JPS5911255B2 - How to manufacture magnetic poles - Google Patents

How to manufacture magnetic poles

Info

Publication number
JPS5911255B2
JPS5911255B2 JP13130078A JP13130078A JPS5911255B2 JP S5911255 B2 JPS5911255 B2 JP S5911255B2 JP 13130078 A JP13130078 A JP 13130078A JP 13130078 A JP13130078 A JP 13130078A JP S5911255 B2 JPS5911255 B2 JP S5911255B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
ferromagnetic
coil
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13130078A
Other languages
Japanese (ja)
Other versions
JPS5558763A (en
Inventor
孔宏 佐藤
実利 田畑
松生 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13130078A priority Critical patent/JPS5911255B2/en
Publication of JPS5558763A publication Critical patent/JPS5558763A/en
Publication of JPS5911255B2 publication Critical patent/JPS5911255B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【発明の詳細な説明】 本発明は磁極空隙を直進運動する可動コイルを有する直
流サーポモー夕等の磁気回路に使用する磁極の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic pole used in a magnetic circuit such as a DC thermomotor having a moving coil that moves linearly through a magnetic pole gap.

この種の可動コイルモー夕は応答特性が良好であるため
ダイナミックスピーカ等に使用されておりこの可動コイ
ルモータをサーボモータとして磁気ディスク装置の可動
磁気ヘッドの駆動に使用すると、高速アクセスタイムや
高密度記録を得ることができる。
This type of moving coil motor has good response characteristics, so it is used in dynamic speakers, etc. When this moving coil motor is used as a servo motor to drive the moving magnetic head of a magnetic disk drive, it is possible to achieve high-speed access times and high-density recording. can be obtained.

ところでこのような磁気ディスク装置に使用した場合に
は第1図に示されるように、ヘッド1を具備するキャリ
ツジ2にコイル3が取付けられ、直流直進サーボモータ
4は継鉄5の中心に鉄心6が取付けられると共にそU)
周囲に磁極7を介して永久磁石8が装着されて磁気回路
を構成しており、このような鉄心6と磁極7との間の磁
気空隙に上述コイル3を挿入してそのコイル3に電流を
流すことにより、キャリツジ2と共にへ′/ド1を前後
に移動するようになっている。
By the way, when used in such a magnetic disk device, as shown in FIG. (as soon as it is installed)
A permanent magnet 8 is attached to the periphery via a magnetic pole 7 to form a magnetic circuit.The above-mentioned coil 3 is inserted into the magnetic gap between the iron core 6 and the magnetic pole 7, and a current is applied to the coil 3. By flowing, the carriage 2 and the front and back 1 are moved back and forth.

そしてこの場合に高出力化のためにコイル3が存在する
空隙の磁束密度を上げる目的でコイル周辺に磁極7の如
き強磁性体材を配置し、且つコイル3の巻数も多くして
いる。
In this case, in order to increase the output, a ferromagnetic material such as the magnetic pole 7 is arranged around the coil in order to increase the magnetic flux density in the air gap where the coil 3 is present, and the number of turns of the coil 3 is also increased.

そこでインダクタンスがどうしても大きな値にならざる
を得ず、応答性が悪くなるという問題を生じた。
Therefore, the inductance inevitably has a large value, resulting in a problem of poor response.

このような問題を解消するには第2図のように、磁極7
を強磁性体板9と非磁性導電体板10を交互に配置した
構造にすると、有効であることが知られている。
To solve this problem, as shown in Figure 2, the magnetic pole 7
It is known that a structure in which ferromagnetic plates 9 and nonmagnetic conductive plates 10 are alternately arranged is effective.

この方法は、強磁性体板9と非磁性導電体板10を適当
な比率で配置すると、導電体板10に渦電流が流れてコ
イル二次回路をショートするように働いて自己インダク
タンスが低下することにより、空隙の磁束密度を低下さ
せることなくコイルインダクタンスを大幅に下げること
ができるのである。
In this method, when a ferromagnetic plate 9 and a non-magnetic conductive plate 10 are arranged at an appropriate ratio, an eddy current flows through the conductive plate 10 and acts to short-circuit the coil secondary circuit, reducing the self-inductance. By doing so, the coil inductance can be significantly lowered without reducing the magnetic flux density in the air gap.

