JPH0119863B2 - - Google Patents

Info

Publication number
JPH0119863B2
JPH0119863B2 JP57222103A JP22210382A JPH0119863B2 JP H0119863 B2 JPH0119863 B2 JP H0119863B2 JP 57222103 A JP57222103 A JP 57222103A JP 22210382 A JP22210382 A JP 22210382A JP H0119863 B2 JPH0119863 B2 JP H0119863B2
Authority
JP
Japan
Prior art keywords
whey
approximately
ferric chloride
lactoglobulin
wpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57222103A
Other languages
Japanese (ja)
Other versions
JPS59113848A (en
Inventor
Tamotsu Kuwata
Fumyasu Tsucha
Yoshiro Yamamoto
Akinori Yonekubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP22210382A priority Critical patent/JPS59113848A/en
Publication of JPS59113848A publication Critical patent/JPS59113848A/en
Publication of JPH0119863B2 publication Critical patent/JPH0119863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はホエー又はホエー蛋白濃縮物(Whey
Protein Concentrate:以下WPCという)を育児
用調製物の蛋白源として利用することができるよ
うになるまでに精製する方法に関するものであ
る。 一般に、チーズ、カゼインの製造に際して副生
するホエーは牛乳中の脂肪とカゼインを除く大部
分の水溶性成分を含有している。ホエー中の主要
成分である乳糖はホエーから結晶化して分離さ
れ、食用や薬用に用いられてきたが、ホエー蛋白
は、その高い栄養価を認められながらも、限られ
た用途にのみ使用できる形態で分離回収されるに
過ぎなかつた。例えば加熱凝固法、ポリリン酸塩
法等による回収で、得られる製品は不溶性であつ
たり、多量の無機塩(リン酸根、鉄塩)を含有す
るもので、食品への使用には多くの制限があり、
少なくとも乳児用調製物の蛋白源としての使用は
困難であつた。 ホエー又はWPCが乳児用調製物の蛋白源とし
て不適当な理由としては、多量のβ―ラクトグロ
ブリンの存在が指摘される。Parich WE(Clin
Allergy1:369―380,1971)はサルを用いた
PCA反応で、β―ラクトグロブリンに対する抗
体を最も頻繁に見出し、また、Kletter B,
Gery I,Freier S.etal(Clin Allergy1:249―
255,1971)はミルクに敏感な乳児のグループで、
各種ミルク蛋白に対する血清IgE抗体を調べ、β
―ラクトグロブリンに対するIgE抗体を最も頻繁
に見出しているように、β―ラクトグロブリンは
カゼインやα―ラクトアルブミンに比して強いア
レルゲン性を示すことが知られているのである。 一般に、牛乳のカゼイン及びホエー蛋白はいず
れも乳児にとつては異種蛋白に相当し、ミルク蛋
白に過敏な乳児は、育児用調製物の摂取に強いア
レルギー反応を示すことがあるが、これはβ―ラ
クトグロブリンに起因するところが大きいのであ
る。 しかしながら、ホエー又はWPC中には乳児に
とつて有用な蛋白源となるα―ラクトアルブミ
ン、免疫グロブリンが多量含まれているのであ
る。 そこで、ホエー又はWPCからβ―ラクトグロ
ブリンだけを選択的に除去できれば、ホエー蛋白
成分を母乳中のそれに近似できるのみならず、β
―ラクトグロブリン除去ホエーは通常のホエーよ
りも相対的にアレルゲン性は弱まることが期待さ
れるところから、β―ラクトグロブリンの除去に
は多くの試みがなされている。 しかし実験室レベルであれば、イオン交換樹
脂、ゲル過法、硫安分割、カルボキシメチルセ
ルロースによる分別沈澱法なども可能であるが、
工業的規模での製造に成巧した例は見られない。 しかし、従来、工業的規模におけるβ―ラクト
グロブリンの除去の示唆もすでにみられる。即
ち、塩化第二鉄によるホエー蛋白の沈澱について
Block etal(Arch.Biochem Biophys47,88
1953)がフエリラクチンとしてホエー蛋白を回収
して以来、加熱との併用(G.Ammantia etal
Can.Inst.Food S.Technol J.7,199(1974))ポリ
リン酸塩との併用(Jones S.B.,etal J.Agr.
Food Chem.20,229(1972))等の改良が検討さ
れ、収量の向上がはかられて来た。しかし、未だ
完成されたものではなかつた。 本発明者らは、ホエー又はWPCの工業的な精
製をめざして、塩化第二鉄によるホエー又は
WPCの精製を完成させるために長年研究した結
果、きわめて多岐にわたる各種条件が合致しはじ
めてホエー又はWPCからβ―ラクトグロブリン
のみが分離されることを知つたのである。 本発明は、このような多くの条件を厳密に組合
されてはじめて完成されたもので、ホエー又はホ
エー蛋白濃縮物のPH調整と塩化第二鉄添加を行
い、最終的にPHを約3.0±0.3、塩化第二鉄濃度を
約4.0±0.9mMとし、これを約26±5℃で約2時
間以上放置し、得られた沈澱物を回収することを
特徴とするホエー又はホエー蛋白濃縮物の精製法
である。 そして、本発明は、ホエー又はホエー蛋白濃縮
物のPH調整と塩化第二鉄添加を行い、最終的にPH
を約3.0±0.3、塩化第二鉄濃度を約4.0±0.9mMと
し、これを約26±5℃で約2時間以上放置し、得
られた沈澱物を回収し、該沈澱物を水で洗滌し、
酸に溶解し、PHを約1.5±0.2に調整し、これを低
架橋度陽イオン交換樹脂に接触させて、鉄分を除
去し、次に処理液をPH約6.8±0.4にし、除塩処理
することを特徴とするホエー又はホエー蛋白濃縮
物の精製法である。 一般にホエー又はWPC中の蛋白の約60%はβ
―ラクトグロブリンで、その他α―ラクトアルブ
ミンが約20%で、免疫グロブリンが約13%である
が、本発明の精製法の一回の処理でβ―ラクトグ
ロブリンは実に約8.8%にまで低下させることが
でき、従つて、α―ラクトアルブミンは56%に増
加し、免疫グロブリンは23.1%に増加するのであ
る。また、更に、本発明の精製法を再度行えばほ
とんどのβ―ラクトグロブリンを除去してしまう
ことができるのである。 本発明で精製されるWPCはチーズやカゼイン
を製造する際に副生してくるホエーを濃縮し、結
晶する乳糖を分離した液を指称している。そして
このWPCはその含有物の90〜98%が蛋白で、そ
のうち約60%がβ―ラクトグロブリンで、約20%
がα―ラクトアルブミンであり、更に約13%が免
疫グロブリンからなつている。 ホエー又はWPCは普通中性であるので、これ
に塩酸等の酸を加えおおよそPH=3程度とし、次
いで塩化第二鉄溶液が最終濃度約4.0±0.9mMに
なるように添加して攪拌される。混合物のPHはこ
