JPS59112677A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS59112677A
JPS59112677A JP58200943A JP20094383A JPS59112677A JP S59112677 A JPS59112677 A JP S59112677A JP 58200943 A JP58200943 A JP 58200943A JP 20094383 A JP20094383 A JP 20094383A JP S59112677 A JPS59112677 A JP S59112677A
Authority
JP
Japan
Prior art keywords
laser
semiconductor laser
light
output
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58200943A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
良一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58200943A priority Critical patent/JPS59112677A/en
Publication of JPS59112677A publication Critical patent/JPS59112677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To produce a detecting light without light loss and to reduce the size and weight of a semiconductor laser device by arranging a photolead unit at one light emitting side of a semiconductor laser element for emitting lights in bidirections. CONSTITUTION:A thermoelectric cooling element 12 is mounted on a heat sink fin 13, and a copper heat sink 8 is secured onto the element through an insulating layer 11 and a metal plate 10. Then, when photolead units each of which has a semiconductor laser element 1 of GaAsAlGaAs double hetero structure and a photodetector 5 made of a solar battery or the like are aligned and arranged on the sink 8, a difference is formed on the surface, on which the photodetector 5 is placed, and the placing surface of the element 1 is projected. In other words, the photodetector 5 in which an insulating layer 9 is covered on the bottom and the side of the element 1 is disposed at the side of the light 4 of the laser lights 3, 4 emitted from the active layer 2 of the element 1 in bidirections, the output from there is amplified by an amplifier 6 as a detecting light. In this manner, the monitoring light can be produced without loss.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は注入型半導体レーザ、特に室温ないし室温に近
い温度で、連続的ないし連続に近いチューティ比(Du
ty Ratio )で動作する半導体レーザ装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an injection type semiconductor laser, in particular a continuous or nearly continuous tutee ratio (DuT) at room temperature or near room temperature.
ty Ratio).

〔発明の背景〕[Background of the invention]

半導体レーザけ、素子の温度上昇に伴なって発振のシき
い電流″も増大する。たとえば、アイ・ハヤシ(1,H
ayashi )他数氏は、米国における学術雑誌「ジ
ャーナル・オブ・アプライド・フィジックス誌(Jou
rnal of Applied physics)j
第42巻第1929頁(1971年)に投稿した論文I
 GaAs −AtX  ()a I−x ASダブル
へテロ接合構造注入レーザ」に報告しているように、半
導体レーザを一定の電流で駆動していると周囲温度の変
化に伴って、レーザ出力も変化する。
As the temperature of the semiconductor laser device increases, the oscillation threshold current also increases. For example, I Hayashi (1, H
ayashi) and several others are authors of the American academic journal ``Journal of Applied Physics'' (Jou
rnal of Applied physics)
Paper I submitted to Volume 42, Page 1929 (1971)
As reported in ``GaAs - AtX ()a I-x AS Double Heterojunction Injected Laser'', when a semiconductor laser is driven with a constant current, the laser output changes as the ambient temperature changes. do.

すなわち、シきい電流”Jthの温度変化が、J +h
 = Jo eXp(T 、/ To )     −
−−(1)(たたし、Jo、’roはいずれも′しきい
電流″の温度に対する変化を定めるパラメータで、素子
により定する。)で衣わされる。ダブルへテロ接合構造
GaAS−AtQaAsレーザを動作させた場合を考え
る。半導体レーザ素子の温度TがΔT変化したときの゛
しきい電流II J 、hは式(1)から、となる。半
導°体し−ザ素子の動作電流をJとすれば素子の温度変
化によるレーザ出力Pの変化ΔPは、 となる。
In other words, the temperature change of the threshold current "Jth" is J + h
= Jo eXp(T,/To) −
--(1) (Tat, Jo, and 'ro are all parameters that determine the change in 'threshold current' with respect to temperature, and are determined depending on the element.) Double heterojunction structure GaAS- Consider the case where an AtQaAs laser is operated. When the temperature T of the semiconductor laser element changes by ΔT, the threshold current II J , h is obtained from equation (1). Operation of the semiconductor laser element If the current is J, then the change ΔP in the laser output P due to the temperature change of the element is as follows.

J=(1+ε)Jtb とすれば(ただし、εは半4体レーザ素子の動作点を定
めるパラメータ。) となる。
If we set J=(1+ε)Jtb (where ε is a parameter that determines the operating point of the half-four-body laser element).

