JPS59113385A - Method of controlling valve - Google Patents

Method of controlling valve

Info

Publication number
JPS59113385A
JPS59113385A JP22185882A JP22185882A JPS59113385A JP S59113385 A JPS59113385 A JP S59113385A JP 22185882 A JP22185882 A JP 22185882A JP 22185882 A JP22185882 A JP 22185882A JP S59113385 A JPS59113385 A JP S59113385A
Authority
JP
Japan
Prior art keywords
pressure
valve
oil
tank
servo motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22185882A
Other languages
Japanese (ja)
Inventor
Tetsuya Teramoto
寺本 徹哉
Isao Ishigamori
石ケ森 勲
Takashi Ito
隆 伊藤
Yasusuke Watanabe
渡辺 泰佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22185882A priority Critical patent/JPS59113385A/en
Publication of JPS59113385A publication Critical patent/JPS59113385A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To secure the control of a sluice valve, by detecting the pressure of a pressure accumulator and the back pressure of a servomotor which is under the action of a self-shutting force and by comparing the detected values with each other so that oil returned to a chamber open to the servomotor is transferred to a pressure oil tank. CONSTITUTION:A changeover valve 101 is provided to switch a passage so that oil drained to a chamber 62 open to a servomotor is transferred to an oil collecting tank 51 or to a pressure oil tank 55. A pressure pipe 102 from the chamber 62 and a pressure pipe 103 from the pressure tank 55 are connected to the pilot pressure chambers of the changeover valve 101. When the pressure of the chamber 62 open to the servomotor has become higher than that of the tank 55, the oil returned to the chamber 62 is transferred to the tank 55. For that reason, the capacity of the pressure oil tank 55 can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、万一外部よりの弁操作用エネルギーの供給が
断たれても一定回数の弁の操作を可能にするための弁操
作用蓄圧装置を有する弁の制御系に係り、特に弁操作圧
油の蓄圧装置の容量縮少に好適な弁の制御に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a pressure accumulator for valve operation, which enables the valve to be operated a certain number of times even if the supply of energy for valve operation from the outside is cut off. The present invention relates to a valve control system having a valve control system, and particularly relates to a valve control system suitable for reducing the capacity of a pressure oil accumulator for valve operation.

〔従来技術〕[Prior art]

水力発電所用制水弁は、水力機械、発電機器及び、送電
系統の事故の際に確実に水路をしゃ断するために設けら
れ、その制御は、万一外部よりの操作エネルギーの供給
が断たれても一定回数制水弁を操作する能力含有する事
が要求されている。
Water control valves for hydroelectric power plants are installed to reliably cut off waterways in the event of an accident involving hydraulic machinery, power generation equipment, or the power transmission system. They are also required to have the ability to operate the water control valve a certain number of times.

このため、従来の制水弁は槙1図に示すような油圧操作
式が広く採用され、油圧供給は蓄圧作用を行う圧油タン
クを設備して行なっている。第一図に於いて従来方式を
説明すると、集油槽1、油ポンプ2、ポンプ駆動用電動
機3、空気圧縮1?&4、蓄圧作用を行う圧油タンク5
、安全弁6で、これらが一般的な主要圧油装置の構成部
品である。制水弁制御用油は前記、油ポンプ2から油を
、空気圧縮機4がら空気を圧油タンク5へ各々供給し、
空気を圧縮する事により圧力を発生保持している。
For this reason, hydraulically operated type water control valves as shown in Fig. 1 are widely used as conventional water control valves, and hydraulic pressure is supplied by installing a pressure oil tank that performs a pressure accumulation function. To explain the conventional system in Figure 1, there is an oil collection tank 1, an oil pump 2, a pump drive electric motor 3, and an air compressor 1? &4, Pressure oil tank 5 that performs pressure accumulation function
, safety valve 6, these are the components of a typical main pressure oil system. The water control valve control oil is supplied from the oil pump 2 and air from the air compressor 4 to the pressure oil tank 5, respectively,
It generates and maintains pressure by compressing air.

