JPS59110874A - Heating for driving body made of shape memory alloy - Google Patents

Heating for driving body made of shape memory alloy

Info

Publication number
JPS59110874A
JPS59110874A JP22087782A JP22087782A JPS59110874A JP S59110874 A JPS59110874 A JP S59110874A JP 22087782 A JP22087782 A JP 22087782A JP 22087782 A JP22087782 A JP 22087782A JP S59110874 A JPS59110874 A JP S59110874A
Authority
JP
Japan
Prior art keywords
driving body
heating
shape memory
memory alloy
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22087782A
Other languages
Japanese (ja)
Other versions
JPH0247598B2 (en
Inventor
Katsuyuki Tsuge
柘 克征
Toshinori Kuwatani
桑谷 敏則
Kikuo Kaneko
喜久雄 金子
Kuniyoshi Shiyouji
庄司 圀美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Seiki Manufacturing Co Ltd filed Critical Keihin Seiki Manufacturing Co Ltd
Priority to JP22087782A priority Critical patent/JPH0247598B2/en
Publication of JPS59110874A publication Critical patent/JPS59110874A/en
Publication of JPH0247598B2 publication Critical patent/JPH0247598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • General Induction Heating (AREA)

Abstract

PURPOSE:To improve heating characteristic by allowing magnetic fluxes to be generated in an annular iron core through the electric conduction to a coil wound onto a part of the annular iron core and allowing a driving body made of shape memory alloy to be heated by the Joule heat due to the induction current generated by the magnetic fluxes. CONSTITUTION:When a coil 2 is not conducting, a driving body 3 made of shape memory alloy is not given with heat and is maintained in extension state, and an operating body 5 is held at the position shown by the full line on the figure. When the coil 2 is held in conduction, magnetic fluxes flow in an iron core 1 which forms a closed circuit electromagnetically, and an electric current is induced in an O-ring 4 by the flowing magnetic fluxes, and Joule heat is generated. Therefore, the temperature of the driving body 3 rises, and the driving body 3 is contraction-deformed, and then the operating body 5 is shifted downward and positioned at the position shown by the broken line on the figure. By such a heating method, a large amount of heat can be obtained with a small electric power, and the operation characteristics of the driving body 3 can be improved.

Description

【発明の詳細な説明】 本発明は形状記憶合金よりなる駆動体の加熱方法に関す
るものである。形状記憶合金は熱弾性型マルテンサイト
変態で生じた低温相が変形を受けた後、加熱によって高
温相に逆変態する際に生起する現象を利用するもので、
変態点を境にしてこれより高温側でオーステナイト構造
に変化し、低温側でマルテンサイト構造に変化する。こ
の形状記憶合金−を高温側より冷却するとオーステナイ
ト構造からマルテンサイト構造への変態が起こり、超弾
性を有し、逆に低温側から加熱していくとマルテンサイ
ト構造からオーステナイト構造に変態して成形工程で記
憶された形状に戻るものである。そしてかかる形状記憶
効果を奏する合金はニッケルーチタン、銅−アルミニウ
ム−ニッケル、銅−アルミニウム等が知られており、こ
れらの形状記憶合金は特開昭56−t05174号公報
特開昭56−15L1680号公報等の例えばバルブの
弁開閉用の駆動体(コイル状形状記憶合金)として開用
される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heating a driving body made of a shape memory alloy. Shape memory alloys utilize the phenomenon that occurs when the low-temperature phase generated by thermoelastic martensitic transformation is deformed and then reversely transformed into the high-temperature phase by heating.
The structure changes to austenite on the higher temperature side of the transformation point, and changes to the martensite structure on the lower temperature side. When this shape memory alloy is cooled from the high temperature side, it transforms from an austenite structure to a martensitic structure, and has superelasticity.On the other hand, when it is heated from a low temperature side, a martensitic structure transforms to an austenite structure and is formed. It returns to the shape memorized during the process. Nickel-titanium, copper-aluminum-nickel, copper-aluminum, etc. are known as alloys that exhibit such a shape memory effect. For example, it is used as a driver (coiled shape memory alloy) for opening and closing a valve, as described in publications.