ε=Qyl 、 T、 =120 ’にの場合は、とな
るから、素子の温度が動作点から6c上昇すると、レー
ザ出力は半減する。勿論、εの大きい状態で素子を使用
ずれば、温度変化に対するレーザ出力の変化率は減少す
るが、反面、半導体レーザ素子の劣化速度は動作電流の
増大と共に増大するので、なるべく“′しきい電流″附
近で動作させることが望ましい。
When ε=Qyl, T, =120', the following equation holds.When the temperature of the element rises by 6c from the operating point, the laser output is halved. Of course, if the device is used with a large ε, the rate of change in laser output with respect to temperature changes will decrease, but on the other hand, the rate of deterioration of semiconductor laser devices will increase as the operating current increases. ``It is desirable to operate it nearby.

上記したごとく、半導体レーザの光出力は、素子の温度
によって左右され易いので、温度を一定に維持する手段
を講Oていない通常の条件の下では、レーザ光出力を定
常に維持するための他の手段が必要となる。
As mentioned above, the optical output of a semiconductor laser is easily influenced by the temperature of the element, so under normal conditions where no means of maintaining a constant temperature is taken, other methods are required to maintain the laser output at a steady state. A means of doing so is required.

半導体レーザ装置においては、従来、このような手段を
設けたものが市販されていないが、気体レーザの分野で
は、レーザ光の一部をビーム・スプリッタ(beam 
5plitter )などの光学系を利用して取り出し
、取り出したレーザ光を適当な光検出器で検知し、レー
ザ出力が変化した場合は、検昶出力を気体カスレーザ励
起電源に帰還させ、気体ガス・レーザへの供給入力を制
御して、レーザ出力を一定に維持する手段が採用されて
いる。
Conventionally, semiconductor laser devices equipped with such means have not been commercially available, but in the field of gas lasers, a portion of the laser light is separated by a beam splitter.
The extracted laser light is extracted using an optical system such as a 5 splitter), and the extracted laser light is detected by an appropriate photodetector. If the laser output changes, the detected output is returned to the gas gas laser excitation power source, and the gas gas laser is Means are employed to maintain a constant laser output by controlling the supply input to the laser.

半導体レーザの嚇合も、同じ手段を採用することができ
るが、小型・軽量を生命とする半導体レーザ装置にビー
ム・スプリッタなどの光学系を導入することは、装置を
大型化することになる。しかも、ビーム・スプリッタで
大きな光の損失が起こる。半導体レーザは、ガスレーザ
に比べ光出力が小さいので、このような光の損失は大き
な問題となる。聞えは、十分な光出力を、丙るには、動
作電流をJfa大すればよいが、動作電流の増大は半導
体レーザ素子の劣化を促進するので、素子の寿命の点で
不オリでるる。
The same method can be used to combine semiconductor lasers, but introducing an optical system such as a beam splitter into a semiconductor laser device, which is designed to be small and lightweight, will make the device larger. Moreover, large optical losses occur at the beam splitter. Since a semiconductor laser has a lower optical output than a gas laser, such light loss becomes a big problem. In theory, sufficient optical output can be obtained by increasing the operating current by Jfa, but increasing the operating current accelerates deterioration of the semiconductor laser device, which is detrimental to the life of the device.

〔発明の目的〕[Purpose of the invention]

かかる点に丸み本発明は、半導体レーザ素子から取り出
す出力光に損失を与えることなく出力1天出用の光を取
り出すことができ、しかも半導体レーザ糸子の小型・軽
量という%長を偵うことなく簡単な構造で上記出力光を
効率よく取り出すことがでさる半?i!J一体レーザ装
置を提供することを目的とする。
In view of this point, the present invention makes it possible to extract light for one output without causing any loss to the output light extracted from the semiconductor laser element, and without compromising the advantages of small size and light weight of the semiconductor laser element. It is possible to efficiently extract the above output light with a simple structure. i! The purpose is to provide a J-integrated laser device.

