JPS59112118A - Flame detecting circuit - Google Patents

Flame detecting circuit

Info

Publication number
JPS59112118A
JPS59112118A JP22154882A JP22154882A JPS59112118A JP S59112118 A JPS59112118 A JP S59112118A JP 22154882 A JP22154882 A JP 22154882A JP 22154882 A JP22154882 A JP 22154882A JP S59112118 A JPS59112118 A JP S59112118A
Authority
JP
Japan
Prior art keywords
flame
circuit
pulse
shot multi
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22154882A
Other languages
Japanese (ja)
Other versions
JPH0215775B2 (en
Inventor
Tadashi Suzuki
正 鈴木
Takanao Tanzawa
丹沢 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP22154882A priority Critical patent/JPS59112118A/en
Publication of JPS59112118A publication Critical patent/JPS59112118A/en
Publication of JPH0215775B2 publication Critical patent/JPH0215775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To provide a flame detecting circuit which prevents the occurrence of malfunction due to pulsation and has a rapid response time, by a method wherein flame detection is effected by cutting a pulse, the pulse width thereof is smaller than a predetermined value, out of pulses detected by a flame detecting means. CONSTITUTION:A pulse at a point B from a flame detecting part A is inputted to an input part CL1 of a first one-shot multi-vibrator 16 through an AND circuit 18, and similarily, the pulse at the point B is connected to one input terminal of an AND circuit 21 through a delay circuit consisting of a resistor 19 and a capacitor 20, and the output of the first one-shot multi-vibrator 16 is introduced to other input terminal of the AND circuit 21 through a NOT circuit 22. A resistor 23 and a capacitor 24 determine the width of a pulse generated by the first one-shot multi-vibrator 16, and similarily, a resistor 25 and a capacitor 26 determine the width of a pulse generated by a second one-shot multi-vibrator 17. This permits stable and reliable detection of the flame.

Description

【発明の詳細な説明】 って生ずる誤出力を防止し、正確な炎検出信号を得るだ
めの炎検知回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame detection circuit that prevents erroneous outputs caused by the above and obtains accurate flame detection signals.

ガス器具の口火にはガス爆発事故を防止するための安全
対策上から炎検知回路が必要である。この炎検出手段と
してはフレームロッド方式と称されるものがあシ、この
方式によれば炎と接触する位置に一対め電極をもうけて
対峙させ、炎の導電性及び整流作用を利用して交流電源
からの直流分を検出することによシ、炎の有無を検出す
るよう構成されている。
A flame detection circuit is required for the starter flame of gas appliances as a safety measure to prevent gas explosion accidents. This flame detection means is called the flame rod method. According to this method, a pair of electrodes is provided at the position where they come into contact with the flame, and they are placed facing each other. The device is configured to detect the presence or absence of flame by detecting the direct current from the power source.

この種の検出回路の動作原理としては、炎の存在による
整流作用を利用して微弱な導電々流を検出し、伺らかの
増幅手段を介して炎の検知を行なうものである。しかも
炎による導電作用であるため、その検出信号は脈流とな
シ、この脈流内から正確な炎の存在を示す検出信号を弁
別しなければならない。
The principle of operation of this type of detection circuit is to detect a weak conductive current by utilizing the rectification effect caused by the presence of a flame, and to detect the flame through an amplifying means. Moreover, since the flame is a conductive effect, the detection signal is not a pulsating flow, and it is necessary to distinguish the detection signal that accurately indicates the presence of a flame from within this pulsating flow.

即ち、長時間にわたる燃焼によって炎検出電極の物性的
な変化があること、同じく燃焼の結果検出電極にカーボ
ンか堆積すること、燃焼ガスの種類によっても絶縁抵抗
に変化があること、更には炎の揺らぎが影響すること等
の諸々の原因によって検出された脈流内には疑似の火炎
信号が存在しているためである。
In other words, there are changes in the physical properties of the flame detection electrode due to long-term combustion, carbon deposits on the detection electrode as a result of combustion, changes in insulation resistance depending on the type of combustion gas, and furthermore, there are changes in the flame detection electrode. This is because false flame signals exist within the detected pulsating flow due to various causes such as the influence of fluctuations.