然しなからこれらの駆動体を動作させる為に必要な加熱
及び冷却手段はバルブを流下する制−流体によるもので
あり、かかる方法によると制御流体の温度変化が必要不
可決となるものでありそれら温度変化を得ることのでき
ないものにおいては不適であり巾広いバルブの用途に適
さないという欠点があった。また特開昭57−1887
15号公報、特開昭57−25572号公報によると形
状記憶合金よりなる伸縮部材、弁駆動素子をヒーターで
直接的に加熱する方法が示されているが、かかる方法に
よるとヒーターのみの加熱であるので大電力が必要とな
るものであり、さらにヒーターは一般的に小径なるもの
が使用されるが、加熱、冷却のくり返し及び伸縮部材、
弁駆動素子の往復動に伴なうヒーターの断線の危険を含
むものであった。さらにまた伸縮部材、弁駆動素子に直
接的にヒーターを巻回す方法においてはヒーターのそれ
ら部材、素子との絶縁を得る為に絶縁被膜を配置する必
要があり、これによると効率的な加熱が困難となるもの
であった。
However, the heating and cooling means necessary to operate these actuators are based on the control fluid flowing down the valve, and such methods make it impossible to change the temperature of the control fluid. It has the disadvantage that it is unsuitable for applications in which temperature changes cannot be obtained and is unsuitable for wide valve applications. Also, JP-A-57-1887
No. 15 and JP-A-57-25572 disclose a method of directly heating an expandable member made of a shape memory alloy and a valve driving element with a heater. Because of this, a large amount of power is required, and heaters that are generally small in diameter are used, but they require repeated heating and cooling, as well as expandable and contractable members.
This included the risk of heater breakage due to the reciprocating movement of the valve drive element. Furthermore, in the method of winding the heater directly around the expandable member or valve drive element, it is necessary to place an insulating film to insulate the heater from those parts and elements, which makes efficient heating difficult. It was.

本発明の形状記憶合金よりなる駆動体の加熱方法は、前
記不具合点に鑑み成されたもので、駆動体を制御流体等
の環境温度によって加熱、冷却することなく直接的にし
かも電気的に加熱したものであり、あらゆる製品の駆動
体として巾広く使用することができるとともに駆動体を
ヒーターにて直接的に加熱したものに比較して小電力に
て大発熱緻を得ることができ、しかもリングより直接的
に駆動体を加熱し、加熱特性の秀れた加熱方法を得るこ
とを目的としたものである。
The method of heating a driving body made of a shape memory alloy according to the present invention was developed in view of the above-mentioned drawbacks, and the driving body is heated directly and electrically without heating or cooling the driving body using an environmental temperature such as a control fluid. As a result, it can be widely used as a drive body for all kinds of products, and compared to a drive body that is directly heated with a heater, it can generate a large amount of heat with a small amount of electric power. The purpose of this invention is to heat the driving body more directly and to obtain a heating method with excellent heating characteristics.

以下、本発明になる形状記憶合金よりなる駆動体の加熱
方法の一実施例を第1図により説明する。
Hereinafter, an embodiment of the heating method for a driving body made of a shape memory alloy according to the present invention will be described with reference to FIG.