こでやや上昇するので、再び塩酸等の酸を加えて
PHを約3.0±0.3の範囲に調整しなければならな
い。ホエー又はWPCのPHが2.7の下になると急激
にβ―ラクトグロブリンの分離効率が低下し、ま
たPHが3.3以上になつてもβ―ラクトグロブリン
の分離効率が悪くなる。 塩化第二鉄濃度が4.0mMでβ―ラクトグロブ
リンの分離効率がよいのはPH2.8〜3.1であり最も
好ましくはPH=2.9である。塩化第二鉄の濃度も
かなり微妙に影響するが、好ましくは5.0〜
3.0mM程度で、最も好ましいのは4.0mMとなつ
ている。 PH調整と塩化第二鉄の添加が終了したホエー又
はWPCは約26±5℃で約2時間以上放置される。
ホエー又はWPCの温度は最初から26℃程度にし
ておいてもよいが、好ましくは放置するときに加
温して26℃±5℃、好ましくは24〜28℃に2時間
以上維持される。 2時間以上放置されるとβ―ラクトグロブリン
は上清部に溶解して残り、その他の有効蛋白は沈
澱するので、遠心分離やデカンテーシヨンによつ
て簡単に沈澱物を回収することができる。 得られた沈澱物は塩酸等の酸に容易に溶解する
ので、これを溶液状にして、PHを1.5±0.2程度に
調整し、アンバーライトIR112のような低架橋度
陽イオン交換樹脂に通液して接触させることによ
つて鉄分を除去することができる。この処理液に
は未だ塩分が含まれているので、PHを6.8±0.4程
度とし、透析チユーブに入れて透析すれば、塩分
も完全に除去される。 ここに得られた精製ホエー又はWPCは、蛋白
中わずか8.8%のβ―ラクトグロブリンを含むだ
けで、育児用調製物の蛋白源として有効に使用さ
れるものである。この精製ホエー又はWPCにつ
いて再度本発明の精製を行なえば、更にβ―ラク
トグロブリンの含有は低下しより有効なものとな
るが、一回の精製でも60%から8.8%まで低下し
ていて、普通の育児用調製物であれば十分に使用
でき、幼児にアレルギー反応を起させることもな
い。 次に本発明の試験例及び実施例を示す。 試験例 1 ホエー蛋白の塩化第二鉄による沈澱に及ぼすホ
エーPHの影響: 清澄化ホエーのPHを、塩酸とカ性ソーダで、PH
2.5から5.0に合わせ、1Mの塩化第二鉄液を最終
濃度で4mMになるように添加し、希望するPHに
再度修正した後、室温2時間放置後10000Gで15
分遠心分離した。上澄液を8%ポリアクリルアミ
ドグル電気泳動で分析した。電気泳動クロマトグ
ラムからPH2.6から3.1の間で、β―ラクトグロブ
リンを除く他のホエー蛋白質が沈澱区分に移行す
るのが分つた。PH3.4から4.3の範囲では、β―ラ
クトグロブリンが沈澱してくるが、同時に免疫グ
ロブリンも部分的に沈澱する。PH4.5以上では、
鉄濃度4mMでは、沈澱蛋白量は僅かで、鉄濃度
を高めるとホエー蛋白は沈澱してくるが、選択的
な沈澱は観察されなくなる。 試験例 2 ホエー蛋白の塩化第二鉄による沈澱に及ぼすホ
エーPHと鉄濃度の影響: 各清澄化ホエーのPHを塩酸とカセイソーダで
2.6〜3.1に合せ、1Mの塩化第二鉄液を最終濃度
で3,4,5,6mMになるようにして26℃で2
時間放置し、このPH範囲で鉄濃度の影響を調べ
た。ホエー蛋白の沈澱の選択性を定量的に扱うた
めに、分離効率を次のように定義し、分離効率を
元に、最適条件を求めた。 S=Ss+Sp S:全体の分離効率 Ss=Abs(A−B)×可溶性窒素%
Ss:上澄液の効率 Sp=Abs(A−C)×不溶性窒素%
Sp:沈澱物効率 A,BとCはそれぞれ未処理ホエー、鉄塩処理
ホエーの上澄液及び沈澱物中のα―ラクトアルブ
ミンの比率。可溶性窒素はホエー原液に対する可
溶性窒素のパーセンテージ。不溶性窒素は100か
ら可溶性窒素パーセンテージを引いたものであ
る。α―ラクトアルブミンの比率はポリアクリル
アミドゲル電気泳動パターンをテンシトメーター
で求め、次のように計算した。 分離効率=α―ラクトアルブミンの面積/α―ラク
トアルブリンの面積+β―ラクトグロブリンの面積 その結果は第1図に示される。 第1図に示されるごとく、PH2.9鉄濃度4.0mM
で、最高の分離効率が得られた。PH3.0±0.1の範
囲であればほぼ同一の分離効率が得られる。 試験例 3 ホエー蛋白の塩化第二鉄による沈澱に及ぼす温
度の影響: ホエーのPHが3.2以下の場合、4℃から55℃の
間で、蛋白の沈澱性に温度は影響しないが、PH
3.4以上のβ―ラクトグロブリンと免疫グロブリ
ンが沈澱してくるPH領域では、温度の影響が大き
く低温になるほど沈澱量が増加するのが確認され
た。 試験例 4 最適条件での低β―ラクトグロブリンホエー蛋
白濃縮物の収量と蛋白組成: 未脱塩の清澄化コツテージホエーのPHを3.0と
し、これに1M塩化第二鉄溶液を最終濃度で
40mMになるように加えPHを再度3.0に修正後室
温2時間放置後沈澱蛋白を分離した。ケルダール
法で測定した窒素の収量は28.7%であつた。沈澱
蛋白を酸で溶解後陽イオン交換樹脂で鉄を除去中
和後電気泳動で分析した結果蛋白組成は概略以下
の通りであつた。 低β―ラクトグロブリンWPC β―ラクトグロブリン 8.80 α―ラクトアルブミン 56.0 免疫グロブリン 23.1 牛血清アルブミン 6.60 その他 5.5 試験例 5 低β―ラクトグロブリンWPCからの鉄の除
去: 低β―ラクトグロブリンWPC(以下Low―Lg
WPCという)は、PH1.8以下の酸性サイドもしく
はPH5.5以上の中性、アルカリサイドで容易に可
溶化し、更に沈澱が形成されるPH領域でも食塩等
でイオン強度を高めて行くと徐々に可溶化し、
0.9Nの食塩添加で80%以上の蛋白が可溶化して
くる。Low―Lg WPCをPH1.4〜1.6になるように
塩酸を加え、攪拌後過し強酸性陽イオン交換樹
脂(例えばアンバーライトIR―112)のカラムを
流速(S.V.1.3)で通液すると、未処理Low―Lg
WPCの鉄含量、1120mgFe/g蛋白の場合、98%
除去ポイントを貫流点とすると100gの蛋白から
鉄を除去するのに約3.1の樹脂が必要となる。
アンバーライトIR―112は架橋度が2%である
が、架橋度8%のレキシン|0|を用いた場合は
鉄はほとんど除去されなかつた。これは多分溶解
した鉄蛋白混合物の分子量が大きく、架橋度の高
い樹脂の内部に侵入できないためと推定される。 試験例 6 脱鉄low―Lg―WPCのアミノ酸組成: Liu and chang(J.Biol Chem246:2842,
1971)の方法に準じて、脱鉄low―Lg WPCをp
―toluensufonicacidで加水分解(110℃24時間)
し、Phoenix model M6800アミノ酸分析機で分
析した。トリプトフアンはSpies(Anal.
Chen.39:1412,1967)の方法で分析した。その
結果は表―1に示した。 表―1に示すごとくすぐれたアミノ酸組成を有
しているが、FAD/WHOの乳児に対する暫定の
比較アミノ酸パターンを元に計算したケミカルス
コアは65.5であつた。乳児ではバリン所要量が学
童、成人より高いため、Ultrafiltered WPCより
ケミカルスコアが下廻つているのが分る。
The present invention provides whey or whey protein concentrate (Whey