したがって従来は、上記疑似の火炎信号を除去するため
に容量の大きなコンデンサを挿入する方法を用いていた
が、この方法によると、炎検知時及び炎消失時において
遅延時間(2〜3秒)を生じ、更に電源電圧の電圧精度
が充分でない場合又はフレームロッド部の絶縁抵抗が低
い場合は、炎の消失時においてリップルが重畳し誤動作
する危険があった0 本発明は上記問題点を解決することを目的としてなされ
たもので6D、炎によって生ずる脈流等で誤動作するこ
となく、かつ応答時間の速い炎検知回路を提供すること
を目的としている。
Therefore, in the past, a method of inserting a capacitor with a large capacity was used to remove the above-mentioned false flame signals, but this method reduces the delay time (2 to 3 seconds) when flame is detected and when flame disappears. Furthermore, if the voltage accuracy of the power supply voltage is not sufficient or if the insulation resistance of the flame rod part is low, there is a risk that ripples will be superimposed when the flame disappears and malfunction will occur.The present invention solves the above problems. The purpose of this invention is to provide a flame detection circuit that does not malfunction due to pulsating currents caused by flames and has a fast response time.

そして本発明では、検出電極の物性変化、炎の揺らぎ、
その他前記した各条件によって発生する脈流(以下パル
スと言う)はその・、07レス幅が狭いと言う知見にも
とづき、波形処理回路を用いて、炎検出手段による検出
・パルス中から所定・、O217幅以下のパルスを力、
トシて誤出力のない炎の検出を可能にしようとするもの
である・ 以下図面を参照して実施例を説明する。
In the present invention, changes in the physical properties of the detection electrode, fluctuations in the flame,
Based on the knowledge that pulsating currents (hereinafter referred to as pulses) generated under the above-mentioned conditions have a narrow response width, a waveform processing circuit is used to detect the pulsating currents (hereinafter referred to as pulses) by the flame detection means and select a predetermined number from among the pulses. Force a pulse of less than O217 width,
The present invention is intended to enable flame detection without erroneous output. Examples will be described below with reference to the drawings.

第1図は本発明による炎検知回路の一実施例構成図であ
る。第1図の炎検知回路は炎検知部Aと波形処理部Bと
からなっている。なおAとして示した炎検知部は炎の検
出を・ぐレスで行なうものであれぽいずれの検知手段で
おっても適用可有しであるが、本実施例の場合、たまた
ま本願と同時に提出した実用新案登録願に添付した図面
によった。
FIG. 1 is a block diagram of an embodiment of a flame detection circuit according to the present invention. The flame detection circuit shown in FIG. 1 consists of a flame detection section A and a waveform processing section B. Note that the flame detection section shown as A can be applied to any detection means, even if flame detection is performed by flame. Based on the drawing attached to the application for utility model registration.

しだがって炎検知部Aについては炎の検出によるパルス
の発生のみについて作用的に説明する。
Therefore, regarding the flame detection section A, only the generation of pulses due to flame detection will be functionally explained.

今、燃料吐出口1に炎がなければ炎検出電極2と燃料吐
出口1との回路がオフ状態であり、シカ)もサージ吸収
素子3のオフ状態と相俟ってトランス4の2次側は回路
形成がなされない。した力(つて電源■。による・ぐイ
アスがPNP )ランジスタロのベースに印′加され、
PNP )ランノスタ6,7によるダーリントン回路は
オフとなっている。そこで0点によるオペアンプ8のプ
ラス側端子の電位は、電源Vc及び可変抵抗9を介した
マイナス狽1j端子の基準電圧以下となってオペアンプ
8の出力は「L」レベルとなる。
Now, if there is no flame at the fuel discharge port 1, the circuit between the flame detection electrode 2 and the fuel discharge port 1 is in an OFF state, and the deer) is also in the secondary side of the transformer 4 in combination with the OFF state of the surge absorption element 3. No circuit is formed. The force (due to the power supply) is applied to the base of the range star,
PNP) The Darlington circuit by Lannostars 6 and 7 is off. Therefore, the potential of the positive terminal of the operational amplifier 8 due to the 0 point becomes lower than the reference voltage of the negative terminal 1j via the power supply Vc and the variable resistor 9, and the output of the operational amplifier 8 becomes "L" level.

