JPS59114715A - Method of producing contactor for vacuum breaker - Google Patents

Method of producing contactor for vacuum breaker

Info

Publication number
JPS59114715A
JPS59114715A JP22326682A JP22326682A JPS59114715A JP S59114715 A JPS59114715 A JP S59114715A JP 22326682 A JP22326682 A JP 22326682A JP 22326682 A JP22326682 A JP 22326682A JP S59114715 A JPS59114715 A JP S59114715A
Authority
JP
Japan
Prior art keywords
protective layer
contact material
contact
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22326682A
Other languages
Japanese (ja)
Inventor
功 奥富
山根 茂美
杉山 貞夫
秀夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22326682A priority Critical patent/JPS59114715A/en
Publication of JPS59114715A publication Critical patent/JPS59114715A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は真空遮断器用接触子の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a contactor for a vacuum circuit breaker.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

真空遮断器の接点に要求される主な条件として、遮断特
性、耐電圧特性、耐溶着特性の3種があり、これらの条
件をほぼ満足する接点材料として、Cu−Bi(銅−ビ
スマス)、Cu −Te (銅−テルル)、Cu −S
b (銅−アンチモン)、Cu −Se (銅−セレン
)、Cu −Pb (銅−鉛)系の合金が知られている
There are three main conditions required for the contacts of vacuum circuit breakers: breaking characteristics, withstand voltage characteristics, and anti-welding characteristics.Cu-Bi (copper-bismuth), contact materials that almost satisfy these conditions are Cu-Te (copper-tellurium), Cu-S
b (copper-antimony), Cu-Se (copper-selenium), and Cu-Pb (copper-lead) alloys are known.

ところで、これらの合金は概してもろい性質を有するた
め、通常行われている冷間加工ではクラックや欠けなど
を生じ易いので加工形成が難しい。
By the way, since these alloys generally have brittle properties, they are difficult to process and form because they tend to crack or chip during the commonly used cold working.

したがって、予め鋳造により丸棒を作り、これを切削し
て接触子を作製することが行われていた。
Therefore, it has been common practice to make a round bar in advance by casting and then cut it to make a contact.

しかし、この方法では高価な接点材料を切削(ずとして
捨てる量が多(、経済性の点から問題となっていた。さ
らに、鋳造のみによって作製した接点では一般に組線が
粗く、析出物の分布および形状の均一性に欠けることが
あり、遮断器として特性のバラツキを生じる。さらにま
た、鋳造法によっては鋳込み中に湯が凝固して湯のまわ
りが悪くなったり、内部に引は巣を作ったりする場合が
あるなど、接点材料として重大な欠陥を生じることも多
い。Bi%Te%sb%3e、 Pbは蒸気圧が高いた
め搗塊に気泡が発生し易(、特に小径の湯口に鋳込む際
には、気泡が表面付近に発生し易いなどの欠点がある。
However, with this method, a large amount of expensive contact material is cut (cut and discarded), which poses a problem from an economic point of view.Furthermore, contacts made only by casting generally have rough braided wires and a distribution of precipitates. Also, depending on the casting method, the molten metal may solidify during pouring, making it difficult for the molten metal to circulate properly, or causing cavities to form inside the circuit breaker. Bi%Te%sb%3e, Pb has a high vapor pressure, so it is easy for bubbles to form in the molded mass (particularly when casting into a small diameter sprue). There are drawbacks such as the tendency for air bubbles to form near the surface when filling the surface.

しかも接触子の形状および寸法には定格に応じて多種あ
るため、切削歩留りを上げるには数多(の鋳型が必委に
なったりし、いずれも経費の増大、歩留りの低下などに
結びつく欠点が指摘されている。
Moreover, since there are many different shapes and dimensions of contacts depending on their ratings, increasing the cutting yield requires the use of numerous molds, all of which have drawbacks that lead to increased costs and reduced yields. It has been pointed out.

これらの欠点を除去するために、750−800℃の温
度条件下で最初の鍛造加工率を10〜15%とし、以後
徐々にその加工率を上昇させて鍛造する接点材料の製造
方法が試みられている。この製造方法によれば、確かに
析出物の分布および形状の均一な接点材料を得ることが
できる。
In order to eliminate these drawbacks, a method of manufacturing contact materials has been attempted in which the initial forging processing rate is 10 to 15% at a temperature of 750-800°C, and the processing rate is gradually increased thereafter. ing. According to this manufacturing method, it is possible to obtain a contact material with a uniform distribution and shape of precipitates.

一方、近年の真空遮断器の高耐圧化、大電流化に伴って
、接触子についても大口径(例えば直径15c+a)で
、かつ不純物やガス等の少ない高品質の接点素材が必要
となってきた。しかるに上記鍛造法によっては、もろい
接点素材表面に生ずるクラックを通して表面から内部へ
ガスが侵入したり、クラックに酸化物などの異物が堆積
したり、あるいは巻込まれたりするので、品質のよい大
口径の接点素材を製造するには必ずしも十分ではなく、
そのため表面層の除去を行わなければならなくなるなど
、高価な接点素材の損失量は大口径になればなるほど大
となってしまう。
On the other hand, in recent years, with the increase in the withstand voltage and current of vacuum circuit breakers, it has become necessary to use high-quality contact materials with large diameters (for example, diameter 15C+A) and with less impurities and gases. . However, depending on the forging method described above, gas may enter from the surface through the cracks that occur on the surface of the brittle contact material, and foreign substances such as oxides may be deposited or entrapped in the cracks. Not necessarily sufficient to manufacture contact materials;
Therefore, the surface layer must be removed, and the loss of expensive contact material increases as the diameter increases.

両速の鍛造法の欠点を改善する技術として、600〜8
00℃で熱間ロール加工することが考えられているが、
同様に表面からのガスの拡散、異物の侵入のため表面部
の接点素材の一定量を同様に除去するので、生産性およ
び経済性の両面で必ずしも満足なものではない。
600-8 as a technology to improve the drawbacks of the dual-speed forging method.
Although hot rolling processing at 00°C is considered,
Similarly, a certain amount of the contact material on the surface is also removed due to the diffusion of gas from the surface and the intrusion of foreign matter, which is not necessarily satisfactory in terms of both productivity and economy.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、安定した接触子特性を持ちなが
らも同時に経済性に優れた真空遮断器用接触子の製造方
法を提供することにある・〔発明の概要〕 以上の目的を達成するために本発明は、Cuを基材とし
、これにBi、 Te、 pb、 Bb のうちの少な
くとも1種を含有して成る接点素材の少な(とも片面に
、Bi、 Te、 Pb、 Sb  を含有しないCu
、Ni、またはSuSから成る少な(とも厚さ1龍の保
護層を重ね合せる第1の工程と、重ね合された接点素材
および保護層を400〜1000℃の温度に加熱し、接
点素材と保護層とを冶金的に密着させ、かつ軟化状態と
する第2の工程と、鍛造および圧延の少なくとも一方に
より軟化状態の接点素材および保護層を加圧して一体化
する第3の工程と、一体化された接点素材および保護層
から少なくとも前記片面の保護層を除去し、接点素材を
露出させて接触面を得る第4の工程とを具備することを
特徴とするものである。
The present invention has been made in consideration of these circumstances, and its purpose is to provide a method for manufacturing a contact for a vacuum circuit breaker that has stable contact characteristics and is also economically efficient. [Summary of the Invention] In order to achieve the above object, the present invention provides a contact material made of Cu as a base material and containing at least one of Bi, Te, PB, and Bb. (Both sides have Cu that does not contain Bi, Te, Pb, or Sb.)
The first step is to overlay a protective layer with a thickness of 1 to 300 ℃, consisting of Ni, Ni, or SuS, and then heat the overlaid contact material and protective layer to a temperature of 400 to 1000°C to separate the contact material and the protective layer. a second step of metallurgically adhering the contact material and the protective layer to a softened state, and a third step of pressurizing and integrating the softened contact material and the protective layer by at least one of forging and rolling; The present invention is characterized by comprising a fourth step of removing at least one side of the protective layer from the contact material and the protective layer, and exposing the contact material to obtain a contact surface.