The present invention relates to a method for purifying Protein Concentrate (hereinafter referred to as WPC) to the point where it can be used as a protein source in infant preparations. Generally, whey, which is a by-product during the production of cheese and casein, contains most of the water-soluble components in milk except for fat and casein. Lactose, the main component in whey, has been crystallized and separated from whey and used for food and medicinal purposes, but whey protein is a form that can only be used for limited purposes, although it is recognized for its high nutritional value. It was only separated and recovered. For example, the products obtained by recovery using heat coagulation methods, polyphosphate methods, etc. are insoluble or contain large amounts of inorganic salts (phosphate radicals, iron salts), and there are many restrictions on their use in food. can be,
At least its use as a protein source in infant preparations has been difficult. The reason why whey or WPC is unsuitable as a protein source for infant preparations is the presence of large amounts of β-lactoglobulin. Parich WE (Clin
Allergy 1: 369-380, 1971) used monkeys.
Antibodies against β-lactoglobulin were most frequently found in the PCA reaction, and Kletter B,
Gery I, Freier S.etal (Clin Allergy1:249-
255, 1971) was a group of infants sensitive to milk;
Examine serum IgE antibodies against various milk proteins, and
- It is known that β-lactoglobulin exhibits stronger allergenicity than casein and α-lactalbumin, as IgE antibodies against lactoglobulin are most often found. In general, both the casein and whey proteins of cow's milk represent foreign proteins for infants, and infants who are hypersensitive to milk proteins may have a strong allergic reaction to the intake of infant preparations; -This is largely due to lactoglobulin. However, whey or WPC contains large amounts of α-lactalbumin and immunoglobulin, which are useful protein sources for infants. Therefore, if only β-lactoglobulin can be selectively removed from whey or WPC, not only will the whey protein component be similar to that in breast milk, but also β-lactoglobulin can be removed selectively from whey or WPC.
- Lactoglobulin-removed whey is expected to be relatively less allergenic than regular whey, and many attempts have been made to remove β-lactoglobulin. However, at the laboratory level, methods such as ion exchange resin, gel filtration, ammonium sulfate splitting, and fractional precipitation using carboxymethyl cellulose are also possible.
There are no examples of successful production on an industrial scale. However, there have already been suggestions for the removal of β-lactoglobulin on an industrial scale. That is, regarding the precipitation of whey proteins by ferric chloride.
Block etal (Arch.Biochem Biophys47, 88
Since G. Ammantia et al. (1953) recovered whey protein as ferrilactin, it has been used in combination with heating (G. Ammantia et al.
Can.Inst.Food S.Technol J.7, 199 (1974)) Combination with polyphosphate (Jones SB, etal J.Agr.
Improvements such as Food Chem. 20, 229 (1972)) have been investigated, and efforts have been made to improve yields. However, it was not yet completed. The present inventors aimed to industrially purify whey or WPC by using ferric chloride to purify whey or WPC.