一方、燃料吐出口1に炎があると、炎の導電作用によっ
てトランス4の2回路が形成され、整流された半波電流
がトランスの2次巻線を介して流れる。しかもこの際、
抵抗12及びりゞイオート913を介して流れる電流に
より、トラン・ソスタ6のベース電位が降下するため、
前記ダーリントン回路がオンとなり、抵抗14.15を
介して増幅電流が流れて■点電位を上昇する。この結果
、オペアンプ8の入力電圧が基準電圧より上昇し、前記
オペアンプ8の出力はrHJレベルに反転する。
On the other hand, when there is a flame at the fuel discharge port 1, two circuits of the transformer 4 are formed due to the conductive action of the flame, and a rectified half-wave current flows through the secondary winding of the transformer. Moreover, at this time,
Due to the current flowing through the resistor 12 and the relay 913, the base potential of the transformer soster 6 is lowered.
The Darlington circuit is turned on, and an amplified current flows through the resistors 14 and 15, raising the potential at point 2. As a result, the input voltage of the operational amplifier 8 rises above the reference voltage, and the output of the operational amplifier 8 is inverted to the rHJ level.

かくしてオペアンプ8の出力は0点に示すパルス出力波
形となる。なお上記説明ではパルス出力が発生すること
についてだけのものであわ、その他は省略している。即
ち、本願においては・ぐレス波形についての波形処理が
問題であるからである。
Thus, the output of the operational amplifier 8 becomes a pulse output waveform shown at the zero point. Note that the above explanation only concerns the generation of pulse output, and other details are omitted. That is, in the present application, the problem is waveform processing regarding the waveform.

次に波形処理部Bの構成と動作について説明する。先ず
、波形処理部Bは第1のワンショットマルチ16及び第
2のワンショットマルチ17から構成されている。そし
て炎検知部Aによる0点の・ぐレスがAND回路18を
介して第1のワンショットマルチ16の入力部CL1に
入力される。同じく0点のパルスは抵抗19及びコンデ
ンサ20からなる遅延回路を介してAND回路21の一
方の入力端に接続され、更にAND回路21の他方の入
力端にはNOT回路22を介して第1のワンショットマ
ルチ16の出力が導入される。抵抗23及びコンデンサ
24は第1のワンショットマルチ16によって発生する
・ぐルス幅を決定し、同じく抵抗25及びコンデンサ2
6は第2のワンショットマルチ17によって発生する・
やルス幅を決定する。
Next, the configuration and operation of the waveform processing section B will be explained. First, the waveform processing section B is composed of a first one-shot multi 16 and a second one-shot multi 17. Then, the 0-point signal from the flame detection section A is inputted to the input section CL1 of the first one-shot multi 16 via the AND circuit 18. Similarly, the pulse at the 0 point is connected to one input terminal of an AND circuit 21 via a delay circuit consisting of a resistor 19 and a capacitor 20, and is further connected to the other input terminal of the AND circuit 21 via a NOT circuit 22. The output of one-shot multi 16 is introduced. A resistor 23 and a capacitor 24 determine the pulse width generated by the first one-shot multi 16, and a resistor 25 and a capacitor 2
6 is generated by the second one-shot multi 17.
and rus width.

