JPS59113848A - Purification of whey of concentrated whey protein - Google Patents

Purification of whey of concentrated whey protein

Info

Publication number
JPS59113848A
JPS59113848A JP22210382A JP22210382A JPS59113848A JP S59113848 A JPS59113848 A JP S59113848A JP 22210382 A JP22210382 A JP 22210382A JP 22210382 A JP22210382 A JP 22210382A JP S59113848 A JPS59113848 A JP S59113848A
Authority
JP
Japan
Prior art keywords
whey
protein
ferric chloride
precipitate
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22210382A
Other languages
Japanese (ja)
Other versions
JPH0119863B2 (en
Inventor
Tamotsu Kuwata
桑田 有
Fumiyasu Tsuchiya
土屋 文安
Yoshiro Yamamoto
山本 良郎
Akinori Yonekubo
米久保 明得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP22210382A priority Critical patent/JPS59113848A/en
Publication of JPS59113848A publication Critical patent/JPS59113848A/en
Publication of JPH0119863B2 publication Critical patent/JPH0119863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)

Abstract

PURPOSE:To obtain purified whey or concentrated whey protein useful as a protein source for baby, by adjusting the pH of the titled substance, adding ferric chloride to the substance, leaving the mixture to stand at a specific temperature, recovering the precipitate, and subjecting the precipitate to washing, dissolution in an acid, treatment with an ion exchange resin, etc. CONSTITUTION:The pH of whey or concentrated whey protein is adjusted and ferric chloride is added to the substance to obtain a mixture having a pH of about 3+ or -0.3 and a ferric chloride concentration of about 4+ or -0.9mM, and the mixture is left to stand at 26+ or -5 deg.C for >=2hr. The obtained precipitate is recovered, washed with water, and dissolved in an acid to adjust the pH to about 1.5+ or -0.2. The solution is made to contact with a cation exchange resin having low degree of crosslinking (e.g. Amberlite IR 112) to remove the iron, adjusted to about 6.8+ or -0.4pH, and subjected to the salt-removing operation such as dialysis in a dialyzing tube, etc. The obtained product is used as a protein source of nursery food.

Description

【発明の詳細な説明】 本発明はホエー又はホエー蛋白濃縮物(WheyT’r
otein Concentrate :以下WPCと
いう)を育児用調製物の蛋白源として利用することがで
きるようになるまでに精製する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention provides whey or whey protein concentrate (WheyT'r
The present invention relates to a method for purifying otein concentrate (hereinafter referred to as WPC) to the point where it can be used as a protein source in infant preparations.

一般に、チーズ、カゼインの製造に際して副生ずるホエ
ーは牛乳中の脂肪とカゼインを除く大部分の水溶性成分
を含有している。ホエー中の主要成分である乳糖はホエ
ーから結晶化して分離され、食用や薬用に用いられてき
たが、ホエー蛋白は、その高い栄養価を認められながら
も、限られた用途にのみ使用できる形態で分11!II
Io1収されるに過ぎなかった。例えば加熱凝固法、ポ
IJ IJノン酸塩法による1111収で、得られる製
品は不溶性であつtす、多岐の無(が塙(リン酸根、鉄
塩)を含有するもので、食品への使用には多くの制限が
あり9、少なくとも乳児用調製物の蛋白源としての使用
は国情であった。
In general, whey, which is a by-product during the production of cheese and casein, contains most of the water-soluble components in milk, excluding fat and casein. Lactose, the main component in whey, has been crystallized and separated from whey and used for food and medicinal purposes, but whey protein is a form that can only be used for limited purposes, although it is recognized for its high nutritional value. Minute 11! II
Only Io1 was collected. For example, the yield of 1111 was obtained by heat coagulation method, polyhydrochloride method, and the resulting product is insoluble and contains a wide variety of substances (phosphate radicals, iron salts), and cannot be used in foods. There are many restrictions on the use of protein as a source of protein, at least in infant preparations,9 which is the national situation.

ホエー又はWPCが乳児用gVA’lJ物の蛋白源とし
て不適当な理由としては、多量のβ−ラクトグロプリン
ノ存在が指摘される。 Parich WIi: (C
I inAIlergyl :369−580.197
1)けサルを用いたPCA反応で、β−ラクトグロブリ
ンに対する抗体を飛も頻繁に見出し、また、Kleth
r R、(ト)「VI、 Freier 8. et+
I (C1in AIlprgl :249−255゜
1’971 Qt ミルクに敏感な乳児のグループで、
各挿ミルク蛋白に対する血清■gE抗体を調べ、β−ラ
クトグロブリンに対するIgH抗体を雫も頻繁に、見出
しているように、β−ラクトグロブリンはカゼインやα
−ラクトアルブミンに比して強いアレルゲン性を示すこ
とが知ら五ているのである。
The reason why whey or WPC is unsuitable as a protein source for gVA'lJ products for infants is the presence of a large amount of β-lactoglopurin. Parich WIi: (C
IinAIlergyl:369-580.197
1) Antibodies against β-lactoglobulin were frequently found in PCA reactions using monkeys, and Kleth
r R, (g) “VI, Freier 8. et+
I (C1in AIlprgl: 249-255°1'971 Qt In a group of infants sensitive to milk,
When examining serum gE antibodies against each milk protein, Shizuku frequently found IgH antibodies against β-lactoglobulin.
- It is known that it exhibits stronger allergenicity than lactalbumin.