1は磁性材料よりなり磁気的に閉回路をなす鉄心であり
、該鉄心の一側の周囲IAにはコイル2を巻回すととも
に鉄心lの地側の周囲IBには形状記憶合金よりなる駆
動体3としてのコイルスプリングが配置され、さらに前
記駆動体3の周囲には導゛遊性材質よりなるリング4が
配置される。そして0σ記駆動体3としてのコイルスプ
リングの一端は固定され(本実施例においてはリング4
の底部に係合され)他端は自由状態に保持されその目出
端部に駆動体3の変位を外8部へ伝達する動作体5が係
合される。そして前記形状記憶合金よりなる駆動体3と
してのコイルスプリングは、マルテンサイト変態開始点
(M、点)において、温度が低下すると、駆動体3の伸
張変形が開始し、マルテンサイト変態終了点(Mr点)
に達してこの変形が中止し、一方温度上昇によって逆変
態開始点(A、点)において、形状の復元が開始して収
縮変形がtin始し、逆変態開始点(A1点)において
収縮が終了して設定した形状に復するものである。
Reference numeral 1 denotes an iron core made of a magnetic material and forming a magnetically closed circuit, a coil 2 is wound around one side IA of the iron core, and a driving body made of a shape memory alloy is wound around the ground side IB of the iron core l. A coil spring 3 is disposed, and a ring 4 made of a flexible material is disposed around the driving body 3. One end of the coil spring serving as the 0σ drive body 3 is fixed (in this embodiment, the ring 4
The other end is held in a free state, and the operating body 5 that transmits the displacement of the driving body 3 to the outside 8 is engaged with the protruding end. In the coil spring as the driving body 3 made of the shape memory alloy, when the temperature decreases at the martensitic transformation starting point (point M), the driving body 3 starts to undergo elongation deformation, and the martensitic transformation ending point (Mr point)
This deformation stops when the temperature rises, and at the reverse transformation starting point (point A), the shape starts to be restored and shrinkage deformation starts to tin, and the contraction ends at the reverse transformation starting point (point A1). It returns to the shape set.

次にその作動について述べると、コイル2に非通電の状
態においては、形状記憶合金よりなる駆動体3に何等の
熱が付与されることがないので、駆動体3は逆変態温度
(A、点)迄に上昇することはなく、従って駆動体3は
伸張状態に保持されるもので動作体5は図の実線の如き
高位置に配置され第1位置を保持するものである。
Next, to describe its operation, when the coil 2 is de-energized, no heat is applied to the drive body 3 made of a shape memory alloy, so the drive body 3 reaches the reverse transformation temperature (A, point ), therefore, the driving body 3 is held in an extended state, and the operating body 5 is placed at a high position as shown by the solid line in the figure and held at the first position.

次いで、コイル2に通電すると、鉄心1を磁気的に閉回
路としたことによって鉄心1内には磁束が通り、この通
過磁束によってリング4に電流が誘起される。そしてリ
ング4内を流れる誘導電流によってジュール熱がリング
4に発生し、リング4内体の温度を急速に上昇させるも
のである。このリング4の温度上昇によると、リング4
に近接して配置した駆動体3もまたリング4からの伝熱
を受けて温度上昇をみるものであり、駆動体3の温度が
逆変態開始点(入点)より上昇するにつれて駆動体3は
収縮を開始し、更に温度上昇が進み逆変態終了点(Ar
点)に至って収縮が完了するものであり、前記駆動体3
の収縮変形により、これに応じて動作体5も下方へ変位
し、図の点線の如き第2位置を保持するものである。尚
、本実症例ではマルテンサイト変態開始点(M、点)に
おいて温度が低下すると駆動体3が伸張変形し、一方温
度上昇によって逆変態開始点(入点)において収縮変形
させたが、この変形を逆としてマルテンサイト変態開始
点(M、点)において温度が低下すると駆動体3を収縮
変形させてもよいものである。
Next, when the coil 2 is energized, a magnetic flux passes through the core 1 due to the magnetically closed circuit of the core 1, and a current is induced in the ring 4 by this passing magnetic flux. Joule heat is generated in the ring 4 by the induced current flowing in the ring 4, and the temperature of the inner body of the ring 4 is rapidly increased. According to this temperature rise of ring 4, ring 4
The driving body 3 placed close to the ring 4 also receives heat transfer from the ring 4 and sees a temperature increase, and as the temperature of the driving body 3 rises from the reverse transformation starting point (entry point), the driving body 3 increases. Shrinkage begins, temperature rises further, and reverse transformation ends (Ar
The contraction is completed when the driving body 3 reaches point).
Due to the contraction and deformation, the operating body 5 is also displaced downward in response to this, and is maintained at the second position as indicated by the dotted line in the figure. In this actual case, when the temperature drops at the martensitic transformation starting point (point M), the driving body 3 expands and deforms, and when the temperature rises, it shrinks and deforms at the reverse transformation starting point (entry point), but this deformation Conversely, when the temperature decreases at the martensitic transformation starting point (point M), the driving body 3 may be contracted and deformed.