利水弁制御機構は油圧供給管7、操作弁8、弁開側管9
、弁閉側管10、サーボモーター11、開(III室1
2、閉側室13、操作時間設定の流量調整弁14,15
、集油槽への排油管16より成り、制水弁17.弁軸1
8、操作レバー19にサーボモーターのピストンロッド
2oと、ピストン2゜−1が連結されている。この制御
系に於て、利水弁を開とする際は操作弁8の開側指令を
操作弁8の操作指令部8−1に与え、又閉鎖する際は8
−2に与える事により利水弁の開閉動作が行なわれる。
The water utilization valve control mechanism includes a hydraulic supply pipe 7, an operation valve 8, and a valve opening pipe 9.
, valve closed side pipe 10, servo motor 11, open (chamber III 1
2. Closed side chamber 13, flow rate adjustment valves 14, 15 for setting operation time
, an oil drain pipe 16 to the oil collection tank, and a water control valve 17. Valve stem 1
8. A piston rod 2o of a servo motor and a piston 2°-1 are connected to the operating lever 19. In this control system, when opening the water utilization valve, an open side command for the operation valve 8 is given to the operation command part 8-1 of the operation valve 8, and when closing it, the
-2, the water utilization valve is opened and closed.

又、図中に於いてバイパス弁21、水力機械のガイドベ
ーンは22である。
Also, in the figure, the bypass valve 21 and the guide vane of the hydraulic machine are 22.

この水力発電所用利水弁には一般的にバタフライ弁、又
はロータリー弁が広く採用されており、自己閉鎖力を有
する弁である。
Butterfly valves or rotary valves are generally widely used as water utilization valves for hydroelectric power plants, and these valves have a self-closing force.

制水弁の動作は、通常時に於ては弁の操作力を減少させ
るため水力機器のガイドベーン22が閉の状態で先づバ
イパス弁21を開として、制水弁前後の圧力2里とP2
をほぼバランスした後、制水弁を開ける方法がとられ、
又閉鎖する場合は、ガイドベーン22を閉として利水弁
を閉、その最後にバイパス弁21を閉とする方法と、水
力機器、送電系統等の万一の事故(電機と機械が同時に
動作不能となる)によりガイドベーン22が閉鎖不能に
なった非常時に1機器の安全面より発電用水のしゃ断と
発電機械停止のため、ガイドベーン22の閉動作を待た
ずに利水弁を閉鎖する°流水しゃ断°を行う2つの方法
がある。この流水しゃ断時には弁の下流側の圧力P2は
弁が閉鎖するにしたがい流量が減少するため低くなり、
弁に作用する圧力’pt−P2が増大するため、弁の操
作力も増大する・ 一般には、制水弁の閉鎖能力は、上記“流水しゃ断“可
能となるようサーボモーターの容量が決められており、
その弁の必要操作トルクは第2図に示すようになってい
る。図に於て曲線イは通常時の弁開閉に必要とするトル
ク線図で、制水弁の自重と弁軸等の回動部の磨擦による
ものであり、弁回動角に於いてほぼ同一の値である。中
口の曲線口は、”流水しゃ断“の弁の閉鎖の操作必要ト
ルクで、全開点AよりBAまではサーボモーターで閉鎖
力を与えなければならないが、B点から0点までは弁に
向かって流れる流水による不平衡力による自閉力で、サ
ーボモーターの閉操作は必要とせず、逆にサーボモータ
ーはブレーキとして作用する部分である。0点からD点
までは、弁が全閉近くになる事により弁に作用する弁上
流の圧力による推力が増大し、この時に生ずる弁軸に生
ずる磨擦トルクであり、全閉点で最大値Eとなる。
In normal operation, the water control valve operates by first opening the bypass valve 21 with the guide vane 22 of the hydraulic equipment closed in order to reduce the operating force of the valve, and then increasing the pressure 2 ri and P2 before and after the water control valve.
After the water is almost balanced, the water control valve is opened.
In addition, when closing, there is a method of closing the guide vane 22, closing the water utilization valve, and finally closing the bypass valve 21, and the method of closing the hydraulic equipment, power transmission system, etc. in the event of an accident (electrical equipment and machinery become inoperable at the same time). In the event of an emergency when the guide vane 22 cannot be closed due to the operation of the guide vane 22, the water utilization valve is closed without waiting for the guide vane 22 to close in order to cut off the power generation water and stop the power generation machine for the safety of one device. There are two ways to do this. When this water flow is cut off, the pressure P2 on the downstream side of the valve becomes low as the flow rate decreases as the valve closes.
As the pressure 'pt-P2 acting on the valve increases, the operating force of the valve also increases.In general, the closing ability of a water control valve is determined by the capacity of the servo motor to enable the above-mentioned "water cutoff". ,
The required operating torque for the valve is shown in FIG. In the figure, curve A is the torque diagram required for normal valve opening and closing, which is due to the water control valve's own weight and friction of rotating parts such as the valve stem, and is approximately the same at the valve rotation angle. is the value of The curved opening in the middle is the torque required to close the "flow water cutoff" valve, and the closing force must be applied by the servo motor from the fully open point A to BA, but from the point B to the 0 point, the torque is applied toward the valve. The self-closing force is created by the unbalanced force caused by the flowing water, and there is no need to close the servo motor; on the other hand, the servo motor acts as a brake. From point 0 to point D, the thrust force due to the pressure upstream of the valve that acts on the valve increases as the valve approaches full closure, and this is the friction torque generated on the valve stem at this time, and the maximum value E at the fully closed point. becomes.

