した結果、下記の如き知見が得られた。
In the present invention, Nagisa et al. have developed a method for recovering oxygen gas from air using the PSA method, and in order to improve the recovery rate of oxygen gas, there is a need for depressurization when transitioning from a pressurized adsorption process to a low-pressure regeneration process. As a result of various studies on ways to significantly reduce the amount of oxygen wasted, the following findings were obtained.

即ち、吸着工程を終了した吸着塔内の濃度分布は、模式
図によって示すと、第3図の妬くになシ塔の上部((は
比較的酸素の濃縮された部分(いわゆる吸着帯)が存在
し、他の部分は空気と平衡状態虻ある。
In other words, the concentration distribution inside the adsorption tower after the adsorption process is shown schematically as shown in Figure 3, where there is a relatively oxygen-enriched area (the so-called adsorption zone) in the upper part of the tower. However, the other parts are in equilibrium with air.

このような塔内へ窒素ガス濃度が高いガス(@度ざθ係
以上)を流すと、第1図(a)に示すように、塔の上部
の酸素ガスの濃い部分はそのまま押出されるととKなる
。さらに窒素ガスを流し続けると、塔内の窒素ガス濃度
(空気と平衡状態)と比べ流入するガス中の9素ガス濃
度が高いため、吸着している酸素の一部が脱着し、それ
に伴なって、第グ図(′b)に示すよう忙幾分酸素ガス
の濃縮された部分が形成されるとと圧なる。そして、最
終的には、上記の幾分酸素が濃縮された部分すべてが塔
外へ押出され、吸着塔内には、第グ図に示すように、き
わめて窒素ガスが多い(逆に吸着されている酸素ガスは
少ない)状態となる。
When a gas with a high concentration of nitrogen gas (@degree angle θ or higher) is flowed into such a tower, as shown in Figure 1 (a), the area with high concentration of oxygen gas at the top of the tower is pushed out as it is. and K. If nitrogen gas continues to flow, the concentration of 9 elemental gases in the incoming gas is higher than the nitrogen gas concentration in the tower (in equilibrium with air), so some of the adsorbed oxygen is desorbed, and as a result, some of the adsorbed oxygen is desorbed. As a result, as shown in Fig. 3('b), a portion where the oxygen gas is somewhat concentrated is formed and the pressure increases. Finally, all of the oxygen-enriched portion mentioned above is pushed out of the tower, and the adsorption tower contains an extremely large amount of nitrogen gas (on the contrary, it is not adsorbed), as shown in Fig. The amount of oxygen gas present is low.

上記現象は、いわば吸着塔の「窒素ガス忙よる洗浄」で
あシ、洗い流されて吸着塔から追い出された酸素ガスを
回収すれば、製品回収率の向上が達成されることになる
The above phenomenon is, so to speak, "cleaning by nitrogen gas" of the adsorption tower, and if the oxygen gas washed away and expelled from the adsorption tower is recovered, the product recovery rate can be improved.

上記「窒素ガスによる洗浄」で流出する酸素ガスの回収
方法としては、(a)そのまま製品酸素ガスに混入する
か、(′b)原料空気の一部として使うか、のコつの方
法が考えられるが、高純度な製品酸素ガスを得るには、
(b)の方法が1ましい。
There are two possible ways to recover the oxygen gas that flows out during the above-mentioned "cleaning with nitrogen gas": (a) mixing it into the product oxygen gas as it is, or ('b) using it as part of the raw material air. However, to obtain high purity product oxygen gas,
Method (b) is preferred.

また、この洗浄工程に用いる窒素ガスは、洗浄工程を終
了した塔の圧抜きによって得られるガスを使うことがで
きるし、他に安価に窒素ガスを得る方法があれば、その
窒素ガスを使うとともできる。
Also, the nitrogen gas used in this cleaning process can be the gas obtained by depressurizing the tower after the cleaning process, or if there is another way to obtain nitrogen gas cheaply, you can use that nitrogen gas. Can also be done.