前述の如き形状記憶合金よりなる駆動体の加熱方法によ
ると、コイル2への通電によって鉄心l内に生起する磁
束によってリング4に誘導電流を発生せしめ、もってリ
ング4を自己発熱させたので、リング4の発熱は小電流
によって大発熱量を得ることができたものであり、ざら
にリング4に対して直接的に電源電流を結線していない
のでリング4と駆動体3との間に絶縁被膜を配置する必
要はなく前述した大発熱量と合わせて駆動体3に対する
加熱特性の向上を図ることができたものである。また線
材よりなるヒーターに比較して発熱部分がリング状とな
ったので加熱、冷却のくり返し及び外部振動等に対する
断線の危険は解決でき長期間安定して使用できるもので
ある。
According to the method of heating a driving body made of a shape memory alloy as described above, an induced current is generated in the ring 4 by the magnetic flux generated in the iron core l by energizing the coil 2, thereby causing the ring 4 to self-heat. The heat generated by 4 can be obtained by obtaining a large amount of heat with a small current, and since the power supply current is not directly connected to the ring 4, there is no insulation coating between the ring 4 and the drive body 3. There is no need to dispose the drive body 3, and in addition to the large amount of heat generated, it is possible to improve the heating characteristics for the drive body 3. Furthermore, compared to a heater made of wire, the heat generating part is ring-shaped, so the risk of wire breakage due to repeated heating and cooling and external vibrations can be eliminated, and it can be used stably for a long period of time.

また第2図に示す如く鉄心1の地側IBの周囲にリング
4を配置し、さらにその外周に駆動体3を配置した構造
によると、リング4の周長を鉄心1に近接して短縮でき
るので大誘導電流を得ることが可能となり、これによる
とリング4の発熱量を増加でき、加熱特性の向上を図る
ことができるものである。
Further, according to the structure in which the ring 4 is arranged around the ground side IB of the iron core 1 and the driver 3 is further arranged around the outer periphery as shown in FIG. 2, the circumferential length of the ring 4 can be shortened by being close to the iron core 1. Therefore, it is possible to obtain a large induced current, thereby increasing the amount of heat generated by the ring 4 and improving the heating characteristics.

また前記鉄心lをケイ素m板にて積層及び折り曲げ積層
とすることによって鉄心1の磁束効率の向上を図ること
ができこれによると誘導電流を増すことができリング4
の発熱−を増すことができて加熱特性の向上を図ること
ができる。
Furthermore, by forming the iron core 1 by laminating and bending laminated silicon m plates, it is possible to improve the magnetic flux efficiency of the iron core 1. Accordingly, the induced current can be increased and the ring 4
It is possible to increase the heat generation and improve the heating characteristics.

また第3図に示す如く鉄心lOの一側10Aを複数の鉄
心10B、100に分岐し、それら鉄心1033 。
Further, as shown in FIG. 3, one side 10A of the iron core 10 is branched into a plurality of iron cores 10B and 100, and these iron cores 1033.

10 Qの各々を囲繞するリング14を配置すると、各
鉄心10B、tooによってリング14内に各々お導′
亀流が生起し、リング4に対する加熱特性は更に向上す
るもので小電流によって駆動体3に対する大きな加熱を
与えることができるものである。
When the ring 14 surrounding each of the iron cores 10B and 10Q is arranged, the iron cores 10B and
A turtle current is generated, and the heating characteristics for the ring 4 are further improved, and a large amount of heating can be applied to the driving body 3 with a small current.