一般に、牛乳のカゼイン及びホエー蛋白はいずれも乳児
にとっては異種蛋白に相当し、ミルク蛋白に過敏な乳児
は、育児用調製物の摂取に強いアレルギー反応を示すこ
とがあるが、これけβ−ラクトグロブリンに起因すると
ころが大^いのアある。
In general, both casein and whey proteins in cow's milk represent foreign proteins to infants, and infants who are hypersensitive to milk proteins may have a strong allergic reaction to the intake of infant preparations; A large part of this is caused by globulin.

しかしながら、ホエー又hwpc中には乳児にとって有
用な蛋白源となるα−ラクトアルブミン、免疫グロブリ
ンが多琶含まれているのである1、そこで、ホエー又は
WPCからβ−ラクトグロブリンだけ全選択的に除去で
きれば、ホエー蛋白成分を母乳中のそれに近似できるの
みならず、β−ラクトグロプリン除去ホエーは通常のホ
エーよりも相対的にアレルゲン性は弱まることが期待さ
れるところから、β−ラクトグロブリンの除去には多く
の試みがなされている。
However, whey or HWPC contains a large amount of α-lactalbumin and immunoglobulin, which are useful protein sources for infants. Therefore, only β-lactoglobulin can be selectively removed from whey or WPC. If possible, not only would the whey protein component be similar to that in breast milk, but also the removal of β-lactoglobulin would be expected to be relatively less allergenic than regular whey. Many attempts have been made.

しかし実験室レベルであれば、イオン交換樹脂、ゲル濾
過法、硫安分割、カルボキシメチルセルロースによる分
別沈澱法なども可能であるが、工業的規模での製造に成
功した例は見られない。
However, at the laboratory level, methods such as ion exchange resin, gel filtration, ammonium sulfate splitting, and fractional precipitation using carboxymethyl cellulose are possible, but no examples of successful production on an industrial scale have been seen.

しかし、従来、工業的規模におけるβ−ラクトグロブリ
ンの除去の示唆もすでにみられる。即ら、塩化第二鉄に
よるホエー蛋白の沈#についてBlock et;Il
 (ArchaBiochem Bjophys 47
.88 1953)がフェリラクチンとしてホエー蛋白
を回収して以来、加熱との併用(G、 A!+mant
jaetal Can、 Ir+St、 Fond8、
Technol J、7 、199 (1974))ポ
リリン酸塩との併用(Jones S、 B、 、 e
、tsI J、 Aar、 F(101((!hem。
However, in the past there have already been suggestions for the removal of β-lactoglobulin on an industrial scale. Specifically, Block et al.
(ArchaBiochem Bjophys 47
.. 88 1953) recovered whey protein as ferrilactin, it has been used in combination with heating (G, A!+mant
jaetal Can, Ir+St, Fond8,
Technol J, 7, 199 (1974)) in combination with polyphosphates (Jones S, B, , e
, tsI J, Aar, F (101((!hem.

20.229(1972))等の改良が検討され、収吋
の向上がはかられて来た。12かし、未だ完成されプこ
ものではなかつ牟。
20.229 (1972)), etc., and efforts have been made to improve the convergence. 12 years ago, it was not completed yet.

本発明者らは、ホエー又はWPCの工業的な精製をめざ
して、塩化第二鉄によるホエー又はWPCの精製を完成
させるために長年研究した結果、きわめて多岐にわたる
各種条件が合致しはじめてホエー又はWPCからβ−ラ
クトグロブリンのみが分離されることを知ったのである
The present inventors have conducted many years of research to complete the purification of whey or WPC using ferric chloride, with the aim of industrially refining whey or WPC. They learned that only β-lactoglobulin can be isolated from

本発明は、このような多くの条件を厳密に組合されては
じめて完成されたもので、ホエー又はホエー蛋白濃縮物
のp)]調整と塩化第二鉄添加を行い、最終的にpH′
f:約3.0±0.3、塩化第二鉄濃度を約4.0±0
.9mMとし、これを約26±5℃で約2晴間以上放置
し、得られt沈設物を回収することを1特徴とするホエ
ー又はホエー蛋白濃縮物の精y!!法である。
The present invention was completed by strictly combining many of these conditions, including adjusting the whey or whey protein concentrate and adding ferric chloride, and finally adjusting the pH'
f: about 3.0±0.3, ferric chloride concentration about 4.0±0
.. 9mM, leave it at about 26±5°C for about 2 days or more, and collect the resulting precipitate. ! It is the law.