〔発明の概要〕[Summary of the invention]

本発明の半導体レーザ装置は、半導体レーザ系子と、受
光系子と、上記半導体レーザから双方向に送出されるレ
ーザ光のうち一方の光路に入るような位置関係に上記両
素子を配置する支持体とを有し、さらに上記半導体レー
ザ素子からの他方のレーザ光を出力光として*υ出すよ
う上記半導体レーザ素子の近鰐に光導出体を配置するこ
とにより、出力光に損失を与えることなくモニタ用の光
を取9出すことン郵で騒、しかも光導出体によシ上記出
力元金効率よく取り出せるようにしたものである。
The semiconductor laser device of the present invention includes a semiconductor laser system element, a light receiving system element, and a support for arranging the two elements in a positional relationship such that the two elements enter one optical path of the laser light bidirectionally transmitted from the semiconductor laser. By arranging a light guide body near the semiconductor laser element so as to output the other laser light from the semiconductor laser element as output light *υ, there is no loss in the output light. The light for monitoring can be taken out without any noise, and the above-mentioned output source can be taken out efficiently through the light guiding body.

〔発明の実施例〕[Embodiments of the invention]

以下本発明ゲ実施例により説明する。 The present invention will be explained below using examples.

第1図は、本発明に係る半導体レーザ装置の一実施例の
構成の概略を示す図である。この半導体レージ装(直は
、半導体レーザ素子l、鋼製ヒ〜ト/ンク8、解熱冷却
素子12、放熱フイ/13、光検知器5から成り、6は
光検知器の出力の増幅器、7は6」変な矩藏圧発生器と
制御回路を含む熱血冷却素トの「L諒である。半導体レ
ーザ素子1は()aAS−AtGaAsダブルへテロ構
造レーザで、これに電源14及び負荷抵抗15=i通し
て、”しきい電流″以上の電th、を流すとレーザ発振
が起こり、活性ノ輌2の両端の二つのへき開面(すなわ
ち反射面)からそれぞれレーザ光3及び4が放出される
。レーザ光3は光通信、光情報処理、スペクトロメータ
の光源などとして利用することができ、別の反射、u6
から出るレーザ光4は、手番体し−ザ素子1に近接して
配置した光検知器5の受光1mlに照射される。この光
検知器5としては、たとえば()aAS系半・浮体レー
ザ(晃振彼艮約7500〜9000人の範囲内)では、
Siで作っだ太1湯電池、PIN元検出器などが感度1
、晶F!特性などの点で都会がよい。本実施例では光検
知器5は温度に対して比較的安定な短絡直流モードで[
費用する。光検知器5は薄い絶縁層9によってヒートシ
ンク8からは電気的に絶好されている。半導体レーザ系
f1の活性層2の温度T、はレーザ系イlに供超する電
気人力、周囲温跣T1及び熱電冷却系子12に流す電流
で決まる。レーザ、(六子に洪幻される屯IJ−1i流
をそれぞれV及び1、ヒートシンク8の1MAIhLを
Th とすれば T1=Th+θV’I       ・・・・・・・・
・(5)及び Ith=IoeXl)(Tj/’J、’o)   ・−
・−・−(6)の1周糸がある。ここにθはレーザ素子
lとヒートシンク8の熱t(l;坑であり、Lhはt/
−ザ系子1のしきい電流である。レーザの光出力Pは、
P=η(I−Lb )       ・・・・・・(7
)で与えられイ)。ここでηは比例定θである。上記の
;3式からレーザ出力を直流及びヒートジンク温度の関
数と17で求めることができる。第2図1riその計算
結果を模式的に示したt旨性図で、縦軸はレーザ出力P
を、横軸は電流■を表し、パラメタはヒート//りの温
度ThでT h a > T h + > T b 2
である。第2図から、レーザ出力P1を得るために必要
な@、流及びヒート7ンク温度の組合せはいろいろある
ことがわかる。ヒートシンク1iiA Kが定まってい
る場合には、レーザ出力P1を得るために必要な電流値
1は二押ゐ1あるが、勿論、より低い霜、流値の方が望
ましい。栄:1図の実施151のように、ヒートシンク
に熱電冷却素子12を装置した場合にはヒートシンクの
温度をかなりの範囲内で選ぶことができる。今ヒートシ
ンク温度をT h Hとすれば、所要の電流は■1 と
なるうなるべく小d流で必要なレーザ出力を得るという
観点からヒートシンク温度Thlは周囲温度T、より低
く選ぶ方が望ましいすなわち Th=T、−ΔT        ・・・・・・・・・
(8)である。ここでΔTは熱電冷却素子12によって
保たれている温度差で、熱電系子に洪給烙れる電流によ
って決まる。今、周囲温度1゛1が何らかの原因でθT
だけ変化して、ヒートシンク温度がTh3(さT b 
1+θT)になったとし、熱電冷却系子に供給される直
流が変化しないとすれば、レーザ出力は所定のレーザ出
力1直P+からP3に減少する。而して、第1図の実施
例では光検知器5によってモニタされたレーザ出力4に
比例する1g号は増幅器6によって増幅された後、基準
値(すなわち、この実施例では所定のレーザ出力値P1
に対応する値)と比較され、基準値からの変動分をゼロ
に近づけるように“電源7がら熱電冷却素子12に供給
される電流を変化させる。上記の場合では周囲温度の変
動分aTを打ち消すように、熱電冷却系子によって保た
れる温度差ΔTをΔT十〇Tに変化きせることになる。
FIG. 1 is a diagram schematically showing the configuration of an embodiment of a semiconductor laser device according to the present invention. This semiconductor laser device (directly) consists of a semiconductor laser element 1, a steel heat sink 8, a heat dissipating cooling element 12, a heat dissipation fin/13, and a photodetector 5, 6 an amplifier for the output of the photodetector, 7 The semiconductor laser device 1 is an ()aAS-AtGaAs double heterostructure laser, which is equipped with a power supply 14 and a load resistor. When an electric current th greater than the "threshold current" is passed through 15=i, laser oscillation occurs, and laser beams 3 and 4 are emitted from the two cleavage planes (i.e., reflective surfaces) at both ends of the active vehicle 2, respectively. The laser beam 3 can be used as a light source for optical communication, optical information processing, spectrometer, etc.