第2の工程と第3の工程とは、これを組合せて複数回繰
返してもよい。
The second step and the third step may be repeated multiple times in combination.

保護層を接点素材゛の両面に設ける場合は、一方の保護
層を除去し、接点素材を接触面として露出させ、他方の
保護層は一部または全部を残存させて銀ろ5付は層とす
ることができる。
When providing a protective layer on both sides of the contact material, remove one protective layer to expose the contact material as a contact surface, leave part or all of the other protective layer, and remove the silver plated layer. can do.

接点素材と保護層との間にAg、In、Snのうちのい
ずれかから成る厚さ100μm以下の薄層を介挿するの
がよい。これの理由は後述する。
It is preferable to interpose a thin layer of Ag, In, or Sn with a thickness of 100 μm or less between the contact material and the protective layer. The reason for this will be explained later.

[発明の詳細な説明] CUを基材とし、これにBi、 Te、 Pb、 Sb
などを含有してなる接点素材用合金は極めてもろい性質
を持ち、通常は、もろい析出物の粒界への集中などによ
って板などへの加工は困難とされている。
[Detailed Description of the Invention] CU is used as a base material, and Bi, Te, Pb, and Sb are added to the base material.
Alloys for contact materials containing such materials are extremely brittle, and are usually difficult to process into plates due to the concentration of brittle precipitates at grain boundaries.

わずかにCu −Te合金が厳しく管理された限定され
た条件下で少々の加工が出来る程度である。
Only a small amount of processing can be performed on Cu-Te alloys under strictly controlled conditions.

Bi、 Pb、 Sbなどを含めて、これらの合金を従
来法のように加工用のハンマーあるいはロールが直接的
に接点素材に触れるようなやり方によっていたのでは、
接点素材の特に端部にクラックが発生し易いということ
以外にも、加熱によって生成した酸化物を除去するため
に接点素材の表面層を切削除去しても、鍛造あるいは圧
延時に素材内部にまで異物を混入させてしまうこと、ク
ラックを介してやはり累月内部にまでガスを拡散させて
しまうことなど、真空遮断器の耐電圧特性などに好まし
くない影響を与える。上述のように従来法に従って加工
用ハンマーあるいはロールが直接的に接点素材に触れる
ようにして得た接点素材を常温から溶融に到るまで加熱
した時の放出ガスの挙動を調べてみると、400〜50
0℃で著しい水(H2O)の放出が一部の素材に観、察
される場合がある。このような素材は浴融に到ってもな
お酸素系のガスを放出することが観察されている。これ
は接点素材の内部および表面に生成したクラックに水分
が多量に吸着していることを示唆するもので、接触子の
基本特性への悪影響も無視できない。この上うな接点素
側は真空パルプの組立工程に含まれる銀ろ5付けその他
の加熱工程で接触子にふくれ現象を生ずる一因とも考え
られる。以上述べた幾つかの問題は厳しい工程管理のも
とで従来法でもある程度の軽減化は可能であるが、必ず
しも効率的でなく、多(の問題の最初の引金になってい
る接点素材のクラックを減少させることが基本であるこ
とを示唆している。この示唆に基づいて本発明者らは、
加工時に接点素材の表面あるいは端面に生ずるクラック
を防止すべく接点素材上にCu。
Conventional methods used to process these alloys, including Bi, Pb, and Sb, in which a hammer or roll directly touched the contact material.
In addition to the fact that cracks are likely to occur in the contact material, especially at the edges, even if the surface layer of the contact material is cut off to remove oxides generated by heating, foreign particles may get inside the material during forging or rolling. This has an unfavorable effect on the withstand voltage characteristics of the vacuum circuit breaker, such as allowing the gas to get mixed in and also causing the gas to diffuse into the inside of the capacitor through the cracks. As mentioned above, when we investigated the behavior of the released gas when the contact material obtained by directly touching the contact material with a processing hammer or roll according to the conventional method was heated from room temperature to melting, it was found that 400. ~50
Significant release of water (H2O) at 0°C may be observed or detected in some materials. It has been observed that such materials still release oxygen-based gases even after bath melting. This suggests that a large amount of water is adsorbed in cracks formed inside and on the surface of the contact material, and the negative effect on the basic properties of the contact cannot be ignored. Moreover, it is considered that the contact element side is one of the causes of blistering of the contact during silver soldering and other heating processes included in the vacuum pulp assembly process. Some of the problems mentioned above can be alleviated to some extent by conventional methods under strict process control, but it is not necessarily efficient and requires a large amount of contact material (which is the initial trigger of the problem). This suggests that it is fundamental to reduce cracks.Based on this suggestion, the present inventors
Cu is added to the contact material to prevent cracks from occurring on the surface or end surface of the contact material during processing.

Ni1もしくはSuSから成る保護層を設け、その保護
層の優れた延性と所定の工程管理との併用によって、従
来不可能とされていたBi、 Te、 pb、 Sbを
含有したCu合金から成る接点累月の効率的な加工を可
能としたものである。
By providing a protective layer made of Ni1 or SuS, and combining the excellent ductility of the protective layer with specified process control, we have developed a contact stack made of a Cu alloy containing Bi, Te, pb, and Sb, which was previously considered impossible. This enabled efficient processing of the moon.

以下、図面を参照して本発明の製造方法を説明する。Hereinafter, the manufacturing method of the present invention will be explained with reference to the drawings.

第1図は本発明を実施する前の接触子の(?1717人
を示すものである。ここでは構成部品として、Cuを基
材とし、これにBi、 Te、 Pb、 8bの5ちの
少なくとも1つを含有して成る接点素材lOと、この接
点素材IOの上下両面側に配置される、Bi。
FIG. 1 shows a contactor (1,717 people) before implementing the present invention. Here, as a component, Cu is used as a base material, and at least one of Bi, Te, Pb, and 8b is used as a base material. A contact material IO containing Bi is disposed on both upper and lower surfaces of the contact material IO.

Te、 Pb、 Sbを含まないCu、 Ni 、もし
くはSuSから成る保護層刃および蜀とが用意されてい
る。
A protective layer blade and a protective layer made of Cu, Ni, or SuS that do not contain Te, Pb, or Sb are provided.