そして、本発明は、ホエー又はホエー蛋白濃縮物のPH
調整と塩化第二鉄添加を行い、最終的にpHを約6.0
±0.6、塩化第二鉄濃度を約4.0±0.9m Mと
し、これを約26±5℃で約2時間以上放置し、得られ
た沈所物を回収し、該沈澱物を水で洗滌し、酸に溶解し
、pt+ケ約1.5士り、2に調整し、こ11ff低架
(1!j度陽イオン交換梠脂に接触させて、Hq=分を
除去し、次に処理液をpH約6.8±0.4にし、除塩
処理することを#!jmとするホエー又はホエー蛋白濃
縮物の硝製法である。
The present invention also provides the PH of whey or whey protein concentrate.
After adjustment and addition of ferric chloride, the final pH was approximately 6.0.
±0.6, the ferric chloride concentration was set to approximately 4.0 ± 0.9 mM, and this was left at approximately 26 ± 5°C for approximately 2 hours or more, and the resulting precipitate was collected. was washed with water, dissolved in acid, adjusted to 1.5 pt + 2, and then brought into contact with cation-exchanged oil for 1!j degrees to remove Hq = min. #!jm is a method for producing whey or whey protein concentrate, in which the pH of the treated solution is then adjusted to about 6.8±0.4 and salt is removed.

そして、本発明はここに得られたホエー又はWPCff
¥製′吻を0児用調製物の蛋白源として使用することを
特徴とする精製ホエー又はホエー蛋白濃縮′吻の利用で
ある。
And, the present invention is directed to the whey or WPCff obtained here.
This is a use of purified whey or whey protein concentrate, characterized in that it is used as a protein source for preparations for infants.

一般にホエー又はWPC中の蛋白の約60%はβ−ラク
トグロブリンで、その他α−ラクトアルブミンが約20
%で、免疫グロブリンが約1696であるが、本発明の
精製法の一回の処理でβ−ラクトグロブリンは実に約8
.8チにまで低下させることができ、従って、α−ラク
トアルブミンは56チに増加し、免疫グロブリンは23
.1%に増加するのである。また、更に、本発明の祠製
法を再度行えばほとんどのβ−ラクトグロブリンを除去
してしまうことができるのである。
Generally, about 60% of the protein in whey or WPC is β-lactoglobulin, and about 20% is α-lactalbumin.
%, immunoglobulin is about 1696, but β-lactoglobulin is actually about 8 in one treatment of the purification method of the present invention.
.. Therefore, α-lactalbumin increased to 56% and immunoglobulin decreased to 23%.
.. This increases to 1%. Moreover, if the method of manufacturing the shank of the present invention is repeated, most of the β-lactoglobulin can be removed.

本発明で精製されるWPCはチーズやカゼインを製造す
る際に副生じてくるホエーを濃縮し、結晶する乳糖を分
離した液を相称してい乙。そしてこのWPCはその含有
物の90〜98%が蛋白で、そのうら約60%がβ−ラ
クトグロブリンで、約20%が(1−ラクトアルブミン
であり、更に約16チが免疫グロブリンからなっている
1、ホエー又はWPCは普通中性であるので、これに塩
酸等の酸を加えおおよそpH= 3程度とし、次いで塩
化第二鉄溶液が最終濃度約4.0十0.9mMになるよ
うに添加して撹拌される。混合物のpHはここでやや上
昇するので、再び塩酸等の酸を加えて−1を約6,0±
0.5の範囲に調整しなければならない。ホエー又はW
PCの−が2.7の下になると急激にβ−ラクトグロブ
リンの分離効率が低下し、また団が6.6以上になって
もβ−ラクトグロブリンの分離効率が悪くなる。
WPC refined in the present invention is a liquid obtained by concentrating whey, which is a by-product during the production of cheese and casein, and separating crystallized lactose. This WPC contains 90-98% protein, approximately 60% of which is β-lactoglobulin, approximately 20% (1-lactalbumin), and approximately 16% immunoglobulin. 1. Whey or WPC is usually neutral, so add an acid such as hydrochloric acid to it to make it approximately pH = 3, and then adjust the ferric chloride solution to a final concentration of about 4.0 to 0.9 mM. The pH of the mixture rises slightly at this point, so add an acid such as hydrochloric acid again to adjust the -1 level to about 6,0±.
It must be adjusted to a range of 0.5. Whey or W
When the - of PC becomes less than 2.7, the separation efficiency of β-lactoglobulin decreases rapidly, and even when the group becomes 6.6 or more, the separation efficiency of β-lactoglobulin deteriorates.