The laser beam 4 emitted from the laser beam 4 is irradiated onto 1 ml of light received by a photodetector 5 placed close to the laser element 1. As this photodetector 5, for example, an aAS semi-floating laser (within the range of about 7,500 to 9,000 people),
Sensitivity 1 for 1-inch hot water battery made of Si, PIN source detector, etc.
, Akira F! Cities are better in terms of characteristics. In this embodiment, the photodetector 5 operates in short-circuit DC mode, which is relatively stable with respect to temperature.
cost. The photodetector 5 is electrically isolated from the heat sink 8 by a thin insulating layer 9. The temperature T of the active layer 2 of the semiconductor laser system f1 is determined by the electric power supplied to the laser system I, the ambient temperature T1, and the current flowing through the thermoelectric cooling system 12. Laser, (Tun IJ-1i flow exposed to Rokuko is V and 1 respectively, 1MAIhL of heat sink 8 is Th, then T1=Th+θV'I...
・(5) and Ith=IoeXl)(Tj/'J,'o) ・-
・−・−(6) There are threads around one turn. Here, θ is the heat t(l; hole) of the laser element l and the heat sink 8, and Lh is t/
- The threshold current of the system element 1. The optical output P of the laser is
P=η(I-Lb) ・・・・・・(7
) is given by a). Here, η is a constant of proportionality θ. From the above equation (3), the laser output can be determined as a function of direct current and heat sink temperature. Figure 2 is a performance diagram schematically showing the calculation results, and the vertical axis is the laser output P.
, the horizontal axis represents the current ■, and the parameter is the temperature Th of the heat // T h a > T h + > T b 2
It is. From FIG. 2, it can be seen that there are various combinations of @, flow, and heat tank temperature necessary to obtain the laser output P1. When the heat sink 1iiAK is fixed, the current value 1 required to obtain the laser output P1 is 20%, but of course lower frost and current values are preferable. Sakae: When the heat sink is equipped with the thermoelectric cooling element 12 as in the embodiment 151 of FIG. 1, the temperature of the heat sink can be selected within a considerable range. Now, if the heat sink temperature is T h H, the required current is 1. From the viewpoint of obtaining the necessary laser output with as small a current as possible, it is preferable to select the heat sink temperature Thl lower than the ambient temperature T, that is, Th =T, -ΔT ・・・・・・・・・
(8). Here, ΔT is the temperature difference maintained by the thermoelectric cooling element 12, and is determined by the current flowing into the thermoelectric element. Now, if the ambient temperature is 1゛1, for some reason θT
, and the heat sink temperature becomes Th3 (Sa T b
1+θT), and if the direct current supplied to the thermoelectric cooling system does not change, the laser output decreases from the predetermined laser output 1 direct P+ to P3. In the embodiment shown in FIG. 1, the signal 1g, which is proportional to the laser output 4 monitored by the photodetector 5, is amplified by the amplifier 6 and then converted to a reference value (i.e., a predetermined laser output value in this embodiment). P1
The current supplied from the power supply 7 to the thermoelectric cooling element 12 is changed so that the variation from the reference value approaches zero. In the above case, the variation aT in the ambient temperature is canceled out. Thus, the temperature difference ΔT maintained by the thermoelectric cooling system is changed to ΔT10T.