After many years of research to perfect the purification of WPC, we learned that only β-lactoglobulin can be separated from whey or WPC when a wide variety of conditions are met. The present invention was completed by strictly combining many of these conditions, and by adjusting the pH of whey or whey protein concentrate and adding ferric chloride, the final pH was adjusted to approximately 3.0±0.3. Purification of whey or whey protein concentrate, characterized in that the ferric chloride concentration is about 4.0±0.9mM, this is left at about 26±5°C for about 2 hours or more, and the obtained precipitate is collected. It is the law. Then, the present invention adjusts the pH of whey or whey protein concentrate and adds ferric chloride, and finally the pH
is about 3.0±0.3, and the ferric chloride concentration is about 4.0±0.9mM. This is left at about 26±5℃ for about 2 hours or more, the resulting precipitate is collected, and the precipitate is washed with water. death,
Dissolve in acid, adjust pH to approximately 1.5±0.2, contact with low cross-linked cation exchange resin to remove iron, then adjust the pH of the treatment solution to approximately 6.8±0.4, and perform salt removal treatment. This is a method for purifying whey or whey protein concentrate, which is characterized by the following. Generally, about 60% of the protein in whey or WPC is β
-Of lactoglobulin, α-lactalbumin accounts for approximately 20% and immunoglobulin accounts for approximately 13%, but β-lactoglobulin can actually be reduced to approximately 8.8% with a single treatment using the purification method of the present invention. Therefore, α-lactalbumin increases to 56% and immunoglobulin increases to 23.1%. Furthermore, if the purification method of the present invention is repeated, most of the β-lactoglobulin can be removed. WPC purified in the present invention refers to a liquid obtained by concentrating whey, which is a by-product during the production of cheese and casein, and separating crystallized lactose. This WPC contains 90-98% protein, of which approximately 60% is β-lactoglobulin and approximately 20%
is α-lactalbumin, and approximately 13% is composed of immunoglobulin. Since whey or WPC is normally neutral, it is mixed with an acid such as hydrochloric acid to bring the pH to approximately 3, and then a ferric chloride solution is added to a final concentration of approximately 4.0±0.9mM and stirred. . The PH of the mixture will rise slightly at this point, so add an acid such as hydrochloric acid again.
The pH must be adjusted to a range of approximately 3.0±0.3. When the pH of whey or WPC falls below 2.7, the efficiency of separating β-lactoglobulin sharply decreases, and even when the pH rises to 3.3 or higher, the efficiency of separating β-lactoglobulin deteriorates. When the ferric chloride concentration is 4.0 mM, the separation efficiency of β-lactoglobulin is best at a pH of 2.8 to 3.1, most preferably at a pH of 2.9. The concentration of ferric chloride also has a very subtle effect, but preferably 5.0~
The concentration is about 3.0mM, and the most preferred is 4.0mM. Whey or WPC after pH adjustment and addition of ferric chloride is left at about 26±5°C for about 2 hours or more.