接点素材10の上下両面は11 、12で表わされ、保
護層刃の下面は21で、また保護層(ト)の上下両面は
31゜32で表わされている。保88213.30は、
すでに述べたごと(、接点素材10の上下面11 、1
2をクラックから守り、かつ接点素材lOの内部l\の
ガス19人あるいは異物の巻込みを防止し、それにより
接点素材10の劣化を防止するために用いられるもので
、接点素材10よりも延性のある材料が選択される。
The upper and lower surfaces of the contact material 10 are represented by 11 and 12, the lower surface of the protective layer blade is represented by 21, and the upper and lower surfaces of the protective layer (G) are represented by 31° and 32. Ho 88213.30 is
As already mentioned (the upper and lower surfaces 11, 1 of the contact material 10
It is used to protect the contact material 10 from cracks and to prevent the entrainment of gas or foreign matter inside the contact material 10, thereby preventing deterioration of the contact material 10. A certain material is selected.

保護層刃の下面32は、必要に応じて銀ろう付けされる
面であり、針ろ5付けを保M Wi30に施すことによ
り、銀ろう拐料成分の接点素材への拡散による接合性の
低下防止の上からも有効となるものである。
The lower surface 32 of the protective layer blade is a surface to be silver soldered if necessary, and by applying the needle 5 to the protective M Wi 30, the bonding performance is reduced due to the diffusion of the silver solder component into the contact material. It is also effective from the standpoint of prevention.

ここで用いる接点素材に含有されるBi%Te。Bi%Te contained in the contact material used here.

pb、 Bbは、真空遮断器用接点素材として耐溶着性
を向上させる機能を有する材料であり、Cu基材にこれ
を含有させることは例えば特公昭41−12131号公
報などによって公知の技術である。
PB and Bb are materials that have the function of improving welding resistance as contact materials for vacuum circuit breakers, and incorporating them into a Cu base material is a well-known technique, for example, as disclosed in Japanese Patent Publication No. 12131/1983.

本発明においては、n1%Te、 pb%sb  の合
計含有量はlO〜0.1重量%の範囲で選択する。その
理由は、この含有量が10%を超えると、後述の一体化
加圧(第3の工程)条件をいくら調整しても接点素材の
効果が発揮されず、クラックが生成したり連続一体の結
合が得られずに粒状化したりするなど、健全な接触子が
得られないからであり、また、0.1%未満では耐溶着
性の点で不十分なものとなってしまうからである。
In the present invention, the total content of n1%Te and pb%sb is selected within the range of 10 to 0.1% by weight. The reason is that if this content exceeds 10%, the effect of the contact material will not be exhibited no matter how much you adjust the integration pressurization (third step) conditions described below, and cracks will occur or continuous integration will occur. This is because a healthy contact cannot be obtained, such as not being able to bond and become granular, and if it is less than 0.1%, the welding resistance will be insufficient.

保護層刃、30の厚さは少なくとも1市を必要とする。The thickness of the protective layer blade, 30, requires at least 1 inch.

とい5のは、111111未満としたのでは後述の一体
化加圧工程(第3の工程)において保護層に何らかの理
由によってクラックを生じることがあり、あるいは酸化
物の生成による保護層の消耗などにより保護層としての
機能を十分には果たせない場合があり、結果として健全
な接触子が得がたくなるからである。
Point 5 is that if it is less than 111111, cracks may occur in the protective layer for some reason during the integration pressurization step (third step), which will be described later, or the protective layer may be worn out due to the formation of oxides. This is because it may not be able to fully function as a protective layer, and as a result, it becomes difficult to obtain a healthy contact.

接点素材lOおよび保隔層20 、30の表面は非酸化
性雰囲気中での加熱処理や酸洗い処理などを用いて、表
面処理を施した程度に清浄化された面であることが必要
である。
The surfaces of the contact material IO and the insulation layers 20 and 30 must be cleaned to the extent that they have been surface-treated by heat treatment or pickling treatment in a non-oxidizing atmosphere. .

第2図は、接点素材IOの上に保護層刃を接点素材lO
の上面11と保護層刃の下面21とが対向するように重
ね合せ、同様に接点素材lOの下面側に保護層刃を接点
素材lOの下面12と保護層刃の上面31とが対向する
ように重ね合せる第1の工程を完了した状態を示すもの
である。このように重ね合せたまま、第2の工程として
、400〜1000℃の間の温度に加熱し、接点素材1
0とその上下の保護層か。
Figure 2 shows a protective layer blade placed on contact material IO.
The upper surface 11 and the lower surface 21 of the protective layer blade are stacked so that they face each other, and similarly the protective layer blade is placed on the lower surface side of the contact material 1O so that the lower surface 12 of the contact material 1O and the upper surface 31 of the protective layer blade are opposed to each other. This figure shows the state in which the first step of superimposing the two images has been completed. While stacked in this way, as a second step, the contact material 1 is heated to a temperature between 400 and 1000°C.
0 and the protective layers above and below it.

蜀とを冶金的に密着させ、軟化状態とする。ここで冶金
的な密着は、接触界面への汚染被膜の生成や異物の付着
を防止し、あるいは抑制するという意義を持っている。
It is brought into close metallurgical contact with Shu and made into a softened state. Here, metallurgical adhesion has the meaning of preventing or suppressing the formation of a contamination film or the adhesion of foreign matter to the contact interface.

この第2の工程で加熱温度を400℃未満にしたのでは
、接点素材自体にほとんど延性が悪いため、より大きな
延性を有する保@層の存在にもかかわらず塊状釦なって
しまい、連続帯となりに(く、また、1000℃を超え
ると、Cuの溶融点に近くなり、加熱炉の温度制御技術
と破船熱体の真の温度のバラツキなどのわずかな変動で
被加熱体が局部的にCuの溶融点以上に達することがあ
り、品質が不安定になってしまうおそれがある。これが
第2の工程で温度を400〜1000’Cにする理由で
ある。
If the heating temperature is lower than 400°C in this second step, the contact material itself has almost no ductility, resulting in a lumpy button despite the presence of a retaining layer with greater ductility, resulting in a continuous band. Furthermore, when the temperature exceeds 1000°C, it approaches the melting point of Cu, and slight fluctuations such as variations in the temperature control technology of the heating furnace and the true temperature of the shipwreck heating element can cause the heated body to locally become Cu. The temperature may reach above the melting point of , and the quality may become unstable.This is the reason why the temperature is set at 400 to 1000'C in the second step.