塩化汀を二鉄り農度が4.0 m Mでβ−ラクトグロ
ブリンの分離効率がよいのけ−12,8〜3.1であり
最も好ましくはpl(= 2.9である。塩化第二鉄の
濃度もかなり微妙に影響するが、好ましくは5.0〜3
.0mM程度で、最も好ましいのは4.0mMとなって
いる。
The separation efficiency of β-lactoglobulin is good when the ferrous chloride concentration is 4.0 mM. The concentration of diiron also has a very subtle effect, but preferably 5.0 to 3.
.. It is about 0mM, and the most preferable is 4.0mM.

pH(調整と塩化第二鉄の添加が終了したホエー又はW
PCは約26±5℃で約2時間以上放置される。ホエー
又hwpcの温度は最初から26℃程度にしておいても
よいが、好ましくけ放置するときに加温して26℃±5
℃、好ましくは24〜28℃に2時間以上維持される、 2時間以上放置されるとβ−ラクトグロブリンは上清部
に溶解して残り、その他の有効蛋白は沈澱するので、遠
心分離やデカンテーションによって簡単に沈澱物を回収
することができる。
pH (whey or W after adjustment and addition of ferric chloride)
The PC is left at about 26±5° C. for about 2 hours or more. The temperature of whey or hwpc may be set at around 26℃ from the beginning, but it is preferable to warm it up to 26℃±5 when left to stand.
℃, preferably 24 to 28℃ for 2 hours or more. If left for 2 hours or more, β-lactoglobulin will remain dissolved in the supernatant, and other effective proteins will precipitate, so centrifugation or decanting will be necessary. The precipitate can be easily recovered by cation.

得られた沈澱物は塩酸等の酸に容易に溶解するので、こ
れを溶液状にして、pHを1.5±0.2程ザに調整し
、アンバーライトIR,112のような低架橋度陽イオ
ン交換樹脂に通液して接触させることによって鉄分を除
去することができる。この処理液には未だ塩分が含まれ
ているので、pHを6.8±0.4程度とし、透析チュ
ーブに入れて透析すれば、塩分も元金に除去される。
The obtained precipitate is easily dissolved in an acid such as hydrochloric acid, so it is made into a solution, the pH is adjusted to about 1.5±0.2, and a low crosslinking degree such as Amberlite IR, 112 is used. Iron can be removed by passing the solution through a cation exchange resin and bringing it into contact. Since this treated solution still contains salt, the pH is adjusted to about 6.8±0.4, and if the solution is placed in a dialysis tube and dialyzed, the salt is also removed to its original form.

ここにイ拝られた精製ホエー又けWPCけ、蛋白中わず
か8.8%のβ−ラクトグロブリンを含むだけで、育児
用調製物の蛋白源として有効に使用されるものである。
The purified whey paste WPC presented here contains only 8.8% β-lactoglobulin in protein and can be effectively used as a protein source in childcare preparations.

この精製ホエー又けWPCについて再度本発明の精製を
行なえば、史にβ−ラクトグロブリンの含有は低下しよ
り有効なものとなるが、−回の精製でも60%から8.
8%まで低下1〜でいて、晋]thの育児用調製物であ
れば十分に使用でき、幼児にアレルギー反応を起させる
こともない。
If this purified whey-spread WPC is subjected to the purification of the present invention again, the content of β-lactoglobulin will be lowered and it will become more effective;
A childcare preparation of 1 to 8% can be used satisfactorily and will not cause an allergic reaction in infants.

次に本発明の試験例及び実施例を示す。Next, test examples and examples of the present invention will be shown.

試験例1゜ ホエー蛋白の塩化第二鉄による沈澱に及はすホエーpH
の影響ニ ー+it iV化ホエーのpHを、塩酸と力性ソーダで
、ptt2.5から50に合わせ、1Mの塩化第二鉄液
を最終濃度で4mMになるように添加し、希望する−1
に再度峰正した後、室温2時間放置後1[1,0rlO
Gで15分遠心分離した。上澄液を8鴫ポリアクリルア
ミドゲル市、気泳動で分析した。−気泳動クロマトグラ
ムからpH2,6から3.1の間で、β−ラクトグロブ
リンを除く他のホエー蛋白質が沈澱区分に移行するのが
分った。、、 pH(3,4から4.5の範囲では、β
−ラクトクロプリンが沈澱してくるが、同時に免疫グロ
ブリンも部分的に沈澱する。 pl(4,5以上では、
鉄1農度4mMでは、沈澱蛋白類は僅かで、鉄(脣度を
高めるとホエー蛋白は沈澱してくるが、選択的な沈澱は
観察されなくなる。
Test Example 1゜Whey pH affecting precipitation of whey protein with ferric chloride
Adjust the pH of the IVized whey from ptt2.5 to 50 with hydrochloric acid and sodium hydroxide, add 1M ferric chloride solution to a final concentration of 4mM, and adjust the pH to the desired -1
After correcting the temperature again and leaving it at room temperature for 2 hours,
Centrifuged at G for 15 minutes. The supernatant was analyzed by 8-polyacrylamide gel analysis and pneumophoresis. - From the electrophoresis chromatogram, it was found that at pH between 2.6 and 3.1, other whey proteins except β-lactoglobulin migrated to the precipitate compartment. ,, pH (in the range 3,4 to 4.5, β
- Lactocropurin is precipitated, but at the same time immunoglobulin is also partially precipitated. pl (for 4,5 or more,
At an iron concentration of 4 mM, there are only a few precipitated proteins, and when the iron concentration is increased, whey proteins precipitate, but selective precipitation is no longer observed.