この発明(d上記知見に基づいてなされたもので、上記
「窒素ガスによる洗浄」を、加圧吸着工程後忙行なう、
手段、工程として含むようにPSA法による酸素製造方
法を構成し、回収される酸素ガスを濃縮するよう圧した
ものである。
This invention (d) was made based on the above-mentioned knowledge, and the above-mentioned "cleaning with nitrogen gas" is carried out after the pressurized adsorption step.
The oxygen production method by the PSA method is configured to include the steps and means, and pressure is applied to concentrate the recovered oxygen gas.

以下、この発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

この発明の方法は、第5図に示すような装置を使って行
なわれる。この図において、前記第7図と共通する部分
には同一符号を付して説明を簡略化する。この装置では
、窒素ガス排出用の真空ポンプ20が新らた忙設けられ
、この真空ポンプ20と前記各吸着塔7,8.9とが分
岐されている管21によシ連結されておシ、各吸着塔7
゜8.9の近傍には、それぞれ切換弁22.23゜24
が介装されている。また、廃ガス排出用に使われていた
前記管18には窒素圧縮機25および窒素タンク26を
有する循環管路27が連結されている。この循環管路2
7の上記管18との連結部近傍には切換弁28.29が
介装されている。
The method of this invention is carried out using an apparatus as shown in FIG. In this figure, parts common to those in FIG. 7 are given the same reference numerals to simplify the explanation. In this device, a vacuum pump 20 for discharging nitrogen gas is newly installed, and this vacuum pump 20 and each of the adsorption towers 7, 8.9 are connected by a branched pipe 21. , each adsorption tower 7
There are switching valves 22.23°24 near ゜8.9, respectively.
is interposed. Further, a circulation pipe 27 having a nitrogen compressor 25 and a nitrogen tank 26 is connected to the pipe 18 used for exhaust gas discharge. This circulation pipe 2
Switching valves 28 and 29 are interposed near the connection portion of 7 with the pipe 18.

また、上記窒素圧縮機25と窒素タンク26との間には
安全弁30が取シつけられており、窒素タンク26内の
ガス圧が所定圧以上になったら、外気放出されるように
なっている。また、前記圧縮機2近傍の管3には管31
の一端が連結され、この管31の分岐した3つの他端は
、それぞれ切換弁32.33および34を介して前記吸
着塔7゜8および9に連結されている。。
Further, a safety valve 30 is installed between the nitrogen compressor 25 and the nitrogen tank 26, and when the gas pressure in the nitrogen tank 26 exceeds a predetermined pressure, outside air is released. . In addition, a pipe 31 is provided in the pipe 3 near the compressor 2.
One end of the pipe 31 is connected, and the other three branched ends of the pipe 31 are connected to the adsorption towers 7.8 and 9 via switching valves 32, 33 and 34, respectively. .

この発明の方法は上記構造の装置圧より容易に実施でき
るものであシ、この装置の吸着塔7に注目して、そのプ
ロセスを説、明する。
The method of the present invention can be easily carried out due to the pressure of the apparatus having the above structure, and the process will be explained and explained by focusing on the adsorption tower 7 of this apparatus.

まず、加圧吸着工程が終了した吸着塔9から窒素ガスに
よる洗浄によって流出する幾分濃縮された酸素ガスが管
31を通シ、切換弁4aを介して再加圧工程後の吸着塔
7に流入される。この時、吸着塔7から切換弁10bを
介し、管13を通り、興品酸素ガスが供給先に送られる
First, somewhat concentrated oxygen gas flowing out from the adsorption tower 9 after the pressure adsorption process is washed with nitrogen gas is passed through the pipe 31, and is transferred to the adsorption tower 7 after the repressurization process via the switching valve 4a. There will be an influx. At this time, the oxygen gas is sent from the adsorption tower 7 to the supply destination through the pipe 13 via the switching valve 10b.