この後、鍛造または圧延または両者の併用によって接点
素材10と保頑層加、30とを前工程の加熱温度のもと
で加圧して一体化する。この工程が第3の工程であり、
この工程を完了した状態を第3図に示す。第1図に関連
して接点素材IOおよび保護層側、30の表面を清浄に
しておくことを述べたが、その理由は、清浄にしておか
ないと第3の工程に際して、接点素材10と保護層側、
30との接触界面に汚染物の分解によるカーフ1?7な
どが析出し、これが抵抗物となって接点素材IOと保鵬
層2D、30との一体化を阻害する結果となるからであ
る。もう一つの理由は、一体化加圧の完了後、一方の保
護層を後述のごとく切削除去し、他方の保護層をろう付
は接合層として利用する場合には十分な一体化加圧強度
が必要であるが、接触界面が汚染していると加圧時に十
分な加圧強度がとれない場合が多いからである。
Thereafter, the contact material 10 and the protective layer 30 are pressed and integrated at the heating temperature of the previous step by forging, rolling, or a combination of both. This step is the third step,
FIG. 3 shows the state after this process is completed. In connection with FIG. 1, it was mentioned that the surfaces of the contact material IO and the protective layer side 30 should be kept clean. layer side,
This is because kerfs 1 to 7 are deposited at the contact interface with the contact material IO and the protective layers 2D and 30 due to the decomposition of the contaminants, and this becomes a resistive substance that obstructs the integration of the contact material IO and the protective layers 2D and 30. Another reason is that after completing the integration pressure, if one of the protective layers is cut and removed as described below, and the other protective layer is used as a bonding layer for brazing, sufficient integration pressure strength is required. This is necessary, but if the contact interface is contaminated, sufficient pressure strength cannot be obtained in many cases during pressurization.

次いで第4の工程として、ここでは一方の保護層側の少
なくとも一部を接点素材10が露出するまで切削除去し
、接点としての接触面13を形成して第4図に示すよう
な接触子8を完成させる。
Next, in the fourth step, at least a portion of one of the protective layers is cut and removed until the contact material 10 is exposed, forming a contact surface 13 as a contact, and forming a contact 8 as shown in FIG. complete.

なお、第1の工程以下の各工程を経て接点素材と保蒔層
との冶金的な密着をより確実に行なわせるために、第5
図に示すように、接点素材10と保護層側との間に厚さ
100μm以下のAgまたはInまたはSnから成る接
合補助層40を予め介挿しておくのは有効な手段である
。というのは、第1の工程段階で接合補助層40を配置
することにより、接点素材lOと保護層側とを、接合補
助層40を介して冶金的な密着をより短時間に、より確
実に終了させることができ、したがって、以降の工程に
おけるガスの41え入、異物の混入、酸化被膜の生成を
早期に回避するのに有効だからである。接合補助層40
として用いるAg%In、 SnはCuを基材とする接
点素材10の中を拡散する速度が極めて速いため、接触
子として完成されたとき接触表面にそれらが存在する可
能性が大きく、その結果、真空遮断器用接触子としての
接点特性に悪い影響を及ぼすことや、接点素材の浴融点
を低下させる作用、In、 Snの場合には電気抵抗の
増大、さらにはもろい化合物の生成量の増大といった好
ましくない作用が介挿する接合補助層4oの量に比例し
て滑入する。このような欠点を除去し、あるいは抑制す
るためには、接合補助層40の厚さは100μmが限度
ということになるのである。この接合補助層40は板材
として構成されたものを介挿する方式の代りに、接点素
材もしくは保iI層もしくは両者の各対向面に予めメッ
キ等の手段で付着させておいても同等の効果が得られる
In addition, in order to ensure metallurgical adhesion between the contact material and the protective layer through each step after the first step, the fifth step is performed.
As shown in the figure, it is an effective means to previously insert a bonding auxiliary layer 40 made of Ag, In, or Sn and having a thickness of 100 μm or less between the contact material 10 and the protective layer side. This is because by arranging the bonding auxiliary layer 40 in the first process step, metallurgical adhesion between the contact material IO and the protective layer side via the bonding auxiliary layer 40 can be achieved in a shorter time and more reliably. This is because it is effective in quickly avoiding gas intrusion, foreign matter contamination, and oxide film formation in subsequent steps. Bonding auxiliary layer 40
Since the Ag%In and Sn used as the Cu-based contact material 10 diffuse at an extremely high rate, there is a high possibility that they will be present on the contact surface when the contact is completed, and as a result, It has undesirable effects such as having a negative effect on the contact characteristics as a contact for a vacuum circuit breaker, lowering the bath melting point of the contact material, increasing electrical resistance in the case of In and Sn, and increasing the amount of brittle compounds produced. The bonding auxiliary layer 4o slides in proportion to the amount of the interposed bonding auxiliary layer 4o. In order to eliminate or suppress such defects, the thickness of the bonding auxiliary layer 40 is limited to 100 μm. Instead of inserting the bonding auxiliary layer 40 in the form of a plate, the same effect can be obtained by attaching it to the contact material, the insulation layer, or the opposing surfaces of both by plating or other means. can get.

本発明において用いられる保護層側、30には接点素材
IOに含有されるBi、 ’re、 pb、 Sn  
が含まれないことはすでに述べた。その理由は、Cuを
基材とする接点素材を質的に作置するためには保護層側
に接点素材以上の延性が無ければ無意味になるが、上記
含有成分は保護層を著しくもろくさせてしまい、保涛層
としての機能を果たすことができなくなってしまうから
である。
On the protective layer side 30 used in the present invention, Bi, 're, pb, Sn contained in the contact material IO
I have already mentioned that it is not included. The reason for this is that in order to qualitatively install a Cu-based contact material, the protective layer must have more ductility than the contact material, but the above-mentioned components make the protective layer extremely brittle. This is because the layer becomes unable to function as a protective layer.

〔発明の実施例・比較例〕[Examples and comparative examples of the invention]

実施例1(第1表) カーゼンるつぼ中で約5 X 10”” To、rr 
、温度1200℃で溶解したCuをArで150 To
rrに増圧し、Teを添加した。再び排気し、鋳鉄製の
鋳型に鋳込み、直径75朋の2.9%Te −Cu合金
50 KFを得た。得られたインゴットの一部から厚さ
251111゜幅5Q +u 、長さ70ホの接点素材
を作製した。硝酸□□□%水溶液中に10秒間浸漬する
工程を数回繰返し表面を清浄化した。厚さ10mm、幅
55龍、長さ70cIILの無酸累銅を予め700℃の
水素中で加熱し、ふくれ生成の有無の確認と、表面清浄
を兼ねた処理を与え、これを保護層として前記接点素材
に重ね合せた後、水素中で800℃に加熱し、両者を密
着させた後、加熱炉から取出し、直ちに厚さ減少率が1
0%程度の鍛造を与え、厚さ4Q mm、幅50m、長
さく資)はの加圧体を得た。一部を切出し、その界面を
顕微鏡で調べたが、界面は完全に一体化しており、異物
の混入などは見自らなかった。また、この時の厚さは、
接点素材は23藺、保獲層としてCuが上、下面集約9
1であった。
Example 1 (Table 1) Approximately 5 X 10” To, rr in a Kazen crucible
, Cu melted at a temperature of 1200°C was heated to 150 To
The pressure was increased to rr and Te was added. The mixture was evacuated again and cast into a cast iron mold to obtain a 2.9% Te--Cu alloy 50 KF with a diameter of 75 mm. A contact material having a thickness of 251111°, a width of 5Q + u, and a length of 70° was prepared from a part of the obtained ingot. The surface was cleaned by repeating the process of immersing it in a nitric acid □□□% aqueous solution for 10 seconds several times. Acid-free copper with a thickness of 10 mm, a width of 55 mm, and a length of 70 cIIL was heated in advance in hydrogen at 700°C, and subjected to a treatment that also served as a surface cleaning and confirmation of the presence or absence of blisters. After superimposing it on the contact material, it was heated to 800°C in hydrogen to bring them into close contact, and then taken out of the heating furnace and immediately reduced in thickness by 1.
By applying about 0% forging, a pressurized body with a thickness of 4Q mm, a width of 50 m, and a length of 4 mm was obtained. A portion was cut out and the interface was examined under a microscope, but the interface was completely integrated and no foreign matter was visible. Also, the thickness at this time is
The contact material is 23cm, Cu is on the top as a retention layer, and the bottom surface is concentrated 9
It was 1.