試験例2゜ ホエー蛋白の塩化第二鉄による沈澱に及ぼすホエーp1
4と鉄ン桿%liの影l却: 各清澄イεホエーのpHを塩酸とカセイソーダで2.6
〜6.1に合せ、1Mの塩化第二鉄液を最終濃度で3.
4,5.6mMになるようにして26℃で2時間放置し
、このpH範囲で秩濃度の影響を町べた。
Test Example 2゜Effect of whey p1 on precipitation of whey protein by ferric chloride
4 and the shadow of iron rod%li: Adjust the pH of each clarified Iε whey to 2.6 with hydrochloric acid and caustic soda.
~6.1, add 1M ferric chloride solution to final concentration of 3.
The concentration was adjusted to 4.5.6mM and left at 26°C for 2 hours, and the influence of the concentration was investigated within this pH range.

ホエー蛋白の沈澱の選択性を定量的に扱うために、分離
効率を次のように定義し、分離効率を元に、最適条件を
求めた。
In order to quantitatively treat the selectivity of whey protein precipitation, separation efficiency was defined as follows, and optimal conditions were determined based on the separation efficiency.

5=Ss+8p           S:全体の分離
効率Ss = Abs(A−B)X可溶性9素%  S
町:上澄液の効率Sp =A11s(A−C)X不溶性
窒素係 Sp:沈澱物効率A、B、!:、Cはそれぞれ
未処理ホエー、鉄塩処理ホエーの上澄液及び沈澱物中の
α−ラクトアルブミンの比率。可溶性窒素はホエー原液
に対する可溶性窒素のパーセンテージ。不溶性窒素け1
[111から可溶性窒素)ξ−センテージを引いたもの
である。α−ラクトアルブミンの比率はポリアクリルア
ミドゲル電気泳動パターンをテンシトメーターで求め、
次のように計算した、 その結果は・11図に示される。
5=Ss+8p S: Overall separation efficiency Ss = Abs(AB)X soluble 9 elements S
Town: Supernatant efficiency Sp = A11s(A-C)X insoluble nitrogen Sp: Precipitate efficiency A, B,! :, C are the ratios of α-lactalbumin in the supernatant and precipitate of untreated whey, iron salt-treated whey, respectively. Soluble nitrogen is the percentage of soluble nitrogen in the whey stock solution. Insoluble nitrogen 1
[111 minus soluble nitrogen) ξ-centage. The ratio of α-lactalbumin was determined by determining the polyacrylamide gel electrophoresis pattern using a tensitometer.
The results were calculated as follows and are shown in Figure 11.

7431図に示されるごとく、pH2,9鉄濃度4.0
mMで、最高の分^IL効率が甥られた。pl(3,0
±0.1の範囲であれば11ぼ同一の分離効率が得られ
る6試験例3゜ ホエー蛋白の塩化第二鉄による沈澱に及はす温度の影響
: ホエーの−が3.2以下の場合、4℃から55°Cの間
で、蛋白の沈吟性に温度は影響しないが、pH3,4以
上のβ−ラクトグロブリンと免疫グロブリンが沈澱して
くるpH領域では、鍋度の影響が大きく低温になるほど
沈#量が増加するのが確認された。
As shown in Figure 7431, pH 2.9 iron concentration 4.0
The highest minute IL efficiency was achieved in mM. pl(3,0
In the range of ±0.1, 11 times the same separation efficiency can be obtained.6 Test Example 3゜Effect of temperature on precipitation of whey protein by ferric chloride: When - of whey is 3.2 or less Temperature does not affect protein precipitation between 4°C and 55°C, but in the pH range where β-lactoglobulin and immunoglobulin are precipitated at pH 3.4 or higher, the potency has a large effect on low temperature. It was confirmed that the amount of sediment increased as the temperature increased.

試験例4゜ 最適条件下での低β−ラクトダロブリンホエー蛋白濃お
d物の収量と蛋白組成: 未脱塩の717澄1ヒコツテージチーズホエーのpHを
3.0とし、これに1M塩化第二鉄溶液を最終濃度で4
0mMになるように加え■を得度6.0に修正後室温2
時間放置後洗#蛋白を分離した。ケルメール法で測定し
た窒素の収量は28.7%であった。
Test Example 4 Yield and protein composition of low β-lactodarobulin whey protein concentrate under optimal conditions: The pH of undesalted 717 clear 1 hiko stage cheese whey was set to 3.0, and 1M chloride was added to it. Ferric solution at final concentration of 4
Added so that it was 0mM and corrected ■ to a degree of 6.0, then room temperature 2
After standing for a period of time, the protein was separated. The nitrogen yield measured by the Kermer method was 28.7%.

沈澱蛋白を酸で溶解後場イオン交換樹脂で鉄を除去中オ
゛l後′屯気泳動で分析した結、果蛋白組成は概略以下
の通りであった。
The precipitated protein was dissolved in acid and then analyzed by anaphoresis after removing iron using an ion exchange resin. As a result, the protein composition was approximately as follows.