一般的にはこの流水しゃ断時の閉鎖必要トルクは通常の
弁開閉時の4倍以上と大きな値である。
Generally, the required closing torque when shutting off the water flow is as large as four times or more when normally opening and closing the valve.

又、曲線ハ及び二は流水しゃ断時の必要最大閉鎖トルク
Eを満足する圧油装置の許容最低動作油圧によるサーボ
モーター出力、ホ及びへは、圧油装置の常用油圧に於け
るサーボモーターの出力トルクである。
In addition, curves C and 2 are the servo motor output at the minimum allowable operating oil pressure of the pressure oil device that satisfies the required maximum closing torque E when water is cut off, and E and H are the servo motor output at the normal hydraulic pressure of the pressure oil device. It is torque.

一方、この“流水しゃ断”時の操作油圧は、前記操作系
の圧油装置に於いて、外部からポンプ駆動用電動機3へ
のエネルギーが与えられなくなった状態での圧油タンク
5の残圧すなわち許容最低動作力となる。この許容最低
動作圧力は制水弁サーボモーターの消費油量と圧油タン
ク内の油と空気量の関係で、サーボモーターと圧油タン
クの寸法が最小となるように常用最高圧力と、許容最低
動作圧力が設定され、一般には許容最低動作油圧は、常
用最高圧力の60〜70%となっている。
On the other hand, the operating oil pressure at the time of this "water cutoff" is the residual pressure in the pressure oil tank 5 when no energy is applied from the outside to the pump drive electric motor 3 in the pressure oil device of the operation system. This is the minimum allowable operating force. This allowable minimum operating pressure is based on the relationship between the amount of oil consumed by the water control valve servo motor and the amount of oil and air in the pressure oil tank. The operating pressure is set, and generally the minimum allowable operating oil pressure is 60 to 70% of the normal maximum pressure.

すなわち、許容最低動作油圧を低くすると油圧タンク内
の空気量は少なくてすみ、油圧タンクの寸−法は少さく
なるが、利水弁のサーボモーターの容量は大きく必要と
する。許容最低動作油圧を高く設定すると、この反対に
圧油タンクは大きくなり、利水弁サーボモーターは少さ
くなる関係にあり圧油装置と、制水弁サーボモーター両
者の寸法及びコスト面より検討し、その最適値が決めら
れる。
That is, if the allowable minimum operating oil pressure is lowered, the amount of air in the hydraulic tank is reduced and the size of the hydraulic tank is reduced, but the capacity of the servo motor of the water utilization valve is required to be large. If the allowable minimum operating oil pressure is set high, the pressure oil tank will become larger and the water control valve servo motor will become smaller. Therefore, consider the dimensions and costs of both the pressure oil system and the water control valve servo motor. Its optimum value can be determined.