また、iiJ図に示す如く、駆動体3の端末騎3Bを接
続して電気的に閉回路を構成すると、鉄心1の通過磁束
によってリング4及び駆動体3に誘導電流が発生し、前
述の如くリング4の誘導電流による自己発熱に合かせて
駆動体3もまた誘導電流によって自己発熱が生じ、駆動
体3の加熱特性を著しく向上できるものであり、さらに
また駆動体3が自己発熱したことによって駆動体3は均
一に暖められその温度上昇に伴なう動特性の向上を図る
ことができたものであるO 以上の如く、本発明になる形状記憶合金よりなる駆動体
の加熱方法によると、鉄心の周囲にコイルを巻回すとと
もに鉄心の周囲に形状記憶合金よりなる駆動体と導電性
材質よりなるリングを配置し、鉄心に発生する磁束によ
り、リングに誘導電流による自己発熱を生起せしめ、も
ってリングによって駆動体を加熱したのテ、小電流によ
って大発熱量を得ることができ、さらにはリングと駆動
体との絶縁被膜を配置する必要がなくリングより駆動体
へ直接的に伝熱ができるので加熱特性の向上を図ること
ができ、さらには発熱部を線材よりなるヒーターよりリ
ングとしたので@@の危険は全くなくなり長期間に渡っ
て安定した使用ができるものである。
Furthermore, as shown in Figure iiJ, when the terminals 3B of the driving body 3 are connected to form an electrically closed circuit, an induced current is generated in the ring 4 and the driving body 3 due to the magnetic flux passing through the iron core 1, and as described above, an induced current is generated in the ring 4 and the driving body 3. In accordance with the self-heating caused by the induced current in the ring 4, the driving body 3 also generates self-heating due to the induced current, which can significantly improve the heating characteristics of the driving body 3.Furthermore, due to the self-heating of the driving body 3, The driving body 3 can be heated uniformly and its dynamic characteristics can be improved as the temperature increases.As described above, according to the method of heating a driving body made of a shape memory alloy according to the present invention, A coil is wound around the iron core, and a driving body made of a shape memory alloy and a ring made of a conductive material are arranged around the iron core, and the magnetic flux generated in the iron core causes the ring to generate self-heating due to an induced current. By heating the driving body with the ring, a large amount of heat can be obtained with a small current, and there is no need to place an insulating film between the ring and the driving body, allowing heat to be transferred directly from the ring to the driving body. Therefore, the heating characteristics can be improved, and since the heating part is a ring rather than a wire heater, there is no danger of @@, and it can be used stably for a long period of time.

また、鉄心を積層及び折り曲げ積層とすることによって
鉄心の磁束効率の向上を図ることができ小電流にてリン
グの発熱量を増すことができるものであり、また鉄心に
より形成される磁束通路を複数となし、それら各磁束通
路の周囲にリングを配置することによってリング内に生
起する誘導′直流を増加することができてリングの発熱
部を増すことができる。さらにまた駆動体を電気的に閉
回路とすると、駆動体が自己発熱するものであり、リン
グによる発熱に加え加熱特性の向上が望まれるものであ
り、あわせて駆動体が自己発熱することによって駆動体
自身は均一に暖められ動特性が一段と向上するものであ
る。
In addition, the magnetic flux efficiency of the iron core can be improved by making the iron core laminated and bent and laminated, and the heat generation amount of the ring can be increased with a small current. By arranging a ring around each of these magnetic flux paths, it is possible to increase the induced direct current generated within the ring, thereby increasing the heat generating portion of the ring. Furthermore, if the drive body is an electrically closed circuit, the drive body generates heat by itself, and in addition to the heat generated by the ring, it is desired to improve the heating characteristics. The body itself is heated evenly and its dynamic characteristics are further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明になる形状記憶合金よりなる駆動体の加熱方
法の一実施例を示す要部断面図を含む系統図であり、第
1@、第2図、第3図、第4図は各実施例を示すもので
ある。 l・・・・鉄心 2φ・・・コイル 3・・・・形状記憶合金よりなる駆動体4・・・・リン
グ 5・・・・動作体 (11)
The figure is a system diagram including a sectional view of essential parts showing an embodiment of the heating method for a driving body made of a shape memory alloy according to the present invention. This is an example. l...Iron core 2φ...Coil 3...Driving body 4 made of shape memory alloy...Ring 5...Moving body (11)

Claims (1)