このことはコイル3に流れる電流が定常的な直流の場合
には効果がないが、実際の駆動電流周波数領域では著し
い効果がある。
Although this has no effect when the current flowing through the coil 3 is a steady direct current, it has a significant effect in the actual drive current frequency range.

またかNる手段は上述の実施例のみならず音響用ダイナ
ミックスピーカに適用することにより、同様に応答性が
良くなってスピーカ再生音の忠実度が増し、歪の少ない
スピーカになり得る。
Furthermore, by applying the above-mentioned means not only to the above-mentioned embodiment but also to a dynamic acoustic speaker, the responsiveness can be similarly improved, the fidelity of the sound reproduced by the speaker can be increased, and a speaker with less distortion can be obtained.

次いでこのような磁極7を実際に製造する場合に現在一
般的に用いられている方法について説明すると、第3図
のa,bのように、強磁性体板9と非磁性導電体板10
を所定の形状にプレスで打抜いて適当な比率で交互に積
層し、更にボルト11とナット12で締付けて一体化す
るものである。
Next, a method generally used at present when actually manufacturing such a magnetic pole 7 will be explained. As shown in a and b of FIG. 3, a ferromagnetic plate 9 and a non-magnetic conductive plate 10 are
are punched into a predetermined shape using a press, stacked alternately at an appropriate ratio, and then tightened with bolts 11 and nuts 12 to integrate.

こメでaは磁極外側に平板型の磁石を配置し、bはセグ
メント型磁石を配置する場合の構造例である。
In this example, a shows an example of a structure in which a flat magnet is arranged on the outside of the magnetic pole, and b shows a structure in which a segment magnet is arranged.

こうして製造組立てられた磁極7は磁気回路的、電気回
路的性能は勿論充分に満足するものであるが、組立て後
の寸法精度が悪く、組立て工数かがかつて磁極として価
値が非常に高くなり、更にプレス抜きで製造されるので
パリ等が使用中にゴミになって出る心配がある。
The magnetic pole 7 manufactured and assembled in this way is of course fully satisfactory in terms of magnetic circuit and electric circuit performance, but the dimensional accuracy after assembly is poor, and the number of assembly steps required makes it extremely valuable as a magnetic pole. Since it is manufactured without pressing, there is a concern that particles such as Paris will become garbage during use.

こ\で寸法精度に関しては、狭い空隙中をコイルが移動
するので内側円筒内面の寸法精度を要すること、また外
周の寸法精度不良は磁気抵抗の増加になって空隙磁束密
度を低下させる原因になる場合がある。
Regarding dimensional accuracy, since the coil moves in a narrow air gap, dimensional accuracy is required on the inner surface of the inner cylinder, and poor dimensional accuracy on the outer periphery increases magnetic resistance and causes a decrease in air gap magnetic flux density. There are cases.

価格に関しては、強磁性体板9及び非磁性導電体板10
をそれぞれ例えば冷間圧延鋼板、軟アルミ板を打抜いて
作り、更にそれを積層する際の工数が多いことから、磁
気回路構造部品のうちで最も価格が高くなるのである。
Regarding the price, ferromagnetic plate 9 and non-magnetic conductive plate 10
For example, they are made by punching out cold-rolled steel sheets or soft aluminum sheets, and the number of man-hours involved in laminating them is large, making them the most expensive of the magnetic circuit structural components.

本発明はこのような事情に鑑みてなされたもので、強磁
性体と非磁性導電体を交互に配置して成る磁極を、価格
的に有利に少ない工数で精度良く製造するようにした磁
気回路磁極の製造方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a magnetic circuit in which magnetic poles made of alternating ferromagnetic materials and non-magnetic conductive materials can be manufactured with high accuracy at a cost advantage and with a small number of man-hours. A method of manufacturing a magnetic pole is provided.