再び水素中での加熱と5〜15%程度の鍛造を数回繰返
し、厚さ2L51111.幅50鰭、畏さ約100cI
ILの加圧体を得た。一部を切出してその界面を顕微鏡
で調べたが、異物の混入などはなく、界面の完全性が維
持されていた。また、この時の厚さは接点素材が約19
酊、Cu保獲層は上下面集約5.5闘であった。
Heating in hydrogen and forging to about 5 to 15% were repeated several times, resulting in a thickness of 2L51111. Width: 50 fins, height: approx. 100 cI
An IL pressurized body was obtained. A portion was cut out and the interface was examined under a microscope, but no foreign matter was found and the integrity of the interface was maintained. Also, the thickness of the contact material at this time is approximately 19
The upper and lower surfaces of the Cu retention layer had an aggregate of 5.5 degrees.

再び800℃の水素炉中で加熱し、ロール径45朋の熱
間圧延機で圧延加工を与え、圧延体の温度が600℃以
下に下がらないよう加熱しながら圧延を数回繰返し、厚
さ81m(接点素材の厚さ約5酊、Cu保護層の厚さ、
上下面集約1.5i+m)、幅501II+1長さ約3
.7mの圧延体を得た。同杼に一部を切出し、その断面
を顕微鏡で調べたが異物の混入などは全くなく、界面の
健全性が維持されていた。次に上部のCu保膜層を切削
によって除去し、接点素材を露出させて接触面と上、下
面のCu保#に#はそのまま残存させ銀ろう付は層とし
た。
It was heated again in a hydrogen furnace at 800°C, then rolled in a hot rolling mill with a roll diameter of 45 mm, and rolled several times while being heated so that the temperature of the rolled body did not fall below 600°C, resulting in a thickness of 81 m. (The thickness of the contact material is about 5mm, the thickness of the Cu protective layer,
Upper and lower surfaces combined 1.5i+m), width 501II+1 length approx. 3
.. A rolled body of 7 m was obtained. A section was cut out from the same shuttle and the cross section was examined under a microscope, but there was no foreign matter mixed in, and the integrity of the interface was maintained. Next, the upper Cu retention film layer was removed by cutting to expose the contact material, and the # remained as it was on the contact surface and the Cu retention layer on the upper and lower surfaces to form a silver soldering layer.

このようKして得た接触子素材から直径3Qsn、厚さ
3.8111の接触子片を作製し、組立式の真空バルブ
に装着し、6kVX500Aの回路を2000回遮断し
た時の再点弧発生頻度を調査した。その結果を第1表に
示す。数値は2台の遮断器(ノルゾとして6本)の最大
、最小のばらつき幅で示した。
A contact piece with a diameter of 3Qsn and a thickness of 3.8111 was made from the contact material thus obtained, and it was attached to an assembled vacuum valve, and restriking occurred when a 6kV x 500A circuit was interrupted 2000 times. We investigated the frequency. The results are shown in Table 1. The numerical values are shown as the maximum and minimum variation widths of two circuit breakers (six as Norzo).

第り表から明らかなように、本発明方法によりCu保護
層を配し、所定の条件管理のもとで作った接触子を用い
た遮断器では、後述する比較例1と比較してクラック(
き裂)が少なく、特にガス量も少なく、また再点弧発生
が極端に少なく、良好である。再点弧現象の効果的防止
技術はまだ明らかになっていないが、電極やシールドの
構成材料、設計技術、あるいは接点材料が主として関与
していると考えられる。接点については、加工性、例え
ば材料のもろさに関係する材料組成、表面状態、不純物
が主要なものである。特にBi、Te、pb、 sb等
、合金自体をもろくする補助成分材を含有する接点合金
においては、上記のうち、加工の良否(接触子の加工時
に、発生する微少クラックの有無)は、再点弧現象に対
して重要な要因と考えられ、実施例に示すように何らか
の相関があることが推察される。
As is clear from Table 1, a circuit breaker using a contact made by the method of the present invention with a Cu protective layer and made under predetermined conditions has more cracks (
It is good because there are few cracks), especially the amount of gas is small, and the occurrence of restriking is extremely small. Although the technology for effectively preventing the restriking phenomenon has not yet been clarified, it is thought that the constituent materials of the electrodes and shields, the design technology, or the contact materials are mainly involved. For contacts, the main factors are processability, such as material composition related to material fragility, surface condition, and impurities. Particularly in contact alloys that contain auxiliary components such as Bi, Te, PB, and SB, which make the alloy itself brittle, the quality of processing (presence or absence of minute cracks that occur during processing of the contact) is determined by reuse. This is considered to be an important factor for the ignition phenomenon, and it is presumed that there is some correlation as shown in the examples.

比較例1(第1表) 接触子の製造は、Cu保護層を使わないこと以外はほと
んど実施例1と同じ条件とした。すなわち、接点素材は
実施例1の残りの部材、2.9%Te −Cuを使用し
、太きさも厚さ25顛、幅5011m。
Comparative Example 1 (Table 1) The contact was manufactured under almost the same conditions as in Example 1, except that the Cu protective layer was not used. That is, the remaining material of Example 1, 2.9% Te-Cu, was used as the contact material, and the thickness was 25 mm thick and 5011 m wide.

長さ70cIILとし、実施例1と同条件にした。酸洗
いによって表面のスケールを取除いた後、水素中800
℃に加熱した前記2.9%Te −Cu接点素材に実施
例1と同じ加工率を鍛造によって与え、厚さ40鮨、幅
5Q m 、長さ約80crILの加圧体を得た。ただ
し加圧体は幅50朋の両端には、端面から約51II+
のクラックが無数に発生していると共に、表面層にも畏
さ方向に若干のクラックの発生があった。この一部を切
出しその界面を顕微鏡で調べたが、断面にはクラックの
進展および表面層のクラックに′は、はまり込みが存在
した。したがって次の加工工程の前には端面の切り落し
および表面層のクラック部の切削除去を行った。そのた
め、約20%の材料損失がこの工程で発生した(実施例
1ではゼロである)。なお界面はほぼ正常であった。
The length was 70 cIIL under the same conditions as in Example 1. After removing surface scale by pickling,
The 2.9% Te--Cu contact material heated to 0.degree. C. was subjected to the same processing rate as in Example 1 by forging to obtain a pressurized body having a thickness of 40 mm, a width of 5 Q m, and a length of about 80 crIL. However, the pressurizing body has a width of approximately 51 mm at both ends from the end surface.
In addition to numerous cracks occurring in the surface layer, there were also some cracks in the direction of the surface layer. A part of this was cut out and its interface was examined under a microscope, but the cross section showed crack growth and cracks in the surface layer. Therefore, before the next processing step, the end faces were cut off and the cracks in the surface layer were removed. Therefore, about 20% material loss occurred in this process (zero in Example 1). Note that the interface was almost normal.