つづいて、圧縮機2によシ空気が圧縮され、管3を通り
、切換弁4aを介して吸着塔7に流入される。その結果
、切換弁10bを介し、管1.3を通り、製品酸素ガス
が供給先に送られる。
Subsequently, the air is compressed by the compressor 2, passes through the pipe 3, and flows into the adsorption tower 7 via the switching valve 4a. As a result, the product oxygen gas is sent to the supply destination via the switching valve 10b and through the pipe 1.3.

次に、窒素タンク26に蓄えられた窒素ガスが窒素圧縮
機25が再加圧され、循環管路27−管18を通シ、切
換弁4bを介して吸着塔7に流入される。その結果、吸
着塔7から幾分濃縮された酸素ガスが切換弁32を介し
、管31を通って他の再加圧後の吸着塔8に流入される
Next, the nitrogen gas stored in the nitrogen tank 26 is repressurized by the nitrogen compressor 25, passes through the circulation line 27 and the pipe 18, and flows into the adsorption tower 7 via the switching valve 4b. As a result, the somewhat concentrated oxygen gas from the adsorption tower 7 flows through the switching valve 32 and the pipe 31 into the adsorption tower 8 after repressurization.

上記の工程で窒素ガスの充満した吸着塔7の圧抜きが管
18を通して行なわれ、流出した窒素ガスは窒素タンク
26に蓄えられる。
In the above process, the adsorption tower 7 filled with nitrogen gas is depressurized through the pipe 18, and the nitrogen gas that flows out is stored in the nitrogen tank 26.

ついで管21を介し真空ポンプ20によシ吸着塔7内に
残留しているガスが真空排気される1、最後に他の吸着
塔でつくられた製品酸素ガスが切換弁10aを介して吸
着塔7内に導入されて吸着圧力まで再加圧され、次の吸
着工程に対し待機状態とされる。
Next, the gas remaining in the adsorption tower 7 is evacuated by the vacuum pump 20 via the pipe 21. Finally, the product oxygen gas produced in the other adsorption tower is transferred to the adsorption tower via the switching valve 10a. 7 and is pressurized again to the adsorption pressure, and is placed in a standby state for the next adsorption step.

上記した工程を各吸着塔についてまとめたのが、第6図
である。これら各工程は、各吸着塔に設けられている複
数の切換弁を順次切換えることによシ行なわれる。
FIG. 6 summarizes the above steps for each adsorption tower. Each of these steps is performed by sequentially switching a plurality of switching valves provided in each adsorption tower.

なお、上記説明において、洗浄用の窒素ガスは他の吸着
塔を洗浄し終った窒素ガスを窒素タンク26に蓄えて再
使用するようにしたが、他に窒素ガスを安価に供給でき
るガス源があれば、それを使用してもよいし、このガス
源と上記窒素タジク26による方法とを連用するように
してもよい。
In the above explanation, the nitrogen gas for cleaning is stored in the nitrogen tank 26 and reused after cleaning other adsorption towers, but there are other gas sources that can supply nitrogen gas at low cost. If available, it may be used, or this gas source and the method described by Nitrogen Tajik 26 may be used in combination.

以上説明したように、この発明はPSA法による酸素製
造方法において、吸着工程の終った吸着塔を窒素ガスで
洗浄することによって、この吸着塔内に吸着されている
酸素を幾分濃縮した状態で回収し、原料ガスとして再使
用する方法なので、製品酸素ガスの回収率を大幅に高め
ることができ、その結果、動力費を削減することができ
る。
As explained above, in the oxygen production method using the PSA method, the present invention cleans the adsorption tower after the adsorption step with nitrogen gas, thereby leaving the oxygen adsorbed in the adsorption tower in a somewhat concentrated state. Since it is a method of recovering and reusing it as a raw material gas, the recovery rate of product oxygen gas can be greatly increased, and as a result, power costs can be reduced.