熱電冷却系子による温度制御は応答が速く(1秒以下)
、また直流の極性によって周囲温度より高くも、あるい
は低くもできるという利点を有しているので、周囲温度
が太1陥に変動するような環境でも、レーザ出力を一定
に保つことができる利点がある。−例を挙げれば、周囲
温度が一10Cから、45Cの範囲内で、出力変動を5
%以内におさえることができる。をらに、本実施例の他
の利点は、利用すべきレーザ光3とは独立にモニタ用の
レーザ光4を丈っていることである。すなわち、レーザ
光3及び4は同一の光キャビティから放出されているの
で、その出力は互いに比例関係にあるので、レーザ出力
4を一足に保つように制御することにより、利用すべき
レーザ光3の出力を一定に保つことができるのである。
Temperature control using thermoelectric cooling system has a fast response (less than 1 second)
Also, it has the advantage of being able to make the temperature higher or lower than the ambient temperature depending on the polarity of the direct current, so it has the advantage of being able to keep the laser output constant even in environments where the ambient temperature fluctuates wildly. be. - For example, if the ambient temperature is between 110C and 45C, the output fluctuation will be reduced by 5C.
It can be kept within %. Furthermore, another advantage of this embodiment is that the laser beam 4 for monitoring is provided independently of the laser beam 3 to be used. That is, since the laser beams 3 and 4 are emitted from the same optical cavity, their outputs are proportional to each other, so by controlling the laser output 4 to keep it constant, the amount of laser beam 3 to be used can be reduced. This allows the output to be kept constant.

このように本実施例ではモニタ用の光学系が不用になる
ので、レーザ系子1に光ファイバなどを近接してレーザ
光3を直接ファイバに導入することかでさる。この場合
、半導体レーザ系子と光検知器はヒートシンク上に配置
されており、レーザ光3と光ファイバの位置合せのみを
行なえばよいので都aがよい。二−りの反射面の反射率
が等しい場合にはレーザ出力3および4の大きさは等し
いが、モニタ用の出力4は小石くてもか壕わないので、
出力4?とり出す反射面には絶縁膜及び金棺膜をコート
として反射率を上けて1四う方が望ましい。なぎなら一
方の反射面の反射率を高くすることにより、発振のしき
い電流llI!ヲ小さくすることができるからである。
As described above, in this embodiment, since a monitoring optical system is not required, an optical fiber or the like is placed close to the laser system element 1 and the laser beam 3 is directly introduced into the fiber. In this case, the semiconductor laser system and the photodetector are arranged on a heat sink, and it is only necessary to align the laser beam 3 and the optical fiber, so it is preferable. If the reflectances of the two reflective surfaces are equal, the magnitudes of the laser outputs 3 and 4 are equal, but the output 4 for monitoring is not affected by small stones, so
Output 4? It is preferable that the reflective surface to be taken out be coated with an insulating film and a metal coating film to increase the reflectance. By increasing the reflectance of one of the reflective surfaces, the oscillation threshold current llI! This is because it can be made smaller.

また本実施列に寂いては、光検知器5が、半導体レーザ
素−F1と同じヒートシンク8上に装置されているため
に、光検知器5の温度もほぼ一定に保たれ、従って、光
検知器の感度も周囲温度の影響を受けにくい利点がある
。なお半導体レーザ素子の出力が直接変調金堂けている
場合には、増幅器6にはローパスフィルターを組み込む
必要がある。この時、レーデ出力の時間平Jす匝が一定
に保7ヒれる。さらに、第1図に示す実施flJでは、
光検知器もほぼ一定の温度に保たれるので7色検知器の
感度もほぼ一定に保たれる利点がある。
Moreover, since the photodetector 5 is installed on the same heat sink 8 as the semiconductor laser element F1, the temperature of the photodetector 5 is also kept almost constant, and therefore the photodetector The sensitivity of the device also has the advantage of being less affected by ambient temperature. Note that if the output of the semiconductor laser element is directly modulated, it is necessary to incorporate a low-pass filter into the amplifier 6. At this time, the time average of the radar output is kept constant. Furthermore, in the implementation flJ shown in FIG.
Since the photodetector is also kept at a substantially constant temperature, there is an advantage that the sensitivity of the seven-color detector is also kept substantially constant.