低β−ラクトグロブリンWPC β−ラクトグロブリン     8.80α−ラクトア
ルブミン     56.0免疫グロブリン     
   231牛血清アルブミン       6.60
その他           5.5 試験例ぢ。
Low β-lactoglobulin WPC β-lactoglobulin 8.80 α-lactalbumin 56.0 Immunoglobulin
231 Bovine serum albumin 6.60
Others 5.5 Test example.

低β−ラクトグロブリンWPCからの鉄の除去:低β−
ラクトグロブリンWPC(以下TJ o w−1gWP
Cという)は、 pH1,8以下の酸性サイドもしくは
pH5,5以上の中性Jルカリサイドで容易に可溶化し
、更に沈澱が形成されるpi(領域で、も食塩等でイオ
ン強度を高めて行くと徐々に可溶化し、0.9Nの食塩
添加で80チ以上の蛋白が可溶化してくる。I、ow−
アp、 W P CをpHt 4〜1.6 Kなるよう
に塩!1頃を加え、撹拌後濾過し強酸性陽イオンダ換樹
脂(例えばrンバーライトIR,−112)のカラムに
流速(s、v、 t 3 )で通液すると、未処理T、
rQv−1q WPCの鉄台%)、1120mpFe−
R蛋白の場合、98チ除去ポイント’r554流点とす
ると113OF!の蛋白から鉄を除去するのに約3.1
eのm脂が必要となる。
Removal of iron from low β-lactoglobulin WPC: low β-
Lactoglobulin WPC (hereinafter referred to as TJ o w-1gWP
C) is easily solubilized by acidic side with pH 1.8 or lower or neutral J lucalide with pH 5.5 or higher, and in the pi (region) where a precipitate is formed, the ionic strength is increased with salt etc. It gradually becomes solubilized, and more than 80 proteins become solubilized by adding 0.9N of salt.I, ow-
Ap, W P C with salt to pHt 4-1.6 K! 1 was added, stirred, filtered, and passed through a column of strongly acidic cation exchange resin (e.g., Rumberlite IR, -112) at a flow rate (s, v, t 3 ), resulting in untreated T,
rQv-1q WPC iron stand%), 1120mpFe-
In the case of R protein, 98 CH removal points 'r554 flow points are 113 OF! It takes about 3.1 to remove iron from proteins in
e and m fat are required.

アンバーライトIR−1121d架橋度が2チであるが
、架橋度8%のレキシン10゛1を用いた場合は鉄はほ
とんど除去されなかった。これは多分溶解した秩蛋白混
合物の分子樅が大きく、架橋度の旨い樹脂の内部に浸入
できないためと推定される。
Amberlite IR-1121d has a crosslinking degree of 2%, but when Lexin 10゛1 with a crosslinking degree of 8% was used, almost no iron was removed. This is presumably because the molecular weight of the dissolved Chichi protein mixture is large and cannot penetrate into the interior of the highly cross-linked resin.

試−例6゜ 脱r失1op・−1CI−W P Cのアミノr肯kn
 hV :Liu a−d chang (J、 Bi
ol Chem 246 : 2R42,1971)の
方法に準じて、脱鉄low−pg W P C′&+o
−t01oensイonicacidで加水分解(11
0°G24時間)し、Phoenixmodel M 
6800アミノ酸分析機で分析した。トリプトファンは
5pies (Ana! 、 Chen、 59 : 
1412.1967 )の方法で分析した。その結果は
表−1に示した。
Test-Example 6゜Release 1op・-1CI-WPC amino rafkn
hV: Liu ad chang (J, Bi
ol Chem 246: 2R42, 1971), iron removal low-pg W P C'&+o
- Hydrolyzed with t01oens ionicacid (11
0°G 24 hours) and Phoenix model M
It was analyzed using a 6800 amino acid analyzer. Tryptophan is 5 pieces (Ana!, Chen, 59:
1412.1967). The results are shown in Table-1.

表−1に示すごとくすぐれたアミノ酸組成を有している
が、FAD/wlIOの乳児に対する暫定の比較アミノ
酸パターンを元に計算したケミカルスコアtま65.5
であった。乳児ではバリン所要量が学童、成人より高い
ため、Ultrafiltered WPCよりケミカ
ルスコアが下廻っているのめ玉分る。
As shown in Table 1, it has an excellent amino acid composition, but the chemical score t is 65.5, calculated based on the tentative comparative amino acid pattern for FAD/wlIO infants.
Met. Since infants require a higher amount of valine than school children and adults, it is understandable that the chemical score is lower than that of Ultrafiltered WPC.