以下に本発明による製造方法について具体的に説明する
The manufacturing method according to the present invention will be specifically explained below.

まず非磁性導電体として価格及び鋳造する場合の有利性
に着目してアルミニウムを選択し、このアルミニウム溶
湯と固体状の強磁性体板を冶金的に結合させるため、予
め強磁性体板の表面に従来周知の技術(特公昭40−1
1481号)を利用してアルミニウム浸漬メッキを施し
て冷却する。
First, aluminum was selected as a non-magnetic conductor due to its cost and advantages in casting, and in order to metallurgically bond the molten aluminum to the solid ferromagnetic plate, the surface of the ferromagnetic plate was pre-coated. Conventionally well-known technology (Special Public Interest Publication 1974
No. 1481) to apply aluminum dip plating and cool.

その後このメッキ処理された強磁性体板を所定の枚数治
具を用いて所定の間隔に並べて鋳型内に収め、アルミニ
ウム鋳造合金の溶湯を各強磁性体板の間に注入して冷却
することにより固化する。
After that, a predetermined number of plated ferromagnetic plates are placed in a mold by arranging them at a predetermined interval using a jig, and molten aluminum casting alloy is injected between each ferromagnetic plate and solidified by cooling. .

すると、強磁性体板とアルミ材が強固に一体結合し、こ
のような一体化物を鋳型から取出して所定の寸法及び形
状に機械加工して磁極を製造するものである。
Then, the ferromagnetic plate and the aluminum material are firmly and integrally bonded, and such an integrated product is taken out from the mold and machined into a predetermined size and shape to manufacture a magnetic pole.

尚、非磁性導電体にはこの外に銅や銀等がある。In addition, non-magnetic conductors include copper, silver, etc.

この結果第4図に示されるように、強磁性体板9と非磁
性導電体のアルミ材13をボルトとナット等の締結金具
を用いなくとも交互に配置して一体化された磁極7がで
きる。
As a result, as shown in FIG. 4, an integrated magnetic pole 7 is formed by alternately arranging the ferromagnetic plate 9 and the non-magnetic conductive aluminum material 13 without using fasteners such as bolts and nuts. .

,尚、この実施例では強磁性体板9の間隔は等しくなっ
ておらず、磁極中央部は広くその両端部は狭くなってお
り、このような配置状態にすることにより磁気回路に組
込んだ場合に空隙部の磁束密度の分布が平担になるとい
う効果がある。
, Incidentally, in this embodiment, the spacing between the ferromagnetic plates 9 is not equal, and the magnetic poles are wide at the center and narrow at both ends. In this case, there is an effect that the distribution of magnetic flux density in the gap becomes even.

このように本発明によると、磁気回路磁極が鋳造により
製造されるので、従来のような積層タイプに比べて工数
が少なくなり、最終形状を機械加工で一度に仕上げるの
で寸法精度は非常に高いものになる。
According to the present invention, the magnetic circuit magnetic poles are manufactured by casting, which reduces the number of man-hours compared to the conventional laminated type, and the final shape is finished in one step by machining, resulting in extremely high dimensional accuracy. become.

また従来のようなプレス抜きの際のパリ等の破片は生じ
ないので、塵埃の発生要因も減少する。
Furthermore, since no debris such as flakes is generated during press punching as in the conventional method, the number of dust generation factors is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気ディスク装置に適用した直流直進サーボモ
ータを示す側面図、第2図はその磁気回路磁極を示す図
、第3図a,bは従来の方法により製造された磁極の斜
視図、第4図は本発明の方法により製造された磁極を示
す斜視図である。 1・・・・・・ヘッド、2・・・・・・キャリツジ、3
・・・・・・コイル、4・・・・・・直流直進サーボモ
ータ、5・・・・・・継鉄、6・・・・・・鉄心、7・
・・・・・磁極、8・・・・・・永久磁石、9・・・・
・・強磁性体板、10・・・・・・非磁性導電体板、1
1・・・・・・ボルト、12・・・・・・ナット、13
・・・・・・アルミ材。
FIG. 1 is a side view showing a direct current linear servo motor applied to a magnetic disk drive, FIG. 2 is a view showing magnetic circuit magnetic poles thereof, and FIGS. 3 a and b are perspective views of magnetic poles manufactured by a conventional method. FIG. 4 is a perspective view showing a magnetic pole manufactured by the method of the present invention. 1...head, 2...carriage, 3
... Coil, 4 ... Direct current servo motor, 5 ... Yoke, 6 ... Iron core, 7.
...Magnetic pole, 8...Permanent magnet, 9...
...Ferromagnetic plate, 10...Nonmagnetic conductor plate, 1
1...Bolt, 12...Nut, 13
...Aluminum material.