以上、従来の利水弁の制御系に於いて、操作用サーボモ
ーターの要求出力は、前記した万の都故時の条件の°流
水しゃ断″の必要閉トルクの最大値、すなわち第2図の
点E部を基準とし、圧油タンク5の圧力は、油ポンプ駆
S電動機3の操作電源が無い、すなわち油ポンプより油
量の補給のない状態での制水弁サーボモーター動作にょ
る圧油の消費後の油圧低下した許容最低動作圧力で設計
しなければならず、操作油圧の常用圧力と許容最低動作
圧力の差分による余分な操作力と、流水しゃ断時の自閉
範囲のサーボモーター操作カは不必要なものとなり、こ
の分サーボモーター容量が大きくなっている。この結果
下記の不合理な欠点を有している。
As mentioned above, in the conventional control system of the water utilization valve, the required output of the operating servo motor is the maximum value of the required closing torque for "water cutoff" under the above-mentioned emergency conditions, that is, the point in Figure 2. Based on section E, the pressure in the pressure oil tank 5 is determined by the amount of pressure oil caused by the operation of the water control valve servo motor when there is no operating power source for the oil pump drive S electric motor 3, that is, when there is no oil replenishment from the oil pump. It is necessary to design with the minimum allowable operating pressure of the hydraulic pressure reduced after consumption, and the extra operating force due to the difference between the normal operating pressure and the allowable minimum operating pressure, and the servo motor operating force in the self-closing range when water is cut off. This becomes unnecessary, and the servo motor capacity increases accordingly.As a result, it has the following unreasonable drawbacks.

(1)  集油槽1、圧油タンク5及び油ポンプ、空気
圧縮機4等制御機器が大形となり、大きな据付スペース
を必要とする。
(1) The oil collection tank 1, pressure oil tank 5, oil pump, air compressor 4, and other control equipment are large in size and require a large installation space.

(2)大量の操作油を常時たくわえておくため、防火等
も含め保守作業が煩雑となる。
(2) Since a large amount of operating oil is always stored, maintenance work including fire prevention becomes complicated.

又、上記の欠点を回避するためあらかじめ流水しゃ断動
作を行う操作条件により、弁の一定開度のに於て圧油タ
ンクからの操作油の供給を止め、サーボモータの開側と
閉側を連通させる方が提案されているが、この場合弁内
を通過する流量が変化し一時的に自閉の発生が無くなっ
た時は操作油圧が断たれ工いるため弁が閉鎖出来なくな
る欠点を有している。
In addition, in order to avoid the above-mentioned drawbacks, the operating condition is such that the water flow is cut off in advance, so that the supply of operating oil from the pressure oil tank is stopped when the valve is opened at a certain degree, and the open and closed sides of the servo motor are communicated. However, in this case, when the flow rate passing through the valve changes and self-closing temporarily disappears, the operating hydraulic pressure is cut off and the valve cannot close. There is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前記した従来技術での不合理な欠点を解
消し、効果的な弁の制御方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the unreasonable drawbacks of the prior art described above and to provide an effective valve control method.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、前記従来技術に於いて、制水弁の流水
しゃ断に発生するサーボモーター開側室12の背圧は、
圧油タンク5の内圧より高くなる事に着目し、この状態
となった場合自動的にサーボモーター開側室12の油、
すなわち油の消費される量エリ多いサーボモーター開側
室の戻り油量を圧油タンク5へ導き、圧油タンク内の油
量の増量と力漕圧を行なわせてその結果圧油装置の容量
の縮少を計り、かつ、発電機器の事故時に利水弁が流水
しゃ断する際、制水弁とその圧油装置と制御が外部より
のエネルギーの供給が断たれ、完全に独立した時でも安
全確実に弁を閉鎖させるものである。
The feature of the present invention is that in the prior art, the back pressure in the servo motor opening side chamber 12 generated when the water control valve shuts off the water flow is
Focusing on the fact that the internal pressure is higher than the internal pressure of the pressure oil tank 5, when this condition occurs, the oil in the servo motor open side chamber 12 is automatically reduced.
In other words, the amount of oil returned from the servo motor open side chamber, which consumes a large amount of oil, is guided to the pressure oil tank 5, and the amount of oil in the pressure oil tank is increased and pressure is applied to the pressure tank.As a result, the capacity of the pressure oil device is increased. When the water control valve shuts off the flow of water in the event of a power generation equipment accident, the water control valve, its hydraulic oil system, and control can be safely and reliably maintained even when the supply of energy from the outside is cut off and the water control valve is completely independent. This closes the valve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を鞘3図により説明する。集油
槽51、油ポンプ52、ポンプ駆動用電動機53、空気
圧縮機54、蓄圧作用を行う圧油タンク55.安全弁5
6で圧油装置の主要部を構成する。制水弁の制御機構と
して圧油供給管57、操作弁58、開動作指令部58−
1.閉動作指令部58−2、弁開側管59、弁閉側管6
0、サーボモーター61、開側室62、閉側室63、操
作時間設定の流量調整弁64,65、集油槽への排油管
66と、本発明の特徴であるサーボモーター開側室と圧
油タンクを連絡する連通管100、サーボモーター開側
室の排油を集油槽51と圧油タンク55に切換動作?行
う切換弁101、切換弁を作動するサーボモーター開側
室よりの圧力管102及び圧油タンクよりの圧力管10
3、圧油タンク55へ油t−導入する際のサーボモータ
ー動作時間調整用流量調整弁104、逆止弁105、上
記安全弁56よし低い値で動作する安全弁106を配置
する。
Hereinafter, one embodiment of the present invention will be described with reference to three diagrams of the sheath. Oil collecting tank 51, oil pump 52, pump driving electric motor 53, air compressor 54, pressure oil tank 55 for accumulating pressure. safety valve 5
6 constitutes the main part of the pressure oil system. As a control mechanism of the water control valve, a pressure oil supply pipe 57, an operation valve 58, and an opening operation command section 58-
1. Closing operation command unit 58-2, valve opening side pipe 59, valve closing side pipe 6
0, servo motor 61, open side chamber 62, close side chamber 63, flow rate adjustment valves 64, 65 for setting operation time, oil drain pipe 66 to the oil collecting tank, and communication between the servo motor open side chamber and the pressure oil tank, which is a feature of the present invention. The communication pipe 100 switches the drained oil from the servo motor open side chamber to the oil collecting tank 51 and the pressure oil tank 55? A switching valve 101 that operates the switching valve, a pressure pipe 102 from the open side chamber of the servo motor that operates the switching valve, and a pressure pipe 10 from the pressure oil tank.
3. A flow rate adjustment valve 104 for adjusting the operating time of the servo motor when introducing oil into the pressure oil tank 55, a check valve 105, and a safety valve 106 that operates at a lower value than the safety valve 56 described above are arranged.