The temperature of the whey or WPC may be set at about 26°C from the beginning, but preferably it is heated when it is left to stand and maintained at 26°C ± 5°C, preferably 24 to 28°C for 2 hours or more. If it is left to stand for 2 hours or more, β-lactoglobulin will remain dissolved in the supernatant, and other effective proteins will precipitate, so the precipitate can be easily recovered by centrifugation or decantation. The obtained precipitate is easily dissolved in acids such as hydrochloric acid, so make it into a solution, adjust the pH to about 1.5 ± 0.2, and pass it through a low crosslinking degree cation exchange resin such as Amberlite IR112. The iron content can be removed by contacting with the metal. This treated solution still contains salt, so if the pH is adjusted to around 6.8±0.4 and the solution is placed in a dialysis tube and dialyzed, the salt will be completely removed. The purified whey or WPC obtained here contains only 8.8% β-lactoglobulin in protein and can be effectively used as a protein source for infant preparations. If this purified whey or WPC is purified again according to the present invention, the content of β-lactoglobulin will further decrease and become more effective, but even with a single purification, the content has decreased from 60% to 8.8%, which is normal. Childcare preparations are sufficient and do not cause allergic reactions in infants. Next, test examples and examples of the present invention will be shown. Test example 1 Effect of whey pH on precipitation of whey proteins by ferric chloride: The pH of clarified whey was
Adjust the pH from 2.5 to 5.0, add 1M ferric chloride solution to a final concentration of 4mM, correct the desired pH again, leave it at room temperature for 2 hours, and then heat it at 10,000G for 15 minutes.
Minute centrifugation. The supernatant was analyzed by 8% polyacrylamide gel electrophoresis. From the electrophoretic chromatogram, it was found that whey proteins other than β-lactoglobulin migrated to the precipitate compartment between pH 2.6 and 3.1. In the pH range of 3.4 to 4.3, β-lactoglobulin precipitates, but at the same time immunoglobulin also partially precipitates. At PH4.5 or higher,
At an iron concentration of 4mM, the amount of precipitated protein is small, and as the iron concentration increases, whey protein precipitates, but selective precipitation is no longer observed. Test Example 2 Effect of whey pH and iron concentration on precipitation of whey protein by ferric chloride: The pH of each clarified whey was adjusted with hydrochloric acid and caustic soda.
2.6 to 3.1, add 1M ferric chloride solution to a final concentration of 3, 4, 5, 6mM at 26°C.
The effect of iron concentration was investigated in this PH range after leaving it for a while. In order to quantitatively treat the selectivity of whey protein precipitation, separation efficiency was defined as follows, and optimal conditions were determined based on the separation efficiency. S=Ss+Sp S: Overall separation efficiency Ss=Abs(A-B)×% soluble nitrogen
Ss: Supernatant efficiency Sp = Abs (A-C) x insoluble nitrogen %
Sp: Precipitate efficiency A, B, and C are the ratios of α-lactalbumin in the supernatant and precipitate of untreated whey, iron salt-treated whey, respectively. Soluble nitrogen is the percentage of soluble nitrogen in the whey stock solution. Insoluble nitrogen is 100 minus the soluble nitrogen percentage. The ratio of α-lactalbumin was calculated as follows by determining the polyacrylamide gel electrophoresis pattern using a tensitometer. Separation efficiency = area of α-lactalbumin/area of α-lactalbumin + area of β-lactoglobulin The results are shown in FIG. As shown in Figure 1, PH2.9 iron concentration 4.0mM