【特許請求の範囲】 l)磁性材料よりなり磁気的に閉回路をなす鉄心の周囲
にコイルを巻回すとともに該鉄心の周囲に形状記憶合金
よりなる駆動体と導電材料よりなるリングを配置し、コ
イルへの通電によって、鉄心に発生する磁束によりリン
グに誘導電流による自己発熱を生起せしめ、もって駆動
体を加熱してなる形状記憶合金よりなる駆動体の加熱方
法。 2)鉄心を積層としてなる特許請求の範囲第1項記載の
形状記憶合金よりなる駆動体の加熱方法。 3)鉄心により形成される磁束通路を複数となし、それ
ら各磁束通路の周囲にリングを配置してなる特許請求の
範囲第1項記載の形状記憶合金よりなる駆動体の加熱方
法。 4)形状記憶合金よりなる駆動体を゛磁気的に閉回路と
してなる特許請求の範囲第1項記載の形状記憶合金より
なる駆動体の加熱方法。
[Claims] l) A coil is wound around an iron core made of a magnetic material forming a magnetically closed circuit, and a driving body made of a shape memory alloy and a ring made of a conductive material are arranged around the iron core, A method of heating a driving body made of a shape memory alloy, in which the magnetic flux generated in the iron core by energizing the coil causes self-heating due to an induced current in the ring, thereby heating the driving body. 2) A method for heating a driving body made of a shape memory alloy according to claim 1, in which the iron core is laminated. 3) A method for heating a driving body made of a shape memory alloy according to claim 1, wherein a plurality of magnetic flux paths are formed by an iron core, and a ring is arranged around each of the magnetic flux paths. 4) A method for heating a driving body made of a shape memory alloy according to claim 1, wherein the driving body made of a shape memory alloy is formed into a magnetically closed circuit.
JP22087782A 1982-12-16 1982-12-16 KEIJOKIOKUGOKINYORINARUKUDOTAINOKANETSUHOHO Expired - Lifetime JPH0247598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22087782A JPH0247598B2 (en) 1982-12-16 1982-12-16 KEIJOKIOKUGOKINYORINARUKUDOTAINOKANETSUHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22087782A JPH0247598B2 (en) 1982-12-16 1982-12-16 KEIJOKIOKUGOKINYORINARUKUDOTAINOKANETSUHOHO

Publications (2)

Publication Number Publication Date
JPS59110874A true JPS59110874A (en) 1984-06-26
JPH0247598B2 JPH0247598B2 (en) 1990-10-22

Family

ID=16757933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22087782A Expired - Lifetime JPH0247598B2 (en) 1982-12-16 1982-12-16 KEIJOKIOKUGOKINYORINARUKUDOTAINOKANETSUHOHO

Country Status (1)

Country Link
JP (1) JPH0247598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612416A1 (en) * 2004-07-02 2006-01-04 Rolls-Royce Plc Shape memory material actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612416A1 (en) * 2004-07-02 2006-01-04 Rolls-Royce Plc Shape memory material actuator

Also Published As

Publication number Publication date
JPH0247598B2 (en) 1990-10-22

Similar Documents

Publication Publication Date Title
RU2661803C2 (en) Smart susceptor for shape memory alloy actuator inductive heating system
JP2012512369A (en) Structure for shifting the valve
CN109996482B (en) Rigidity variable device
JPS59110874A (en) Heating for driving body made of shape memory alloy
JP4286000B2 (en) Heatable expandable element
JPS59120791A (en) Heating for driving body made of shape memorizing alloy
JPH0252149B2 (en)
JPH049948B2 (en)
JPS60195386A (en) Shape memory actuator
JP4161045B2 (en) Shape memory alloy actuator
JP2003100426A (en) Hot blast generator by induction heating
JP4165184B2 (en) Actuator
JPS59110876A (en) Heating for driving body made of shape memory alloy
JPH0755333Y2 (en) Shape memory actuator element
JPS59153216A (en) Proportional control valve of gas
JPH051395B2 (en)
SU1750078A1 (en) Heat-mechanical thermobimetallic transducer
JPS59110980A (en) Control valve
JPS59110979A (en) Control valve
KR100646763B1 (en) Actuator and induction heating apparatus for actuator
JPH063194Y2 (en) Temperature-sensitive actuator
JP2004162703A (en) Actuator
JPH0360909B2 (en)
JPH0824034A (en) Heating method and heating device of hair curler
JPS6146475A (en) Shape memory alloy device