以上の制御系に制水弁67、弁軸68、操作レバー69
、サーボモーターのピストンウッド70、ピストン70
−1が連結され、制水弁にはバイパス弁72、弁の下流
には水力機械ガイドベーン73が取付られる。
The above control system includes a water control valve 67, a valve shaft 68, and an operation lever 69.
, servo motor piston wood 70, piston 70
-1 is connected, a bypass valve 72 is attached to the water control valve, and a hydraulic mechanical guide vane 73 is attached downstream of the valve.

以上の構成に於いて、通常時の制水弁の開閉動作時は、
操作弁58の開動作指令部58−1の動作により圧油タ
ンク55の圧力は、圧油供給管57、操作弁58の開側
、弁開側管59を通りサーボモーター61の開側室62
に導入され利水弁は開動作し、サーボモーター閉側室6
3の油は、弁閉側管60、操作弁58の閉側、流量調整
弁64を通り集油槽51に排油する。又、通常時の閉動
作時は、上記に於て、操作弁58の閉動作指令部58−
2の動作により操作弁58の閉側に圧油タンク55の圧
油が導入し弁を間作用させる。
In the above configuration, during normal opening and closing operations of the water control valve,
Due to the operation of the opening operation command unit 58 - 1 of the operating valve 58 , the pressure in the pressure oil tank 55 is transferred through the pressure oil supply pipe 57 , the open side of the operating valve 58 , and the valve opening side pipe 59 to the open side chamber 62 of the servo motor 61 .
The water utilization valve is opened, and the servo motor closes the side chamber 6.
3 passes through the valve-closing side pipe 60, the closed side of the operation valve 58, and the flow rate adjustment valve 64, and is drained into the oil collecting tank 51. Also, during the normal closing operation, the closing operation command section 58- of the operating valve 58 is activated in the above manner.
By the operation 2, the pressure oil in the pressure oil tank 55 is introduced to the closed side of the operation valve 58, causing the valve to operate.