このようなこの発明の効果を定量的に確認するために下
記のような実験を行なった。。
In order to quantitatively confirm the effects of this invention, the following experiment was conducted. .

〔実施例〕〔Example〕

前記実施例で説明した方法および装置(第3図)により
下記運転条件、実験条件のもとて実験を行なった。
Experiments were conducted using the method and apparatus (FIG. 3) described in the above examples under the following operating and experimental conditions.

「運転条件」 吸着圧力   ・・・/ ata〜グata窒素洗浄圧
力 ・・・吸着圧力よシθ/−askり/dだけ高い圧 窒素圧抜き  ・・・大気圧まで圧抜き真空排気   
・−r O,/ j OTorr原料ガス送入猾速・・
・j〜J Ocm/ sec (’l塔基準)窒素洗浄
流速   ・・・/ % 20 rm/ see (空
塔基準)吸着材      ・・・細孔径がjA以上で
ある合成ゼオライト 「実験条件」 吸着圧力     ・・・3 ata 窒素洗浄圧力   ・・・3.コata窒素圧抜き  
  ・・・/ ata 真空排気     ・・・1OOTOrr吸着剤   
   ・・・Ca−A型合成ゼオライトその結果、下記
の実験結果が得られ、この発明の効果を確認できた。
"Operating Conditions" Adsorption pressure... / ata~ata Nitrogen cleaning pressure...Pressure higher than adsorption pressure by θ/-ask/d Nitrogen pressure release...Pressure release to atmospheric pressure and vacuum evacuation
・-r O, / j OTorr raw material gas feed speed・・
・j~J Ocm/sec ('l column basis) Nitrogen cleaning flow rate.../% 20 rm/see (empty column basis) Adsorbent...Synthetic zeolite with pore diameter of jA or more "Experimental conditions" Adsorption pressure ...3 ata Nitrogen cleaning pressure ...3. Koata nitrogen pressure release
.../ata Vacuum exhaust ...1OOTOrr adsorbent
...Ca-A type synthetic zeolite As a result, the following experimental results were obtained, confirming the effects of this invention.

「実験結果」 処理空気量    ・・・ / J t / ky・サ
イクル製品酸素ガス量  ・・・ ニア 1 / kf
・サイクル製品純度     ・・・ タθチ 製品回収率    ・・・ タOチ 洗浄用窒素ガス濃度・・・ タr% 回収酸素ガス濃度 ・・・ 、20〜30係
"Experiment results" Processed air amount.../Jt/ky Cycle product oxygen gas amount...Near 1/kf
・Cycle product purity... T-product recovery rate... Nitrogen gas concentration for T-o-chi cleaning... TAR% Recovered oxygen gas concentration..., Section 20-30

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は従来のPSA吸着法による酸素製造方法の説明
図、第一図は従来の酸素濃縮方法の一例を示す工程図、
第3図は吸着工程を終了した吸着塔内のガス濃度分布を
示す模式図、第グ図(al (b)(c)はそれぞれ吸
着塔の窒素ガスによる洗浄工程を示す模式図、第5図お
よび第を図はこの発明の一実施例を説明するためのもの
で、第5図はこの発明を実箇するに好適な装置の構成図
、第を図は工程図である。 2・・・・・・圧縮器、7.8.9・・・・・・吸着塔
、4a、4b、5a、5b、6a、6b、10a。 10b、11a、11b、12a、12b、22゜23
.24.28,29,32.33.34・・・・・・切
換弁、25・・・・・・窒素圧縮機、26・・・・・・
窒素タンク。 出願人 日本酸素株式会社 代理人 弁理士 志賀正武 第1図
Figure 7 is an explanatory diagram of the conventional oxygen production method using PSA adsorption method, Figure 1 is a process diagram showing an example of the conventional oxygen concentration method,
Figure 3 is a schematic diagram showing the gas concentration distribution in the adsorption tower after the adsorption process has been completed; Figures 1 and 2 are for explaining an embodiment of the present invention, Figure 5 is a block diagram of a device suitable for carrying out this invention, and Figure 5 is a process diagram.2... ... Compressor, 7.8.9 ... Adsorption tower, 4a, 4b, 5a, 5b, 6a, 6b, 10a. 10b, 11a, 11b, 12a, 12b, 22゜23
.. 24.28, 29, 32.33.34...Switching valve, 25...Nitrogen compressor, 26...
Nitrogen tank. Applicant Nippon Sanso Co., Ltd. Agent Patent Attorney Masatake Shiga Figure 1