第2図は動作説明のだめの波形図である。第2図におい
て矢印tは時間軸であって時間の進行方向を示し、点線
(イ)までは着火状態を示し、同じく(イ)〜(ロ)間
は定常燃焼状態を、又、点線(ロ)以降は消火状態を央
々示してお9、便宜上これらを時間軸に対して一連に記
載したものである。そこで波形図を参照して動作を説明
すると、炎検知部Aからの0点波形はそのitの状態で
第1のワンショットマルチ16の入力となるだめ、抵抗
23及びコンデンサ24で決まるパルス幅T1 を有す
るパルス列が出力される(第2図■)。この出力はNO
T回路22によって反転されてAND回路21の他方の
入力となる(第2図■)。又、抵抗19及びコンデンサ
20による遅延回路を介して0点の・ぐルス波形を遅延
し、AND回路21の一方に入力される。これは第1の
ワンショットマルチ16の発生するパルス幅に合せて位
相合せをするだめである(第2図■)。AND回路21
には第2図々示■。
FIG. 2 is a waveform diagram for explaining the operation. In Fig. 2, the arrow t is the time axis and indicates the direction of time, and the line up to the dotted line (A) indicates the ignition state, and the line between (A) and (B) indicates the steady combustion state, and the dotted line (R) indicates the ignition state. ) From here on, the extinguishing state is shown in detail9, and for convenience, these are written in series along the time axis. Therefore, to explain the operation with reference to a waveform diagram, the 0 point waveform from the flame detection section A becomes the input to the first one-shot multi 16 in its "IT" state, and the pulse width T1 determined by the resistor 23 and capacitor 24. A pulse train having the following values is output (Fig. 2). This output is NO
It is inverted by the T circuit 22 and becomes the other input of the AND circuit 21 (FIG. 2). Further, the 0-point guru waveform is delayed through a delay circuit including a resistor 19 and a capacitor 20, and is input to one side of an AND circuit 21. This is because the phase is matched to the pulse width generated by the first one-shot multi 16 (FIG. 2). AND circuit 21
The second figure is shown ■.

■の波形が入力され、これらのAND条件によって第2
のワンショットマルチ17の入力となるため、その入力
波形は第2図■とな9、その出力は第2図■と々る。し
たがって第1のワンショットマルチ16によって決まる
パルス幅T1以内の・ぐルスは除去でき、それ以上のi
Rパルス幅有するパルスだけ(炎が存在することの確実
な場合だけ)出力を発生することになる。更に炎の揺ら
ぎがあった場合はパルスの欠損部分が生ずることになる
が、ワンショットマルチからの発生パルスの時間幅の存
在によシ誤動作を防止できる。
The waveform of ■ is input, and the second
Since it becomes the input of the one-shot multi 17, its input waveform is shown as 9 in FIG. 2, and its output is as shown in 2 in FIG. Therefore, the pulse within the pulse width T1 determined by the first one-shot multi 16 can be removed, and the
Only pulses with R pulse width (and only if it is certain that a flame is present) will generate an output. Furthermore, if there is flame fluctuation, a missing portion of the pulse will occur, but malfunction can be prevented by the presence of the time width of the pulse generated from the one-shot multi-shot.

この結果、応答時間は従来の3sec程度が20m5e
cとなシ、又、フレームロッドの絶縁劣化300MΩま
では誤動作がなく、しかもリップル分10m5ecまで
誤動作しないことが確認できた。
As a result, the response time is now 20m5e, compared to the conventional 3sec.
It was confirmed that there was no malfunction when the insulation deterioration of the frame rod reached 300 MΩ, and furthermore, there was no malfunction until the ripple amount reached 10 m5ec.

な幹冒頭に明記したように、炎検知部の構成は本実施例
に示されるものに限定されるものではなく、炎の検知を
脈流で行なうものであれば、いずれの構成にも適用でき
る。
As stated at the beginning, the configuration of the flame detection section is not limited to that shown in this embodiment, and can be applied to any configuration as long as flame detection is performed using pulsating flow. .

以上説明した如く、本発明によれば炎の検知を脈流で捉
えて後に波形処理し、所定パルス幅以下のパルスを力、
トするよう構成したので、炎の検出が安定して確実に行
なえるばかりか、応答性の極めて高い炎検知回路を提供
することができる。
As explained above, according to the present invention, flame detection is detected as a pulsating flow, and then waveform processing is performed, and pulses with a predetermined pulse width or less are
Since the flame detection circuit is configured so as to detect flames stably and reliably, it is also possible to provide a flame detection circuit with extremely high responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による炎検知回路の一実施例構成図、第
2図は動作説明のだめの波形図である。 1・・燃料吐出口、    2 炎検出電極、3・サー
ジ吸収素子、  4・・トランス、5.20,24.2
6  ・コンデン九6.7−・・トランジスタ、8 オ
ペアンプ、9.12,14,15,19,23.25・
・・抵抗、10・・ネオン管回路、  11・2次巻線
、13 ・ダイオード、 16.17・・−ワンショットマルチ、18.21・・
アンド回路、 22・ノット回路。 特許出願人  三國工業株式会社 代理人  弁理士 石  井  紀  男87
FIG. 1 is a configuration diagram of one embodiment of the flame detection circuit according to the present invention, and FIG. 2 is a waveform diagram for explaining the operation. 1. Fuel discharge port, 2 Flame detection electrode, 3. Surge absorption element, 4. Transformer, 5.20, 24.2
6 ・Condenser 9 6.7-... Transistor, 8 Operational amplifier, 9.12, 14, 15, 19, 23.25 ・
...Resistance, 10...Neon tube circuit, 11.Secondary winding, 13.Diode, 16.17...-One-shot multi, 18.21...
AND circuit, 22-knot circuit. Patent applicant Mikuni Kogyo Co., Ltd. Agent Patent attorney Norio Ishii 87