表−1アミノ酸組成  g71noぎ蛋白実施例 50eの清澄化コツテジチーズホエーのpllを3N塩
酸780m1でpi(3,10に合わせ撹拌上塩化第二
鉄1M溶液200m/を加え最終41度4.0 m M
とした。この時のpHは2,82で3Nの力性ソーダを
73+u/加えpH3,ooに修正後25℃でろ時間保
持した。遠心分離(10,000gX15分)で、沈澱
物を分離した。沈澱物重量は610gであった一5eの
脱イオン水を用いて2度沈澱物を分散させ、遠心分離を
繰り返し、乳糖、無機塩を洗い出した。沈澱物を400
0m1の水に分散後3N塩酸を加え、pi(1,50に
した後面らにwhatman NQ 1フイルターでr
過し、アンバーライトIR,112のカラム(φ直径6
、0 cm×90 (:罷)を流速8.V、 t 5で
通し鉄を除いた。カラムからの溶出液は直らに3N力性
ノーグーで中和し、透析チューブに入れ水道水に対して
12時間次いで脱イオン水に対して24時間透析した。
Table 1 Amino Acid Composition G71 Protein Example 50e Clarified Kotteji Cheese Whey PLL was mixed with 780 ml of 3N hydrochloric acid to 3,10 ml, stirred, and 200 ml of ferric chloride 1M solution was added to the final 41 degrees 4.0 M M
And so. At this time, the pH was 2.82, and after adjusting the pH to 3.00 by adding 3N sodium hydroxide at a rate of 73.0 μl, the mixture was maintained at 25° C. for a filtration period. The precipitate was separated by centrifugation (10,000 g x 15 minutes). The weight of the precipitate was 610 g. The precipitate was dispersed twice using 150 g of deionized water, and centrifugation was repeated to wash out lactose and inorganic salts. 400 ml of sediment
After dispersing in 0ml of water, add 3N hydrochloric acid to make the pi (1.50), then rinse with a Whatman NQ 1 filter.
Amberlite IR, 112 column (φ6 diameter
, 0 cm x 90 (: line) at a flow rate of 8. The through iron was removed at V, t 5. The eluate from the column was immediately neutralized with 3N Nogu, placed in dialysis tubing, and dialyzed against tap water for 12 hours and then against deionized water for 24 hours.

っ透析内液をロータリーエバポレーターで濃縮(約5倍
)し念祷、凍結乾燥して、87gの脱鉄 low−ji
gW P CをイIzヒ。
The dialyzed fluid was concentrated (approximately 5 times) using a rotary evaporator, prayed carefully, and lyophilized to remove 87 g of iron.
gW P C Izhi.

実施例2゜ 実楕例1で得た脱鉄1ow−JgW P Cとカゼイン
を蛋白原料とし、大豆白絞油、乳糖、各種塩類、ビタミ
ン類を添加、各成分内のバランスと組成を合わせ、殺菌
前のpHを6.8に合わせた後、クラリテイヤーを通し
てから75℃−15秒もしくハ95℃−15分の役菌処
理を行ない濃縮均質化処理を行ない噴霧乾燥して最終製
品を得た。こり、は育児用幽製乳の調製にきわめて適し
ていた。
Example 2゜The iron-free 1ow-JgWPC obtained in Example 1 and casein were used as protein raw materials, and soybean oil, lactose, various salts, and vitamins were added, and the balance and composition of each component was adjusted. After adjusting the pH before sterilization to 6.8, it is passed through a Claritaire, treated with active bacteria at 75℃ for 15 seconds or 95℃ for 15 minutes, concentrated and homogenized, and spray-dried to obtain the final product. Ta. This product was extremely suitable for preparing milk for infants.

【図面の簡単な説明】 第1図は試験例2においてpHと塩化第二鉄/Qlfm
の及はす分図1f効率をしらべた図でもる。
[Brief explanation of the drawings] Figure 1 shows the pH and ferric chloride/Qlfm in Test Example 2.
Figure 1f is a diagram that examines the efficiency.

Claims (3)

【特許請求の範囲】[Claims] (1)ホエー又はホエー蛋白濃縮物の一1調整と塩化第
二鉄添加を行い、最終的にpi(を約3.0±0.6、
塩化第二状濃度を約4.0±0.9 m Mとし、これ
を約26±5℃で約2時間以上放置し、得られた沈澱物
を回収することを特徴とするホエー又はホエー蛋白濃縮
物の精製法。
(1) Adjust the whey or whey protein concentrate and add ferric chloride, and finally pi (approximately 3.0 ± 0.6,
Whey or whey protein characterized by having a chloride concentration of about 4.0±0.9 mM, leaving it at about 26±5°C for about 2 hours or more, and collecting the obtained precipitate. Method for purifying concentrates.
(2)ホエー又はホエー蛋白濃縮物の11調整と塩化第
二鉄添加を行い、最終的にpHを約3.0±0.6、塩
化第二鉄濃度を約4.0±0.9 m Mとし、これを
約26±5℃で約2時間以上放置し、得られた沈澱物を
回収し、該沈澱物を水で洗ン1条し、酸に溶解し、pH
を約1.5±0.2に調整し、これを低架橋度陽イオン
交換樹脂に接触させて、鉄分を除去し、次に処理液をρ
11約6.8±0.4にし、除塩処理することを特徴と
するホエー又はホエー蛋白濃縮物の精製法。
(2) 11 adjustments of whey or whey protein concentrate and addition of ferric chloride to final pH of approximately 3.0 ± 0.6 and ferric chloride concentration of approximately 4.0 ± 0.9 m M, and leave it at about 26±5°C for about 2 hours or more, collect the obtained precipitate, wash the precipitate with water once, dissolve it in acid, and adjust the pH.
was adjusted to approximately 1.5 ± 0.2, and brought into contact with a low crosslinking degree cation exchange resin to remove iron, and then the treatment liquid was adjusted to approximately 1.5 ± 0.2.
11. A method for purifying whey or whey protein concentrate, which comprises reducing the concentration to about 6.8±0.4 and removing salt.
(3)特許請求範囲第2項によって得られた精製ホエー
又はホエー蛋白濃縮物を育児用調製物の蛋白源として使
用することftm徴とする精製ホエー又はホエー蛋白濃
縮物の利用。
(3) Use of the purified whey or whey protein concentrate obtained according to claim 2 as a protein source for childcare preparations.
JP22210382A 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein Granted JPS59113848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22210382A JPS59113848A (en) 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22210382A JPS59113848A (en) 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21260386A Division JPS6283843A (en) 1986-09-11 1986-09-11 Prepared milk for infant rearing