本発明に糸る半導体レーザ装置の池の実施例の概略構成
図を第3図に示す。第3図は、半導体レーザ素子1の二
つの反射面から放射されたレーザ光のうち、4のレーザ
光はヒートシンク上に装着した光検知器5に照射する。
FIG. 3 shows a schematic configuration diagram of an embodiment of a semiconductor laser device according to the present invention. In FIG. 3, of the laser beams emitted from two reflective surfaces of the semiconductor laser device 1, four laser beams are irradiated onto a photodetector 5 mounted on a heat sink.

光検知器5に得られる出力は増幅器6で増幅し、所定の
レーザ出力PLに対応する値と比較場れ、対応する変動
分を打ち消すようにレーザ紫子への人力供給醒源14′
を制御する。本実施例は、第1図の実施例の構成と異な
り、レーザ索子への供給社カケ調節してレーザ出力の変
化を打ち消すものである。第2図の特性図かられかるよ
うに、連続動作ないし、連続に近いデユーティ比の動作
状態では得られるレーザ出力の最大値は周囲温度によっ
て決まるので、周囲温度が大きく変動するような条件で
は本実施例は訣い難い。また、第2図から明らかなよう
に、電流をふやすと光出力が低下する動作条件も存在す
るが、このような条件で出力を節1#することは望まし
くなく、電流と共に光出力が増加するような条件で動作
させるべきである。したがって、本実施例は半導体レー
ザ素子の周囲温度がほぼ一定に保た1しCいるニシンよ
状、轢・あるいは4J旨ti冷却累子によってヒートシ
ンク8上がほぼ一定に保たれているような」賜金に、ブ
0出力を精密に制御するために用いることがごきる。−
例として、室温25Cの丑わりに±3Cの温度変化が、
ちる場合の出力安定度は±2頭であつjと。レーザ光が
吸調されている場合に、J室幅ン;隷6にローパスフィ
ルターを設けることは第1図の実施クリの場合と同様で
ある。
The output obtained by the photodetector 5 is amplified by an amplifier 6 and compared with a value corresponding to a predetermined laser output PL, and the power supply source 14' to the laser beam is adjusted so as to cancel out the corresponding fluctuation.
control. This embodiment differs from the configuration of the embodiment shown in FIG. 1 in that the supply gap to the laser cable is adjusted to cancel out changes in laser output. As can be seen from the characteristic diagram in Figure 2, the maximum value of the laser output that can be obtained under conditions of continuous operation or near-continuous duty ratio is determined by the ambient temperature. Examples are difficult to explain. Furthermore, as is clear from Figure 2, there are operating conditions in which the optical output decreases as the current increases, but it is undesirable to reduce the output to Node 1 under such conditions, and the optical output increases with the current. It should be operated under such conditions. Therefore, in this embodiment, the ambient temperature of the semiconductor laser element is kept almost constant, and the temperature on the heat sink 8 is kept almost constant by a herring-like cooling element, a heat sink, or a four-layer cooling element. In addition, it can be used to precisely control the output. −
As an example, a temperature change of ±3C instead of a room temperature of 25C,
The output stability when it is tilted is ±2 heads. When the laser beam is absorbed, a low-pass filter is provided in the J chamber 6 as in the embodiment shown in FIG.

また、レーザ索子に流ず電15ti、lifが大きくな
り過ぎて、電流の増加と共にレーザ出力が低下する不安
定・鎖酸に入ることを防ぐために1匠源14’に電流制
限装置r設けることが望ましい。
In addition, a current limiting device r is provided in the first source 14' to prevent the current 15ti, lif flowing through the laser cord from becoming too large and causing an unstable chain reaction in which the laser output decreases as the current increases. is desirable.