この通常時はサーボモーター開側室63内の油は、流量
調整弁65を通過するが、この圧力は圧油タンクの内圧
より低くなっていて、圧力管102の圧力より圧力管1
03の圧力が高いので、切換弁101は動作せず、従来
の方式と同様集油槽51に排油を行う。制水弁が“流水
しゃ断°をした場合は、第2図曲線口に示す如く弁開度
点Bから点Cまでサーボモータ開側室62は流水による
自閉力によす増圧される。すなわち、制水弁67に与え
られる閉方向のトルクは弁軸68、操作レバー69を閉
方向に回転しピストンロッド70、ピストン70−1を
閉方向に押し込む、この陳弁の閉時間調整用流量調整弁
65の絞り作用により流量が押えられ、サーボモーター
閉側室62の圧力が高められる。切換弁101の動作設
定力よりこの結果圧力管102の圧力が103の圧力よ
り高くなり、切換弁101の動作設定力より大きくなる
と、切換弁101は動作してサーボモーター閉側室の排
油は閉時間調整の流量調整弁104、逆止弁1osft
通り圧油タンク55へ退入される。この場合、圧油タン
クへの油ポンプよりの油の補給がなく許容最低動作油圧
近くになっていると第2図曲線二のF点からG点までの
サーボモーター動作分の油が圧油タンク55に退入され
、タンク内の圧力低下を防止する。
In this normal state, the oil in the servo motor open side chamber 63 passes through the flow rate adjustment valve 65, but this pressure is lower than the internal pressure of the pressure oil tank, and the pressure in the pressure pipe 102 is lower than the pressure in the pressure pipe 102.
Since the pressure at 03 is high, the switching valve 101 does not operate, and the oil is drained into the oil collecting tank 51 as in the conventional system. When the water control valve shuts off the flow of water, the pressure in the servo motor open side chamber 62 is increased by the self-closing force caused by the flow of water from valve opening point B to point C, as shown by the curved line in FIG. The torque in the closing direction applied to the water control valve 67 rotates the valve shaft 68 and the operating lever 69 in the closing direction, pushing the piston rod 70 and the piston 70-1 in the closing direction, and adjusts the flow rate for adjusting the closing time of this valve. The flow rate is suppressed by the throttling action of the valve 65, and the pressure in the servo motor closed side chamber 62 is increased.As a result, the pressure in the pressure pipe 102 becomes higher than the pressure in the pressure pipe 103 due to the operating setting force of the switching valve 101, and the switching valve 101 is operated. When the force becomes larger than the set value, the switching valve 101 operates, and the drain oil from the servo motor closing side chamber is drained through the flow regulating valve 104 for adjusting the closing time and the check valve 1osft.
The oil is then withdrawn to the pressure oil tank 55. In this case, if the pressure oil tank is not refilled with oil from the oil pump and the hydraulic pressure is close to the allowable minimum operating pressure, the oil for the servo motor operation from point F to point G in curve 2 in Figure 2 is in the pressure oil tank. 55 to prevent pressure drop inside the tank.

又、圧油タンク内が常用圧力近くである場合は第2図曲
線へのH点から1点までのサーボモーター動作分の圧力
は圧油タンク55に反入されるが安全弁106より油の
みを排出し、急激なタンク内の圧力変動を生ずる事なく
、タンク内の圧力が異常上昇しないようにする。
In addition, when the pressure inside the pressure oil tank is close to normal pressure, the pressure for the servo motor operation from point H to point 1 on the curve in Figure 2 is returned to the pressure oil tank 55, but only oil is released from the safety valve 106. To prevent the pressure inside the tank from rising abnormally without causing sudden pressure fluctuations in the tank.

以下に、従米改良形の圧油タンク容量と、本発明による
油タンクの容量の比較による効果の一例を示す。この際
の制水弁友び、サーボモーターの仕様は下記とする。
Below, an example of the effect obtained by comparing the capacity of the oil tank of the conventional improved type and the capacity of the oil tank according to the present invention will be shown. The specifications of the water control valve and servo motor in this case are as follows.