The highest separation efficiency was obtained. Almost the same separation efficiency can be obtained within the pH range of 3.0±0.1. Test Example 3 Effect of temperature on precipitation of whey protein by ferric chloride: When the pH of whey is 3.2 or less, temperature does not affect the precipitation of protein between 4℃ and 55℃, but the PH
In the pH range where β-lactoglobulin and immunoglobulin of 3.4 or higher precipitate, it was confirmed that the effect of temperature is large and the amount of precipitation increases as the temperature decreases. Test Example 4 Yield and protein composition of low β-lactoglobulin whey protein concentrate under optimal conditions: The pH of undesalted clarified cottage whey was set to 3.0, and 1M ferric chloride solution was added to it at the final concentration.
After adjusting the pH to 3.0 again and leaving it at room temperature for 2 hours, the precipitated protein was separated. The nitrogen yield measured by Kjeldahl method was 28.7%. After dissolving the precipitated protein with acid, iron was removed using a cation exchange resin, neutralization was performed, and electrophoretic analysis revealed that the protein composition was approximately as follows. Low β-lactoglobulin WPC β-lactoglobulin 8.80 α-lactalbumin 56.0 Immunoglobulin 23.1 Bovine serum albumin 6.60 Others 5.5 Test example 5 Removal of iron from low β-lactoglobulin WPC: Low β-lactoglobulin WPC (hereinafter referred to as Low- Lg
WPC) is easily solubilized on the acidic side below PH1.8 or on the neutral or alkaline side above PH5.5, and even in the PH range where precipitates are formed, if the ionic strength is increased with salt etc. Solubilized in
More than 80% of the protein is solubilized by adding 0.9N of salt. Hydrochloric acid is added to Low-Lg WPC to adjust the pH to 1.4 to 1.6, and after stirring, the liquid is passed through a column of strongly acidic cation exchange resin (e.g. Amberlite IR-112) at a flow rate (SV1.3). Untreated Low-Lg
Iron content of WPC, 98% for 1120mgFe/g protein
If the removal point is the flow-through point, approximately 3.1 ml of resin is required to remove iron from 100 g of protein.
Amberlite IR-112 has a cross-linking degree of 2%, but when Lexin |0|, which has a cross-linking degree of 8%, was used, almost no iron was removed. This is presumably because the dissolved iron protein mixture has a large molecular weight and cannot penetrate into the highly crosslinked resin. Test example 6 Amino acid composition of iron-free low-Lg-WPC: Liu and chang (J.Biol Chem246:2842,
1971), the iron-free low-Lg WPC was
-Hydrolysis with toluensufonic acid (110℃ for 24 hours)
and analyzed using a Phoenix model M6800 amino acid analyzer. Tryptophan is Spies (Anal.
Chen. 39:1412, 1967). The results are shown in Table-1. As shown in Table 1, it has an excellent amino acid composition, but the chemical score calculated based on the preliminary comparative amino acid pattern for FAD/WHO infants was 65.5. It can be seen that infants require a higher amount of valine than school children and adults, so the chemical score is lower than that of Ultrafiltered WPC.