また、化3図に示す芙施しリの場合では、半導体レーザ
のキャビア・[が、二1同の相対する反射面で構成きれ
る場合を述べたが、該反射量はへき開、研摩、エツチン
グ、イオンミリングなどの手段を用いて得られる平面を
利用するものの他に、レーザの活性層ないし、レーザ光
の伝播路に設けた周期構造によって得られるブラッグ反
射を利用するものについても同様に本発明を応用するこ
とができる。なぜ7rら、後者の場合にも等mfi的に
二j白の反射面があるとみなすことができるからである
In addition, in the case of cleavage shown in Figure 3, we have described a case in which the caviar of a semiconductor laser can be composed of 21 opposing reflecting surfaces, but the amount of reflection is determined by cleaving, polishing, etching, ion etching. In addition to those that utilize flat surfaces obtained by means such as milling, the present invention can also be applied to those that utilize Bragg reflection obtained from a periodic structure provided in the active layer of a laser or in the propagation path of laser light. can do. This is because even in the latter case, it can be assumed that there are 2j white reflective surfaces equimfi.

〔発明の効果〕〔Effect of the invention〕

以上説明しiと即く本発明によれば、以Fに述べる如き
抽々の効果をチすることが可能となる。即ち、 ■ 半導体レーザ索子の二つの反射面から双方向に送出
されるレーザ光のうち一方を出力光として取り出し、他
方を光恨出器でモニタするので、半導体レーザ素子の二
方回力・らの光をすべて有>J・υに利用できる。もし
、一方間〃・らの光のみでモニタすると、その分7eけ
丸吋が拭少することとンより、ブしオj貝失z4自くこ
としこなる。
As explained above, according to the present invention, it is possible to achieve the effects described below. That is, (1) Since one of the laser beams bidirectionally emitted from the two reflecting surfaces of the semiconductor laser element is extracted as output light and the other is monitored by the optical output device, the two-way turning power of the semiconductor laser element is reduced. All of the light can be used for >J・υ. On the other hand, if you monitor only with the light between 〃・ra, the 7e and round 吾 will be wiped a little, and you will be unable to do it yourself.

■ しかも、七二りのための光を階別の構成なく取り出
すので、e二り開光−≠系は不要で・うり、その位置d
・贈9ための繁雑さがなく、装置としての安定性に鍾れ
る。これにより、装置の低コスト化が図れ、しかも量産
性に優れる。
■ In addition, since the light for the 72 is extracted without a structure for each floor, there is no need for an e2 light-≠ system.
・It is not complicated to use and provides stability as a device. As a result, the cost of the device can be reduced and mass productivity is excellent.

■ 半導体レーザ素子は、通′濱、パッケージ内に収納
され、光取シ出し窓を弁してレーザ光を取り出してI費
用されるが、出力光とモニタ元の両者に対して位置合せ
を廠・dVCfjな)ことは困難である。本発明では半
導体レーザ菓子と受光素子を1つのパッケージ内に収納
することがCき、出力光として外部へ取りm−ノーノー
9元は1つCすむので、光導出体との位置付せが容易に
行なわれる。
■ The semiconductor laser element is generally housed in a package, and the laser beam is extracted by opening the light extraction window to extract the laser beam. However, the positioning for both the output light and the monitor source must be adjusted.・dVCfj) is difficult. In the present invention, the semiconductor laser confectionery and the light receiving element can be housed in one package, and the output light can be taken out to the outside in just one unit, so positioning with the light guiding body is easy. It will be held in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体レーーV装置の一災施し1
1の概14構成図、第2図は連成動作もしくは連続に近
いチューティ比で動作う′る生4本し/−サのレーデ出
力と電流及びヒートシンクの温度との関係を示すl待江
図、第3区は本発明Fよる半導体ノーザ装置の第2の実
施列の萌面図と制御回路のグロック図である。第1図か
ら第3図において、l・・・半導体レーザ系子、2・・
・半導体レーザの清注層、3,4・・・レーザ光、5・
・光倹昶器、6・・・増幅器、7・・・制御回路及び熱
ゼ冷却素子用は源、8・・・ヒートシンク、9・・・絶
縁層、10・・・金属板、11・・・e縁鳩、12・・
・熱覗冷却素子、13・・・放熱フィン、14・・・半
導体レーザ用電源、14’・・・制御回379− 第 2  図 11    r
FIG. 1 shows disaster relief 1 of the semiconductor Ray V device according to the present invention.
Figure 2 is a diagram showing the relationship between the radar output, current, and temperature of the heat sink of a four-wire generator that operates in coupled operation or at a near-continuous tute ratio. , the third section is a top view of the second implementation column of the semiconductor noser device according to the present invention F and a block diagram of the control circuit. In FIGS. 1 to 3, l...semiconductor laser element, 2...
・Semiconductor laser cleaning layer, 3, 4...Laser light, 5.
・Optical converter, 6... Amplifier, 7... Source for control circuit and thermal cooling element, 8... Heat sink, 9... Insulating layer, 10... Metal plate, 11...・e-en pigeon, 12...
・Thermal cooling element, 13... Radiation fin, 14... Power supply for semiconductor laser, 14'... Control circuit 379- 2nd Fig. 11 r