弁口径 1)=200crn、弁上流側圧力P t =
 50 k g/cm”弁軸径 d = 80 cm 
+弁軸部摩擦系数μ=0.2サーボモーターロ径Ds=
67crn+ピストンロッド径dr=2&anレバー半
径 R= 111crn、レバー閉角度θ=30’サー
ボモーターストローク5o=157crr1゜流水しゃ
断時自閉力発生の範囲S 1= S o/3流水しゃ断
時弁閉鎖必要トルクの最大値=TE常用操作油圧 P 
o = 70 kg/cnF流水しゃ断時の許容最低動
作油圧PE=45 kg/crn”サーボモーター閉動
作詩消費油量 Vs: V s = −(Ds −d 
r”) X5o= ’(67”−28”) 1574 
           4 =456855・4cW1’ 流水しゃ断時必要トルクTEは d    π ’l’E=−D2XPIX−Xμ=−(200”) x
 50 x ’LC’ x O,24242 =12566400kg−cm サーボモーター出力トルクTsは T s = −(Da” −d”) XPEXRxco
s=i(67”−28”)X45X111XCO830
=12587296kg−α したがって、流水しゃ断は可能なサーボモーターである
Valve diameter 1) = 200 crn, valve upstream pressure P t =
50 kg/cm” Valve stem diameter d = 80 cm
+ Valve stem friction coefficient μ = 0.2 Servo motor diameter Ds =
67 crn + piston rod diameter dr = 2 & an lever radius R = 111 crn, lever closing angle θ = 30' Servo motor stroke 5 o = 157 crr 1 ° Range of self-closing force generation when water is cut off S 1 = S o/3 Required torque for valve closing when water is cut off Maximum value of = TE normal operating oil pressure P
o = 70 kg/cnF Allowable minimum operating oil pressure when water is cut off PE = 45 kg/crn" Servo motor closing operation oil consumption amount Vs: V s = -(Ds -d
r") X5o='(67"-28") 1574
4 =456855・4cW1' The required torque TE when shutting off the flowing water is d π 'l'E=-D2XPIX-Xμ=-(200") x
50 x 'LC' x O, 24242 = 12566400kg-cm Servo motor output torque Ts is Ts = -(Da"-d") XPEXRxco
s=i(67”-28”)X45X111XCO830
=12587296kg-α Therefore, the servo motor is capable of shutting off the running water.

1、従来O改良方式による圧油タンクの容量は:油ポン
プの補給なしで弁が一回閉動作したあとのタンク内圧 
が許容最低動作圧力PE=45kg/crlになるには
、タンク空気量VAは、ボイルの方則より、流水しゃ断
時の閉動作消費油量はVsの273として VAXPO=(VA+V8X2/31xPE2、本発明
に於ける圧油タンクの容量は;空気量をVAt?−ホモ
−ター消費油量は、サーボモーター開側よりピストンロ
ッドdrによる体積による公文増量して退入されるから
VAtXPO=(VAt+VsX2/3−hdr”) 
X5OX2/a)XPE!!−(d rT)XSOX 
z7g=B (28”) 157 X2/1=6444
8.飯−J” ’11)VA、 −PE したがって本発明によれば、従来の改良案に対し空気量
のは彷X100%=78.8%で充分なものVA となり、21.2%の低減となる。
1. The capacity of the pressure oil tank using the conventional O improved method is: Tank internal pressure after the valve closes once without replenishing the oil pump.
In order to achieve the allowable minimum operating pressure PE = 45 kg/crl, the tank air amount VA is determined by Boyle's law, the oil consumption amount for closing operation when water is cut off is 273 of Vs, and VAXPO = (VA + V8X2/31xPE2, in the present invention. The capacity of the pressure oil tank is VAt? - The homotor oil consumption is increased by the volume of the piston rod dr from the open side of the servo motor, so VAtXPO = (VAt + VsX2/3 - hdr ”)
X5OX2/a)XPE! ! -(d rT)XSOX
z7g=B (28”) 157 X2/1=6444
8. 11) VA, -PE Therefore, according to the present invention, compared to the conventional improvement plan, the air amount is sufficient at 78.8% (VA), which is a reduction of 21.2%. Become.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、制水弁が流水しゃ断“動作をすれば、
自動的に弁閉鎖の余中に発生する自閉力をサーボモータ
ーで圧力発生源として増圧し、その間のサーボモーター
消費油量を圧油タンクに返入する作用が行なわれ、この
結果、圧油装置の容量縮少が可能となり、効果的かつ経
済的な、制水弁の制御を得る事が出来る。
According to the present invention, if the water control valve operates to cut off the water flow,
The self-closing force generated during automatic valve closing is used as a pressure source by the servo motor to increase the pressure, and the amount of oil consumed by the servo motor during that time is returned to the pressure oil tank.As a result, the pressure oil is increased. It becomes possible to reduce the capacity of the device and obtain effective and economical control of the water control valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式の制水弁と圧油装置の制御系を示す系
統図、第2図は制水弁必要操作トルク曲線図、第3図は
本発明の一実施例を示す制水弁と圧油装置の制御系を示
す系統図である。 1.51・・・婆油槽、2,52・・・油ポンプ、3.
53・・・電動機、4.54・・・空気圧縮機、5,5
5・・・圧油タンク、17.67・・・制水弁、58−
1・・・開指令部、58−2・・・閉指令部。
Fig. 1 is a system diagram showing the control system of a conventional water control valve and pressure oil device, Fig. 2 is a water control valve required operating torque curve, and Fig. 3 is a water control valve showing an embodiment of the present invention. FIG. 3 is a system diagram showing the control system of the pressure oil device. 1.51...Oil tank, 2,52...Oil pump, 3.
53...Electric motor, 4.54...Air compressor, 5,5
5... Pressure oil tank, 17.67... Water control valve, 58-
1... Open command section, 58-2... Close command section.