再び水素中での加熱と5〜15%程度の鍛造を厚さが約
3011になるまで加え、幅約50!肩、長さ80cW
Lの加圧体を得た。ただし加圧体は8ocaの一本の帯
状とはならず、二分割の状態となった。さらに幅501
+11の両端には、端面から約511I+のクラックが
無数に発生していると共に、表面層にも長さ方向にクラ
ックの発生があった。この一部を切出し、その界面を顕
微鏡で調べたが、断面には微小クラックの発生および表
面層のクラックには異物のはまり込みが存在した。した
がって次の熱間圧延材での圧延加工の前に端面の切り落
し、表面クラック部の切削除去を行ったので、さらに材
料損失があった。
Heating in hydrogen again and forging at a rate of 5 to 15% is applied until the thickness is approximately 3011 mm, and the width is approximately 50 mm! Shoulder, length 80cW
A pressure body of L was obtained. However, the pressurizing body did not form a single band of 8 oca, but was divided into two. Further width 501
At both ends of +11, numerous cracks of about 511I+ were generated from the end faces, and cracks were also generated in the surface layer in the length direction. A portion of this was cut out and the interface was examined under a microscope, but it was found that microcracks had occurred in the cross section and foreign matter had gotten stuck in the cracks in the surface layer. Therefore, the end faces were cut off and the surface cracks were removed before the next rolling process with the hot rolled material, resulting in further material loss.

再び800℃の水素炉中で加熱し、ロール径45 am
の熱間圧延機で圧延加工を与え、加熱、加工を繰返しな
がら厚さ約8111幅50顛、長さ約1.2m(数箇所
で切断されたため、その合計)の圧延体を得た。実施例
1と同様に一部を切出し、その断面を顕微鏡で調べたと
ころ、断面には微小クラックの発生、表面層のクラック
には異物のはまり込みが存在した。したがって接触子の
加工時には端面の切り落しを必要とした。
Heated again in a hydrogen furnace at 800°C and made a roll with a diameter of 45 am.
A rolled product having a thickness of about 8111 mm, a width of 50 mm, and a length of about 1.2 m (total of the length since it was cut at several locations) was obtained by repeating heating and processing using a hot rolling mill. A portion was cut out in the same manner as in Example 1, and the cross section was examined under a microscope. It was found that microcracks had occurred in the cross section and foreign matter had gotten stuck in the cracks in the surface layer. Therefore, when processing the contact, it was necessary to cut off the end face.

このようにして得た接触子素材から、直径30111+
From the contact material obtained in this way, a diameter of 30111+
.

厚さ3.811Igの接触子片を作製し、組立式の真空
ノ々ルブに装着し、6kVX500Aの回路を2000
回遮断した時の再点弧発生頻度を調査した。その結果を
第1表に併記した。第1表から明らかなように、実施例
1と比較して、クラック、ガス量共に多(、さらに再点
弧発生が多い。
A contact piece with a thickness of 3.811Ig was made, attached to a prefabricated vacuum knob, and a 6kV x 500A circuit was connected to the
We investigated the frequency of re-ignition when the engine was shut off. The results are also listed in Table 1. As is clear from Table 1, compared to Example 1, there were more cracks and more gas (and more restriking occurred).

はぼ同じ加工率を与えた実施例1と比較例1において、
接点素材の材料利用率を比較すると、両・者ともスター
ト材はほぼ同じ大きさく厚さ25111、幅50朋、長
さ70crIL)であるにもかかわらず、実施例1では
厚さ5mm(Cu保護層込みで81111)、幅関闘、
長さ3.4mのものを得たのに対して、比較例1 テハ
Jl サ8 mvI、幅501m、長さ約0.8mのも
のしか得られなかった。実施例1では約97%の利用率
であるのに対して比較例1では37%の利用率である。
In Example 1 and Comparative Example 1, which gave almost the same processing rate,
Comparing the material utilization rates of the contact materials, it is found that although the starting materials in both cases are approximately the same size (thickness 25111, width 50 mm, length 70 crIL), in Example 1 the thickness was 5 mm (Cu protection 81111 (including layers), Hakkanto,
In contrast, only Comparative Example 1, which had a length of 3.4 m, a width of 501 m, and a length of about 0.8 m, was obtained. In Example 1, the utilization rate is approximately 97%, whereas in Comparative Example 1, the utilization rate is 37%.

しかも所定の接点厚さ3.8111を得るのに実施例1
ではCu保護層の厚さを除(と接点累月は5朋から十分
切出せたが、比較例1では前記した表面層などのクラッ
クあるいは他の欠陥の恐れから、これらを取除く部分を
含めると8m11は必委である。
Moreover, in order to obtain the predetermined contact thickness of 3.8111, Example 1
In this case, the thickness of the Cu protective layer was removed (and the contact layer could be sufficiently cut out from the 5th layer, but in Comparative Example 1, the part from which these were removed was included due to the fear of cracks or other defects in the surface layer etc. described above). and 8m11 are mandatory committees.

以上実施例1、比較例1で比軟したように再点弧特性の
優秀性のみならず、本発明方法では、高価な接点素材の
大幅な節約も同時に達成されている。
In addition to excellent restriking characteristics as shown in Example 1 and Comparative Example 1, the method of the present invention also achieves a significant saving in expensive contact materials.

実施例2〜3;比較例2〜3(第2表)Cu保護層の厚
さはQ 、 5 myrのときは加工によって破断に至
り、内部の接点素材を十分保温できず(比較例2)再点
弧発生頻度およびガス量の増加が認められる。表面には
破断したCu保画1−の周囲を中心に酸化物の巻込みが
認められ、好ましい厚さではない。少なくともl、0+
a+を使する(実′JX+i例2)。
Examples 2-3; Comparative Examples 2-3 (Table 2) When the thickness of the Cu protective layer was Q, 5 myr, it broke during processing and the internal contact material could not be kept sufficiently warm (Comparative Example 2) An increase in the frequency of restriking and the amount of gas was observed. On the surface, inclusion of oxide was observed mainly around the broken Cu image 1-, and the thickness was not preferable. at least l, 0+
Use a+ (actual 'JX+i example 2).

一方、密着後の加熱を490℃で行うと、Cu保護層の
破断と共に全体が粒状にばらばらになり、好ましくない
(比較例3)が、600℃なら十分連続、一体化しく実
施例3)、接点素材へのガスの実施例4〜11;比較例
4〜5(第3〜5表)接点素材10とCu保護層加、3
0とを第5図のように配置し、さらに接点素材10と保
護層加との間に250μmの銀(Ag)を接合補助層4
0として介挿し、実施例3と同じ条件の加工を与えた。
On the other hand, if heating after adhesion is carried out at 490°C, the Cu protective layer will break and the whole will fall apart into particles, which is not preferable (Comparative Example 3), but if it is heated at 600°C, it will be sufficiently continuous and integrated (Example 3), Examples 4 to 11 of gas to contact material; Comparative Examples 4 to 5 (Tables 3 to 5) Contact material 10 and Cu protective layer added, 3
0 as shown in FIG.
0 and processed under the same conditions as in Example 3.