【表】【table】

【表】 実施例 1 50の清澄化コツテジチーズホエーのPHを3N
塩酸780mlでPH3.10に合わせ攪拌下塩化第二鉄1M
溶液200mlを加え最終濃度4.0mMとした。この時
のPHは2.82で3Nのカ性ソーダを70ml加えPH3.00に
修正後25℃で3時間保持した。遠心分離(10000
g×15分)で、沈澱物を分離した。沈澱物重量は
610gであつた。5の脱イオン水を用いて2度
沈澱物を分散させ、遠心分離を繰り返し、乳糖、
無機塩を洗い出した。沈澱物を4000mlの水に分散
後3N塩酸を加え、PH1.50にした後直ちに
whatmanNo.1フイルターで過し、アンバーラ
イトIR112のカラム(φ直径6.0cm×90cm)を流速
S.V.1.3で通し鉄を除いた。カラムからの溶出液
は直ちに3Nカ性ソーダーで中和し、透析チユー
ブに入れ水道水に対して12時間次いで脱イオン水
に対して24時間透析した。透析内液をロータリー
エバポレーターで濃縮(約5倍)した後、凍結乾
燥して、87gの脱鉄low―Lg WPCを得た。 実施例 2 実施例1で得た脱鉄low―Lg WPCとカゼイン
を蛋白原料とし、大豆白絞油、乳糖、各種塩類、
ビタミン類を添加、各成分内のバランスと組成を
合わせ、殺菌前のPHを6.8に合わせた後、クラリ
テイヤーを通してから75℃―15秒もしくは95℃―
15分の殺菌処理を行ない濃縮均質化処理を行ない
噴霧乾燥して最終製品を得た。これは育児用調整
乳の調整にきわめて適していた。
[Table] Example 1 PH of 50 clarified cheese whey was 3N
Adjust the pH to 3.10 with 780ml of hydrochloric acid and add 1M ferric chloride while stirring.
200ml of the solution was added to give a final concentration of 4.0mM. At this time, the pH was 2.82, and after adjusting the pH to 3.00 by adding 70 ml of 3N caustic soda, it was kept at 25°C for 3 hours. Centrifugation (10000
g×15 min) to separate the precipitate. The weight of the sediment is
It was 610g. Disperse the precipitate twice using deionized water from Step 5 and repeat centrifugation to remove lactose,
Inorganic salts were washed out. Immediately after dispersing the precipitate in 4000ml of water, add 3N hydrochloric acid to bring the pH to 1.50.
Passed through whatman No. 1 filter and passed through an Amberlite IR112 column (φ6.0cm in diameter x 90cm) at a flow rate.
The through iron was removed in SV1.3. The eluate from the column was immediately neutralized with 3N caustic soda, placed in a dialysis tube, and dialyzed against tap water for 12 hours and then against deionized water for 24 hours. The dialyzed fluid was concentrated (approximately 5 times) using a rotary evaporator and then freeze-dried to obtain 87 g of iron-free low-Lg WPC. Example 2 The iron-free low-Lg WPC obtained in Example 1 and casein were used as protein raw materials, and soybean white oil, lactose, various salts,
After adding vitamins, adjusting the balance and composition of each ingredient, and adjusting the pH before sterilization to 6.8, pass it through a Clarity Ear and heat at 75℃ for 15 seconds or at 95℃.
The final product was obtained by sterilization for 15 minutes, concentration homogenization, and spray drying. This was extremely suitable for adjusting infant formula milk.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試験例2においてPHと塩化第二鉄濃度
の及ぼす分離効率をしらべた図である。
FIG. 1 is a diagram comparing the separation efficiency affected by pH and ferric chloride concentration in Test Example 2.

Claims (1)