Claims (1)

【特許請求の範囲】[Claims] 1、弁により流体をしゃ断する際、その弁を操作するサ
ーボモーターと、サーボモーターに弁操作用の液圧を供
給する液圧の蓄圧装置を有する制御系に於て、前記自己
閉鎖力の作用によるサーボモーター背圧と、蓄圧装置の
圧力を検出し、′サーボモーター背圧が蓄圧装置の圧力
より高い範囲のサーボモーター背圧側の液体を、自己閉
鎖力の押込力により蓄圧装置へ導く事を特徴とする弁の
制御法。
1. When a valve shuts off fluid, the action of the self-closing force is Detects the back pressure of the servo motor and the pressure of the pressure accumulator, and directs the liquid on the servo motor back pressure side in the range where the servo motor back pressure is higher than the pressure of the pressure accumulator to the pressure accumulator using the pushing force of the self-closing force. Characteristic valve control method.
JP22185882A 1982-12-20 1982-12-20 Method of controlling valve Pending JPS59113385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22185882A JPS59113385A (en) 1982-12-20 1982-12-20 Method of controlling valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22185882A JPS59113385A (en) 1982-12-20 1982-12-20 Method of controlling valve

Publications (1)

Publication Number Publication Date
JPS59113385A true JPS59113385A (en) 1984-06-30

Family

ID=16773288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22185882A Pending JPS59113385A (en) 1982-12-20 1982-12-20 Method of controlling valve

Country Status (1)

Country Link
JP (1) JPS59113385A (en)

Similar Documents

Publication Publication Date Title
JP2005009665A (en) Discharge oil quantity control circuit of hydraulic pump
CN109371920B (en) Hydraulic damping speed regulating system for quick closing gate
US3602603A (en) Apparatus for operating a water turbine
JPS59113385A (en) Method of controlling valve
CN112302735B (en) Steam turbine main valve auxiliary system and control method thereof
US4472105A (en) Rotary type pumping machine
KR200350971Y1 (en) Gate valve off by-pass valve installation
JP2752215B2 (en) Emergency stop device for water turbine
JP3767918B2 (en) Inlet valve control device for pump turbine
US4624622A (en) Fail-safe system for a reversible pump-turbine apparatus
JPH0828427A (en) Pressure regulating device for hydroelectric power station
JPH04183976A (en) Control device of turbine discharge
JP3769307B2 (en) Water wheel inlet valve controller
CN116591882A (en) Turbine motor pump group for high-fall heading machine
JP2002276526A (en) Electric waterport operating device of hydraulic machinery, and waterport operating method
SU1059267A2 (en) Pumping plant
SU1481445A1 (en) Method of controlling feed water flow rate in heat-and-power plant
JPS62101808A (en) Device for regulating bearing lubrication pressure
JPS5834717B2 (en) steam stop valve
JP3096751B2 (en) Small hydro power plant
JPH022128Y2 (en)
CN117345700A (en) Hydraulic rotary oil supplementing system
CN111535878A (en) Nuclear power unit adjusts security system
JPS59106796A (en) Oil feed device
JPH0763153A (en) Water turbine equipment