なお、この場合、接点素材10と保護層Iとの間にはA
gは挾まない。加工後の断面を顕微鏡で観察すると、A
gは接点素材10と保膜層刃との界面4にまで多量に到
達し、接触子面にAgが存在する状態となった。
In this case, there is a gap between the contact material 10 and the protective layer I.
G is not included. When the cross section after processing is observed under a microscope, A
A large amount of g reached the interface 4 between the contact material 10 and the film retaining layer blade, resulting in the presence of Ag on the contact surface.

前記所定の再点弧発生率を調査すると高い確率で発生す
るのが認められた。Agが接触子内部を移動する際にT
eを一緒に接触子面まで移動させたもので、Agの凝集
と共にTeの凝集が見られる(比較例4)。これが再点
弧発生率を高めた主因と考えられ、接点素材10と保護
層20との間に介挿する接合補助層40の金属は量の制
限が必要で、100μm程度が限界と考えられる(実施
例4)。
When the predetermined incidence rate of restriking was investigated, it was found that it occurs with a high probability. When Ag moves inside the contact, T
e was moved to the contact surface together with the agglomeration of Ag and Te aggregation (Comparative Example 4). This is thought to be the main reason for the increased rate of restriking, and it is necessary to limit the amount of metal in the bonding auxiliary layer 40 interposed between the contact material 10 and the protective layer 20, and the limit is considered to be about 100 μm ( Example 4).

100 ttm以内なら前述したような界面への接合補
助金属のくみ上りとそれに伴5溶着防止金属Teの凝集
は再点弧発生に影響のない程度である。接合補助層40
の金属はAgのみでな(In(実施例5)、Sn (実
施例6)でもよい。これら接合補助層の介挿は、接点素
材とCu保5層との重ね合せを確実にしかつ信頼性を高
めるのに有効で、結果的に加工時初期の接点素材の材質
劣化を防止する(例えばガスの浸入など)のに寄与する
。保饅層加。
If it is within 100 ttm, the above-mentioned build-up of the bonding auxiliary metal to the interface and the concomitant aggregation of the welding prevention metal Te will have no effect on the occurrence of restriking. Bonding auxiliary layer 40
The metal may not only be Ag (In (Example 5) or Sn (Example 6)).The insertion of these bonding auxiliary layers ensures the superposition of the contact material and the Cu protective layer and improves reliability. As a result, it contributes to preventing material deterioration of the contact material during initial processing (e.g. gas infiltration).Adding a protective layer.

恥としてはCuの代りにN、i、 SuSでも効果が十
分あることが認められている(実施例8〜9、比較例5
)。
As for shame, it is recognized that N, i, and SuS are sufficiently effective instead of Cu (Examples 8 to 9, Comparative Example 5)
).

なお、保護層は、接点素材の上下面に配置密着させるの
みでなく、さらにその側面にも配置し、外表面全体を取
囲むようにしてもよ(、また、接点素材を円柱状とし、
その外側面を円筒状の保護層で取囲み密着させても、前
記所定条件の加工法を採用すれば、同等の効果を得るこ
とができる(実施例l0111)。
Note that the protective layer is not only arranged and brought into close contact with the upper and lower surfaces of the contact material, but may also be arranged on the sides thereof so as to surround the entire outer surface (also, if the contact material is cylindrical,
Even if the outer surface is surrounded by a cylindrical protective layer and brought into close contact with it, the same effect can be obtained if the processing method under the predetermined conditions is adopted (Example 10111).

本発明に用いる保護層は単体のみとする必要はな(、別
に予め複合した材料、例えば上層をCu。
The protective layer used in the present invention does not need to be made of a single material (it is not necessary to use a separate pre-composite material, for example, the upper layer is made of Cu).

下層をSuSとした複合材料を用いても同等の効果を得
ることができる。
A similar effect can be obtained by using a composite material in which the lower layer is made of SuS.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、81%Te1pb
、 sbの少なくとも1つを含有したCu基材の真空遮
断器用接触子素材の加工を行うとき、従来著しく困難で
あったこれら合金の経済的加工を、接触子としての基本
特性を維持したまま行うことができる。
As detailed above, according to the present invention, 81%Te1pb
When processing a Cu-based vacuum circuit breaker contact material containing at least one of the be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明の詳細な説明するための図であって
、第1図は接点素材と保護層の第1の工程前の状態の断
面図、第2図は第1の工程後の状態の断面図、第3図は
第3の工程後の状態の断面図、 第4図は第1〜3図の接触子とは異なる接触子構造例を
示す断面図、 第5図は接点素材と保護層との間に接合補助層を介挿し
た状態を示す断面図である。 10・・・接点素材、20.30・・・保護層、40・
・・接合補助層。
1 to 3 are diagrams for explaining the present invention in detail, in which FIG. 1 is a sectional view of the contact material and the protective layer before the first step, and FIG. 2 is a cross-sectional view of the contact material and the protective layer after the first step. Figure 3 is a cross-sectional view of the state after the third step, Figure 4 is a cross-sectional view showing an example of a contact structure different from the contacts in Figures 1 to 3, Figure 5 is a contact FIG. 3 is a cross-sectional view showing a state in which a bonding auxiliary layer is inserted between the material and the protective layer. 10...Contact material, 20.30...Protective layer, 40.
...bonding auxiliary layer.

Claims (1)