Claims (1)

【特許請求の範囲】[Claims] フレームロッド方式によって炎の検出をデジタル的に行
なう炎検知回路において、炎によって検出されたデジタ
ル信号を波形処理部に導入することによシ所定パルス幅
以下の出力パルスを除去し、前記所定パルス幅以上の出
力・ぐルスのみ炎検出信号として導出することを特徴と
する炎検知回路。
In a flame detection circuit that digitally detects a flame using a flame rod method, by introducing a digital signal detected by a flame into a waveform processing section, an output pulse having a predetermined pulse width or less is removed, and an output pulse having a predetermined pulse width or less is removed. A flame detection circuit characterized in that only the above output/gurus is derived as a flame detection signal.
JP22154882A 1982-12-17 1982-12-17 Flame detecting circuit Granted JPS59112118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22154882A JPS59112118A (en) 1982-12-17 1982-12-17 Flame detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22154882A JPS59112118A (en) 1982-12-17 1982-12-17 Flame detecting circuit

Publications (2)

Publication Number Publication Date
JPS59112118A true JPS59112118A (en) 1984-06-28
JPH0215775B2 JPH0215775B2 (en) 1990-04-13

Family

ID=16768442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22154882A Granted JPS59112118A (en) 1982-12-17 1982-12-17 Flame detecting circuit

Country Status (1)

Country Link
JP (1) JPS59112118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057126A (en) * 1983-09-09 1985-04-02 Matsushita Electric Ind Co Ltd Combustion control device
KR100361148B1 (en) * 2000-07-11 2002-11-18 주식회사 경동보일러 A fire detection circuit using AC in a boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057126A (en) * 1983-09-09 1985-04-02 Matsushita Electric Ind Co Ltd Combustion control device
KR100361148B1 (en) * 2000-07-11 2002-11-18 주식회사 경동보일러 A fire detection circuit using AC in a boiler

Also Published As

Publication number Publication date
JPH0215775B2 (en) 1990-04-13

Similar Documents

Publication Publication Date Title
US5472336A (en) Flame rectification sensor employing pulsed excitation
US6676404B2 (en) Measuring device for a flame
AU661361B2 (en) Fail-safe condition sensing circuit for the detection of flame
EP0159748A1 (en) Flame protection circuit
KR950002637B1 (en) Ion current sensing device
JPH08170578A (en) Misfire detecting device of internal combustion engine
JPH0338530B2 (en)
US6985080B2 (en) Flame sense circuit and method with analog output
JPS59112118A (en) Flame detecting circuit
US5510715A (en) Apparatus for determining the ignition characteristic of an internal combustion engine
JPS631497B2 (en)
US5194728A (en) Circuit for detecting firing of an ultraviolet radiation detector tube
US3321634A (en) Photosensitive flame monitoring circuit
US4328527A (en) Selective ultraviolet signal amplifier circuit
US4024469A (en) Apparatus for measuring spark plug gap spacing
JPS6019962A (en) Ignition device for internal-combustion engine
CN110850283A (en) Improved circuit for detecting wind pressure switch
JPS5762324A (en) Flame detecting circuit
JPH11351053A (en) Knocking detecting device for internal-combustion engine
SU1001132A1 (en) Fire alarm
JPS62142922A (en) Combustion sensing circuit
JPS54125537A (en) Lighting-fire detection device
JPS643971Y2 (en)
SU135964A1 (en) Zero indicator
JPH01302117A (en) Discharge type flow velocity detector