Claims (1)

【特許請求の範囲】[Claims] 1 あらかじめアルミニウム被膜を施した強磁性体板を
複数枚所定の間隔で平行に並べて一体化して鋳型に収め
、その後アルミニウムの溶湯を前記強磁性体の板の間に
注入して固化することにより一体結合し、該強磁性体の
板とアルミニウムの一体化物を任意の形状に加工して磁
極を製造することを特徴とする磁極の製造方法。
1 A plurality of ferromagnetic plates coated with aluminum in advance are arranged in parallel at predetermined intervals and integrated into a mold, and then molten aluminum is injected between the ferromagnetic plates and solidified to form an integral bond. A method for manufacturing a magnetic pole, comprising manufacturing a magnetic pole by processing an integrated product of the ferromagnetic plate and aluminum into an arbitrary shape.
JP13130078A 1978-10-25 1978-10-25 How to manufacture magnetic poles Expired JPS5911255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13130078A JPS5911255B2 (en) 1978-10-25 1978-10-25 How to manufacture magnetic poles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13130078A JPS5911255B2 (en) 1978-10-25 1978-10-25 How to manufacture magnetic poles

Publications (2)

Publication Number Publication Date
JPS5558763A JPS5558763A (en) 1980-05-01
JPS5911255B2 true JPS5911255B2 (en) 1984-03-14

Family

ID=15054734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13130078A Expired JPS5911255B2 (en) 1978-10-25 1978-10-25 How to manufacture magnetic poles

Country Status (1)

Country Link
JP (1) JPS5911255B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028506B2 (en) * 2012-10-09 2016-11-16 株式会社デンソー Laminated steel plate manufacturing method

Also Published As

Publication number Publication date
JPS5558763A (en) 1980-05-01

Similar Documents

Publication Publication Date Title
US6420813B1 (en) Bulk amorphous metal magnetic components for electric motors
CN101741153B (en) Armature core, motor and axial gap electrical rotating machine using same and method for making same
US20060239496A1 (en) Magnetically tapered air gap for electromagnetic transducer
US3614830A (en) Method of manufacturing laminated structures
JP2001025189A (en) Permanent magnet of permanent magnet rotor
US20070237353A1 (en) Magnetically tapered air gap for electromagnetic transducer
JPS5911255B2 (en) How to manufacture magnetic poles
US3049790A (en) Magnetic head and method of making same
US2785232A (en) Electromagnetic head
US20040213430A1 (en) Laminated motor structure for electromagnetic transducer
JPS58171709A (en) Thin film magnetic head
JPH09163642A (en) Flat type motor and manufacture of its stator
JPH11144930A (en) Stripe-like magnetic path forming member and manufacture of the same
JP2819217B2 (en) Method of manufacturing magnetic shunt plate for magnetic field generator
JPH04322141A (en) Motor core
US4245269A (en) Magnetic head and method of fabricating the same
US3777369A (en) Method of making a magnetic recording head
JPS6241583Y2 (en)
JPH08115815A (en) Multipolar core
JPS5996852A (en) Forming method for laminated core
JPH07230926A (en) Iron core-type reactor with magnetic gap
JPH05138442A (en) Method for forming laminated body of sendust alloy thin plate and parts thereof
JPS60134757A (en) Manufacture of core unit in linear pulse motor
JPH0284049A (en) Secondary conductor of linear induction motor and manufacture thereof
JPH03173406A (en) Multipolar magnetizer