【特許請求の範囲】 1、 Cuを基材とし、これにBi、 Te、 Pb、
 Sbのうちの少な(とも1種を含有して成る接点素材
の少なくとも片面に、Bi%Te、 pb、 sb  
を含有しないCu、Ni、またはSuSかち成る少なく
とも厚さi n+の保護層を重ね合せる第1の工程と、 重ね合された接点素材および保護層を400〜1000
℃の温度に加熱し、接点素材と保護層とを冶金的に密着
させ、かつ軟化状態とする第2の工程と、 鍛造および圧延の少なくとも一方により軟化状態の接点
素材および保護層を加圧して一体化する第3の工程と、 一体化された接点素材および保護層から少なくとも前記
片面の保護層を除去し、接点素材を露出させて接触面を
得る第4の工程と を具備することを特徴とする真空遮断器用接触子の製造
方法。 2、 Cuを基材とし、これにBi、 Te、 Pb、
 Sbのうちの少なくとも1種を含有して成る接点素材
と、Bi、 Te、、 Pb、 Sbを含有しないCu
、 Ni、またはSuSから成る少なくとも厚さ1關の
保護層を準備し、接点素材および保護層を水素または酸
による表面洗浄の後、重ね合せる第1の工程と、 重ね合された接点素材および保護層を400〜1000
℃の温度に加熱し、接点素材と保護層とを冶金的に密着
させ、かつ軟化状態とする第2の工程と、 鍛造および圧延の少なくとも一方により軟化状態の接点
素材および保護層を加圧して一体化する第3の工程と、 一体化された接点素材および保護層から少なくとも前記
片面の保護層を除去し、接点素材を露出させて接触面を
得る第4の工程と を具備することを特徴とする真空遮断器用接触子の製造
方法。 3、 Cuを基材とし、これにBi%Te、 Pb%S
bのうちの少なくとも1種を含有して成る接点素材と、
Bi、 Te、 Pb、 Sbを含有しないCu、Ni
。 またはSuSから成る少なくとも厚さ1龍の保護層を準
備し、接点素材および保護層を水素または酸による表面
洗浄の後、接点素材の両面にそれぞれ保諧層を重ね合せ
る第1の工程と、重ね合された接点素材および保護層を
400〜1000℃の温度に加熱し、接点素材と保護層
とを冶金的罠密着させ、かつ軟化状態とする第2の工程
と、 鍛造および圧延の少なくとも一方により軟化状態の接点
素材および保護層を加圧して一体化する第3の工程と、 一体化された接点素材および保護層から一方の保護層の
みを除去し、接点素材を露出させて接触面とし、他方の
保護層は一部または全部を残存させて銀ろ5付性改善層
とする第4の工程と を4備することを特徴とする真空遮断器用接触子の製造
方法。 4、 Cuを基材とし、これにni、 Te、 pb、
 sbのうちの少な(とも1種を含有して成る接点素材
と、Bi、Te、 Pb、 Sbを含有しないCu%N
i。 またはSuSから成る少な(とも厚さ11Iの保護層と
を、Ag、In、 Snのうちのいずれかから成る厚さ
100μm以下の接合補助層を介して重ね合せる第1の
工程と、 重ね合された接点素材および保護層を400〜1000
℃の温度に加熱し、接点素材と保護層とを冶金的に密着
させ、かつ軟化状態とする第2の工程と、 鍛造および圧延の少なくとも一方により軟化状態の接点
素材および保護層を加圧して一体化する第3の工程と、 一体化された接点素材および保護層から少なくとも前記
片面の保護層を除去し、接点素材を露出させて接触面を
得る第4の工程と を具備することを特徴とする真空遮断器用接触子の製造
方法。
[Claims] 1. Cu is the base material, and Bi, Te, Pb,
Bi%Te, pb, sb on at least one side of the contact material containing at least one of Sb.
a first step of overlapping a protective layer of at least in+ thickness made of Cu, Ni, or SuS containing no
A second step of heating the contact material and the protective layer to a temperature of °C to metallurgically adhere the contact material and the protective layer and softening the contact material, and pressing the softened contact material and the protective layer by at least one of forging and rolling. a third step of integrating; and a fourth step of removing at least one side of the protective layer from the integrated contact material and protective layer to expose the contact material to obtain a contact surface. A method for manufacturing a contact for a vacuum circuit breaker. 2. Cu is the base material, and Bi, Te, Pb,
A contact material containing at least one of Sb, and Cu containing no Bi, Te, Pb, or Sb.
A first step of preparing a protective layer of at least one thickness of Ni, Ni, or SuS, and superimposing the contact material and the protective layer after surface cleaning with hydrogen or acid; and the superimposed contact material and protection. 400-1000 layers
A second step of heating the contact material and the protective layer to a temperature of °C to metallurgically adhere the contact material and the protective layer and softening the contact material, and pressing the softened contact material and the protective layer by at least one of forging and rolling. a third step of integrating; and a fourth step of removing at least one side of the protective layer from the integrated contact material and protective layer to expose the contact material to obtain a contact surface. A method for manufacturing a contact for a vacuum circuit breaker. 3. Cu is used as a base material, and Bi%Te, Pb%S are added to it.
A contact material containing at least one of b.
Cu, Ni that does not contain Bi, Te, Pb, Sb
. A first step of preparing a protective layer having a thickness of at least one layer made of or SuS, and after surface cleaning the contact material and the protective layer with hydrogen or acid, overlaying protective layers on both sides of the contact material, respectively; A second step of heating the combined contact material and protective layer to a temperature of 400 to 1000°C to bring the contact material and protective layer into metallurgical tight contact and softening, and at least one of forging and rolling. a third step of pressurizing and integrating the softened contact material and protective layer; removing only one protective layer from the integrated contact material and protective layer to expose the contact material as a contact surface; A method for manufacturing a contact for a vacuum circuit breaker, comprising a fourth step of leaving part or all of the other protective layer to serve as a layer for improving silver grating properties. 4. Cu is the base material, and Ni, Te, PB,
A contact material containing a small amount of sb and a Cu%N containing no Bi, Te, Pb, or Sb.
i. or a first step of laminating a protective layer made of SuS with a thickness of 11I through a bonding auxiliary layer of 100 μm or less made of Ag, In, or Sn; 400~1000
A second step of heating the contact material and the protective layer to a temperature of °C to bring them into metallurgical contact and softening the contact material, and pressing the softened contact material and the protective layer by at least one of forging and rolling. a third step of integrating; and a fourth step of removing at least one side of the protective layer from the integrated contact material and protective layer to expose the contact material to obtain a contact surface. A method for manufacturing a contact for a vacuum circuit breaker.
JP22326682A 1982-12-20 1982-12-20 Method of producing contactor for vacuum breaker Pending JPS59114715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22326682A JPS59114715A (en) 1982-12-20 1982-12-20 Method of producing contactor for vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22326682A JPS59114715A (en) 1982-12-20 1982-12-20 Method of producing contactor for vacuum breaker

Publications (1)

Publication Number Publication Date
JPS59114715A true JPS59114715A (en) 1984-07-02

Family

ID=16795414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22326682A Pending JPS59114715A (en) 1982-12-20 1982-12-20 Method of producing contactor for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS59114715A (en)

Similar Documents

Publication Publication Date Title
US2179960A (en) Agglomerated material in particular for electrical purposes and shaped bodies made therefrom
CN104404419B (en) Preparation method of high-oxide content flake-like contact material
JPS5976453A (en) Cu alloy clad material for lead material of semiconductor device
KR101203534B1 (en) Brazing solder alloy based on copper, product thereof and method for brazing
TW201205613A (en) Electronic component
KR100921704B1 (en) A manufacturing method of the planer electric contact
KR101879477B1 (en) Method for manufacturing electric contact
JPS5920445A (en) Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
US3778576A (en) Tungsten electrical switching contacts
JPS59114715A (en) Method of producing contactor for vacuum breaker
JPH0684435A (en) Contact and shield for vacuum circuit breaker and manufacture thereof
JPH11343527A (en) High strength and high conductivity copper alloy excellent in heat treatability at the time of press punching
KR101552428B1 (en) Ag / HIGH OXIDE Ag ALLOY ELECTRIC CONTACT MATERIAL FOR CIRCUIT BREAKER
US3802062A (en) PROCESS OF PRODUCING SOLDERABLE COMPOSITES CONTAINING AgCdO
US3935988A (en) Process of producing solderable composites containing AgCdO
US3302280A (en) Methods of bonding secondary materials to beryllium-copper
KR20160071705A (en) Method for manufacturing Copper-Silver Alloy for Electrical Contact Material by Using diffusion bonding
AU2002217180A1 (en) A method for the manufacture of layered metal product slabs and layered metal product slabs
JPS61269998A (en) Sn alloy solder having excellent thermal fatigue characteristic
JPH0455086A (en) Production of brazing material
CN114496621B (en) Preparation method of silver-tungsten composite copper alloy electric contact material
JPH10177821A (en) Electric contact and its manufacture
JPS6023927A (en) Method of producing contact for vacuum breaker
US2278592A (en) Contact element
JPH0142321B2 (en)