【特許請求の範囲】 1 ホエー又はホエー蛋白濃縮物のPH調整と塩化
第二鉄添加を行い、最終的にPHを約3.0±0.3、塩
化第二鉄濃度を約4.0±0.9mMとし、これを約26
±5℃で約2時間以上放置し、得られた沈澱物を
回収することを特徴とするホエー又はホエー蛋白
濃縮物の精製法。 2 ホエー又はホエー蛋白濃縮物のPH調整と塩化
第二鉄添加を行い、最終的にPHを約3.0±0.3、塩
化第二鉄濃度を約4.0±0.9mMとし、これを約26
±5℃で約2時間以上放置し、得られた沈澱物を
回収し、該沈澱物を水で洗滌し、酸に溶解し、PH
を約1.5±0.2に調整し、これを低架橋度陽イオン
交換樹脂に接触させて、鉄分を除去し、次に処理
液をPH約6.8±0.4にし、除塩処理することを特徴
とするホエー又はホエー蛋白濃縮物の精製法。
[Scope of Claims] 1 Adjust the pH of whey or whey protein concentrate and add ferric chloride until the final pH is about 3.0±0.3 and the ferric chloride concentration is about 4.0±0.9mM. about 26
A method for purifying whey or whey protein concentrate, which comprises leaving it at ±5°C for about 2 hours or more and collecting the resulting precipitate. 2. Adjust the pH of the whey or whey protein concentrate and add ferric chloride until the final pH is approximately 3.0±0.3 and the ferric chloride concentration is approximately 4.0±0.9mM, which is approximately 26
The precipitate obtained by leaving it at ±5℃ for about 2 hours or more was collected, washed with water, dissolved in acid, and PH
is adjusted to approximately 1.5 ± 0.2, and brought into contact with a low crosslinking degree cation exchange resin to remove iron, and then the pH of the treated solution is adjusted to approximately 6.8 ± 0.4 for salt removal treatment. or a method for purifying whey protein concentrate.
JP22210382A 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein Granted JPS59113848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22210382A JPS59113848A (en) 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22210382A JPS59113848A (en) 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21260386A Division JPS6283843A (en) 1986-09-11 1986-09-11 Prepared milk for infant rearing

Publications (2)

Publication Number Publication Date
JPS59113848A JPS59113848A (en) 1984-06-30
JPH0119863B2 true JPH0119863B2 (en) 1989-04-13

Family

ID=16777181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22210382A Granted JPS59113848A (en) 1982-12-20 1982-12-20 Purification of whey of concentrated whey protein

Country Status (1)

Country Link
JP (1) JPS59113848A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794305B2 (en) * 1988-07-20 1998-09-03 明治乳業株式会社 Method for selective enzymatic degradation of β-lactoglobulin in milk whey protein
RU2006106739A (en) * 2003-08-04 2006-07-27 Юнилевер Н.В. (Nl) METHOD FOR PREPARING FOOD EMULSION
CN105286020B (en) * 2015-09-17 2017-09-19 广州市红十字会医院 A kind of nontransparent PCI-PCI bridge alimentation composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636494A (en) * 1979-06-26 1981-04-09 Agronomique Inst Nat Rech Method of manufacturing alphaalactoalbuminn rich product from milk serum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636494A (en) * 1979-06-26 1981-04-09 Agronomique Inst Nat Rech Method of manufacturing alphaalactoalbuminn rich product from milk serum

Also Published As

Publication number Publication date
JPS59113848A (en) 1984-06-30

Similar Documents

Publication Publication Date Title
Mailliart et al. Preparation of β‐lactoglobulin and p‐lactoglobulin‐free proteins from whey retentate by NaCI salting out at low pH
US4791193A (en) Process for producing bovine lactoferrin in high purity
US4427658A (en) Total enzymatic hydrolysate from whey proteins and process of obtaining the same
JP2818176B2 (en) Whey protein fraction
EP0876106B1 (en) Method of separating and recovering proteins from a protein solution
US4879131A (en) Preparation of whey products having reduced allergericity
JP4579696B2 (en) Milk protein treatment and its application
JP2004521650A (en) Method for extracting casein fraction from milk and caseinate, and method for producing novel product
JPS5858061B2 (en) Method for producing purified protein hydrolyzate
US5077067A (en) Process for the selective and quantitative elimination of lactoglobulins from a starting material containing whey proteins
US4782138A (en) Process for selectively separating the alpha-lactalbumin from the proteins of whey
EA023367B1 (en) Method for isolating osteopontin from milk-derived feeds containing cmp
JP2881044B2 (en) Method for producing kappa-caseino-glycomacropeptide
EP0321605B1 (en) Method for removing beta-lactoglobulin from bovine milk whey
Kuwata et al. Elimination of β‐lactoglobulin from whey to simulate human milk protein
Pearce Whey protein recovery and whey protein fractionation
JP2961625B2 (en) Method for producing a composition having a high content of α-lactalbumin
JPH0119863B2 (en)
JP3261429B2 (en) Infant formula similar to human milk
JPH0360468B2 (en)
CA1243887A (en) REDUCING .beta.-LACTOGLOBULIN CONTENT IN WHEY PROTEIN CONCENTRATES FOR INFANT FORMULA USE
JP2571958B2 (en) Process for treating whey to produce deproteinized whey with reduced phosphorus whey protein and reduced salt content
JPH02104246A (en) Production of high-purity whey protein powder
JP3386255B2 (en) Whey preparation and method for producing the same
EP0605219A1 (en) Products containing active milk protein components and process for producing the same