Claims (1)

【特許請求の範囲】[Claims] 1、半導体レーザ素子と、受光素子と、上記半導体レー
ザ素子から双方向に送出されるレーザ光の一方の光路に
入るような位置関係に上記画素子を配置σする支持体と
を有し、かつ上記半導体レーザ素子からの他方のレーザ
光を出力光として取り出すように上記半導体レーザ素子
の近傍に光導出体を配置したことを特徴とする半導体レ
ーザ装置。
1. It has a semiconductor laser element, a light receiving element, and a support body in which the pixel element is arranged in a positional relationship such that it enters one optical path of the laser light bidirectionally transmitted from the semiconductor laser element, and A semiconductor laser device characterized in that a light guide body is disposed near the semiconductor laser element so as to extract the other laser light from the semiconductor laser element as output light.
JP58200943A 1983-10-28 1983-10-28 Semiconductor laser device Pending JPS59112677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200943A JPS59112677A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200943A JPS59112677A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP688580A Division JPS55113390A (en) 1980-01-25 1980-01-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS59112677A true JPS59112677A (en) 1984-06-29

Family

ID=16432873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200943A Pending JPS59112677A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59112677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454002A (en) * 1994-04-28 1995-09-26 The Board Of Regents Of The University Of Oklahoma High temperature semiconductor diode laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454002A (en) * 1994-04-28 1995-09-26 The Board Of Regents Of The University Of Oklahoma High temperature semiconductor diode laser
US5629097A (en) * 1994-04-28 1997-05-13 The Board Of Regents Of The University Of Oklahoma Apparatus for fabricating semiconductor lasers
US5776794A (en) * 1994-04-28 1998-07-07 The Board Of Regents Of The University Of Oklahoma Method for fabricating semiconductor laser

Similar Documents

Publication Publication Date Title
US6765948B2 (en) VCSEL assembly with edge-receiving optical devices
Hunt et al. Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ= 940 nm
Scifres et al. High power coupled multiple stripe quantum well injection lasers
Paoli A new technique for measuring the thermal impedance of junction lasers
Dandridge et al. Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers
Sebastian et al. High-power 810-nm GaAsP-AlGaAs diode lasers with narrow beam divergence
US7633982B2 (en) Optically pumped surface emitting semiconductor laser device
JPH0697597A (en) Surface emitting type semiconductor laser with photodetector
JPS59112677A (en) Semiconductor laser device
US6754249B2 (en) Laser resonator for generating polarized laser radiation
Chi et al. Micro-integrated high-power narrow-linewidth external-cavity tapered diode laser at 762 nm for daylight imaging
US7010012B2 (en) Method and apparatus for reducing specular reflections in semiconductor lasers
Rediker et al. Operation of a coherent ensemble of five diode lasers in an external cavity
JPS59112675A (en) Semiconductor laser device
US4817109A (en) External resonator type semiconductor laser apparatus
Levi Microdisk lasers
JPS59112676A (en) Semiconductor laser device
JPS5846879B2 (en) semiconductor laser equipment
JPS59112678A (en) Semiconductor laser device
US20050111512A1 (en) Apparatus for generating and transmitting laser light
Kahle et al. MECSELs with direct emission in the 760 nm to 810 nm spectral range: a single-and double-side pumping comparison and high-power continuous-wave operation
Bagnall et al. Comment on ‘‘Vertical‐cavity stimulated emission from photopumped InGaN/GaN heterojunctions at room temperature’’[Appl. Phys. Lett. 65, 520 (1994)]
Bobretsova et al. Ultranarrow-waveguide AlGaAs/GaAs/InGaAs lasers
Rediker et al. Validation of model of external-cavity semiconductor laser and extrapolation from five-element to multielement fiber-coupled high-power laser
WO2007100341A2 (en) Grazing incidence slab semiconductor laser system and method