Publications (2)

Publication Number Publication Date
JPS59113848A true JPS59113848A (en) 1984-06-30
JPH0119863B2 JPH0119863B2 (en) 1989-04-13

Family

ID=16777181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22210382A Granted JPS59113848A (en) 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein

Country Status (1)

Country Link
JP (1) JPS59113848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135869A (en) * 1988-07-20 1992-08-04 Meiji Milk Products Company Limited Selective enzymatic degradation of β-lactoglobulin contained in cow's milk-serum protein
WO2005013705A1 (en) * 2003-08-04 2005-02-17 Unilever N.V. Process for the preparation of an edible emulsion
CN105286020A (en) * 2015-09-17 2016-02-03 广州市红十字会医院 Nutritional composition for non-dialysis patients

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636494A (en) * 1979-06-26 1981-04-09 Agronomique Inst Nat Rech Method of manufacturing alphaalactoalbuminn rich product from milk serum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636494A (en) * 1979-06-26 1981-04-09 Agronomique Inst Nat Rech Method of manufacturing alphaalactoalbuminn rich product from milk serum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135869A (en) * 1988-07-20 1992-08-04 Meiji Milk Products Company Limited Selective enzymatic degradation of β-lactoglobulin contained in cow's milk-serum protein
WO2005013705A1 (en) * 2003-08-04 2005-02-17 Unilever N.V. Process for the preparation of an edible emulsion
CN105286020A (en) * 2015-09-17 2016-02-03 广州市红十字会医院 Nutritional composition for non-dialysis patients
CN105286020B (en) * 2015-09-17 2017-09-19 广州市红十字会医院 A kind of nontransparent PCI-PCI bridge alimentation composition

Also Published As

Publication number Publication date
JPH0119863B2 (en) 1989-04-13

Similar Documents

Publication Publication Date Title
US4791193A (en) Process for producing bovine lactoferrin in high purity
US5455331A (en) Enriched whey protein fractions and method for the production thereof
JP2920427B2 (en) Method for producing kappa-casein glycomacropeptide
CN100417329C (en) Complete separating process for fresh liquid milk
JP2002514085A (en) Processing method of milk material containing GMP
JP2004521650A (en) Method for extracting casein fraction from milk and caseinate, and method for producing novel product
US5077067A (en) Process for the selective and quantitative elimination of lactoglobulins from a starting material containing whey proteins
JP2881044B2 (en) Method for producing kappa-caseino-glycomacropeptide
EP0321605B1 (en) Method for removing beta-lactoglobulin from bovine milk whey
IE861576L (en) Separating alpha-lactalbumin from whey proteins dna segment conferring high frequency transduction of¹recombinant dna vectors
JP2974434B2 (en) Secretory component-containing composition
WO2007100264A1 (en) Dairy product and process
JP2961625B2 (en) Method for producing a composition having a high content of α-lactalbumin
EP0443763B1 (en) Formulated milk for infants analogous to human milk
JPS59113848A (en) Purification of whey of concentrated whey protein
WO2002028194A1 (en) Process for recovering proteins from whey protein containing feedstocks
US5436014A (en) Removing lipids from cheese whey using chitosan
JPH02104246A (en) Production of high-purity whey protein powder
JPH02117366A (en) Treatment of whey for production of low phosphorus whey protein and low salt deproteinized whey
JPS5991849A (en) Fractionation of casein
JPH07132049A (en) Separation of sialic acid-bonded peptide in milk whey
JPH02104533A (en) Production of high-purity bovine immunoglobulin
JPH05146258A (en) Method for fractionating casein into alpha-casein and beta-casein
JPH0552168B2 (en)
JPS5948964B2 (en) Method of manufacturing infant milk similar to human milk