Claims (1)

【特許請求の範囲】[Claims] 原料空気中の窒素ガスを優先的に吸着する複数の吸着塔
を切換弁によシ、加圧吸着・減圧再生・再加圧の各工程
に切換えるととによ多連続的に製品酸素ガスを得るプレ
ッシャースイング吸着法fよる酸素製造方法において、
上記加圧吸着工程を終了した吸着塔を窒素ガスで洗浄す
ることにより幾分濃縮された酸素ガスを得る窒素洗浄工
程を設け、該工程で得られた幾分濃縮された酸素ガスを
原料ガスとして再使用することを特徴とする酸素濃縮方
法。
Multiple adsorption towers that preferentially adsorb nitrogen gas in the feed air are switched to each step of pressurized adsorption, depressurized regeneration, and repressurization using switching valves, allowing product oxygen gas to be continuously produced. In the method for producing oxygen by pressure swing adsorption method f,
A nitrogen cleaning step is provided to obtain a somewhat concentrated oxygen gas by cleaning the adsorption tower that has completed the pressure adsorption step with nitrogen gas, and the somewhat concentrated oxygen gas obtained in this step is used as a raw material gas. An oxygen enrichment method characterized by reuse.
JP57230386A 1982-12-23 1982-12-23 Concentrating method of oxygen Granted JPS59115725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230386A JPS59115725A (en) 1982-12-23 1982-12-23 Concentrating method of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230386A JPS59115725A (en) 1982-12-23 1982-12-23 Concentrating method of oxygen

Publications (2)

Publication Number Publication Date
JPS59115725A true JPS59115725A (en) 1984-07-04
JPH0353965B2 JPH0353965B2 (en) 1991-08-16

Family

ID=16907055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230386A Granted JPS59115725A (en) 1982-12-23 1982-12-23 Concentrating method of oxygen

Country Status (1)

Country Link
JP (1) JPS59115725A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147493A (en) * 1975-06-04 1976-12-17 Air Prod & Chem Fractionation of air by adsorption

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147493A (en) * 1975-06-04 1976-12-17 Air Prod & Chem Fractionation of air by adsorption

Also Published As

Publication number Publication date
JPH0353965B2 (en) 1991-08-16

Similar Documents

Publication Publication Date Title
US6752851B2 (en) Gas separating and purifying method and its apparatus
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
US4539020A (en) Methods for obtaining high-purity carbon monoxide
JPH04227812A (en) Method for recovering nitrogen gas from air
CA1188231A (en) Repressurization for pressure swing adsorption system
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
JPH04330913A (en) Absorption process for separating gaseous mixture
WO2009116671A1 (en) Method and apparatus for separating blast furnace gas
JPH0321207B2 (en)
JPS6247051B2 (en)
USRE32590E (en) Methods for obtaining high-purity carbon monoxide
JPS61176540A (en) Collection of gaseous mixture of methane and carbon dioxide
JPH0356768B2 (en)
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JP3169647B2 (en) Pressure swing type suction method and suction device
JPH08294612A (en) Pressure swing adsorption method for fractionating multicomponent mixture
JPS59115725A (en) Concentrating method of oxygen
JPH04227018A (en) Manufacture of inert gas of high purity
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
WO2020105242A1 (en) Gas separation device and gas separation method
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS6238281B2 (en)
JPH01207113A (en) Method of treating gaseous mixture by adsorption
JPH0994424A (en) Gaseous mixture separator