JPS5911083Y2 - Pressure-resistant plastic containers for carbonated beverages - Google Patents

Pressure-resistant plastic containers for carbonated beverages

Info

Publication number
JPS5911083Y2
JPS5911083Y2 JP4002279U JP4002279U JPS5911083Y2 JP S5911083 Y2 JPS5911083 Y2 JP S5911083Y2 JP 4002279 U JP4002279 U JP 4002279U JP 4002279 U JP4002279 U JP 4002279U JP S5911083 Y2 JPS5911083 Y2 JP S5911083Y2
Authority
JP
Japan
Prior art keywords
container
bottle
pressure
neck
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4002279U
Other languages
Japanese (ja)
Other versions
JPS55142433U (en
Inventor
宗機 山田
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to JP4002279U priority Critical patent/JPS5911083Y2/en
Publication of JPS55142433U publication Critical patent/JPS55142433U/ja
Application granted granted Critical
Publication of JPS5911083Y2 publication Critical patent/JPS5911083Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、耐圧性に優れ且つ内容品保持能に優れたポリ
エチレンテレフタレート製二軸延伸ブロー容器に関する
[Detailed Description of the Invention] The present invention relates to a biaxially stretched blow container made of polyethylene terephthalate that has excellent pressure resistance and excellent content retention capacity.

二軸延伸ブローポリエチレンテレフタレート容器は例え
ば米国特許第3,733,309号明細書に記述される
如く、耐圧性・剛性・透明性ばかりでなく、酸素・炭酸
ガス等の気体の透過度が小さく内容品保持能が優れてい
る為、現在米国及びヨーロッパの一部の国で炭酸飲料用
プラスチックボトルとして、又日本においてはしよう油
用ボトルとして広く使用されている。
Biaxially stretched blown polyethylene terephthalate containers, as described in US Pat. No. 3,733,309, have not only high pressure resistance, rigidity, and transparency, but also low permeability to gases such as oxygen and carbon dioxide. Due to its excellent product retention ability, it is currently widely used as plastic bottles for carbonated drinks in the United States and some European countries, and as bottles for soybean oil in Japan.

炭酸飲料用ボトルの場合、容器が流通・消費機構で受け
る最悪の条件を想定して約11 kg/CIl+”(ゲ
ージ圧)の高圧に耐え得る事が要求されている。
In the case of carbonated beverage bottles, it is required that the container be able to withstand a high pressure of about 11 kg/Cl+'' (gauge pressure), assuming the worst conditions that the container will be subjected to in distribution and consumption mechanisms.

プラスチックボトルが内圧を受ける場合ボトルの最弱部
分は一般にボトルの底周辺部である。
When a plastic bottle is subjected to internal pressure, the weakest part of the bottle is generally around the bottom of the bottle.

この様な理由の為に2つの技術が開発され実用化されて
いる。
For these reasons, two technologies have been developed and put into practical use.

例えば特公昭48−5708号公報に記載される花弁型
底部構造と特開昭5l−70086号公報に記載される
ボトルと支持カップ(ハカマ部品)とからなる複合包装
体がそれに当る。
For example, a composite package consisting of a petal-shaped bottom structure described in Japanese Patent Publication No. 48-5708 and a bottle and a support cup (Hakama parts) described in Japanese Patent Application Laid-open No. 51-70086 is one such example.

その他耐圧性の面からは種々の新技術が発明されている
In addition, various new technologies have been invented from the viewpoint of pressure resistance.

一方炭酸飲料用プラスチックボトルに要求される重要な
性能にカーボネーションロスを出来るだけ小さくするこ
とが挙げられる。
On the other hand, one of the important performances required of plastic bottles for carbonated beverages is to minimize carbonation loss.

炭酸飲料の中で最もポピューラーなコーラ飲料は3.5
乃至4ボリュームの炭酸ガスを含むことが知られている
The most popular carbonated drink, cola, has a rating of 3.5
It is known that it contains 4 to 4 volumes of carbon dioxide gas.

プラスチックは程度の差こそあれ酸素・炭酸ガス等の気
体を透過あるいは吸着する。
Plastics permeate or adsorb gases such as oxygen and carbon dioxide to varying degrees.

従って内容品である炭酸飲料中の炭酸ガスは経時的に失
われ、この失われる絶対量が大きい場合炭酸飲料として
の商品性が著しく失われる。
Therefore, the carbon dioxide gas in the carbonated beverage content is lost over time, and if the absolute amount lost is large, the carbonated beverage loses its marketability significantly.

容器壁を透過して失われる炭酸ガスの量は、同一の容器
材料、雰囲気温度そして容器内圧で比較する場合容器の
表面積(あるいは内容品と容器の接触面積)に直接的に
比例する。
The amount of carbon dioxide gas lost through the container wall is directly proportional to the surface area of the container (or the contact area between the contents and the container) when comparing the same container material, ambient temperature, and internal pressure.

又容器壁に吸収されることによって失われる炭酸ガスの
量は、前述と同様な条件下で比較する場合容器の重量(
あるいは、同一内容積の容器の場合容器重量は容器の表
面積と一般に正相関め関係がある為容器表面積)に直接
的に比例する。
In addition, the amount of carbon dioxide lost by absorption into the container wall is determined by the weight of the container (
Alternatively, in the case of containers having the same internal volume, the container weight is directly proportional to the surface area of the container, since there is generally a direct correlation with the surface area of the container.

以上の理由から炭酸飲料中の炭酸ガスの損失(カーボネ
ーションロス)の面からも容器形状を評価して、耐圧性
プラスチック容器のデザインを決定せねばならぬ事が分
る。
For the above reasons, it is clear that the design of pressure-resistant plastic containers must be determined by evaluating the shape of the container from the perspective of carbonation loss in carbonated beverages.

更に容器表面積を小さくする配慮は、容器壁を透過して
内容品に溶けこむ大気中の酸素ガスの量を極力おさえそ
してポリエチレンテレフタレート材質中に存在するアセ
トアルデヒドの内容品への移行を抑制して内容品である
炭酸飲料のフレーバーの低下を抑制する結果にもなる。
Furthermore, consideration was given to reducing the surface area of the container by minimizing the amount of oxygen gas in the atmosphere that penetrates the container wall and dissolves into the contents, and by suppressing the migration of acetaldehyde, which is present in the polyethylene terephthalate material, into the contents. This also results in suppressing the deterioration of the flavor of carbonated beverages.

本考案によれば、ポリエチレンテレフタレートの二軸延
伸ブロー成形により形或され且つ容器の上部及び底部が
半球乃至は半回転楕円体となった中空容器胴と、前記容
器胴の底部を包囲するように容器胴に固定されたハカマ
部品とから戒り、該容器胴はネック部を除いた高さをA
、水平方向の最大胴径をBとしたとき、下記式 1.0≦A/B≦3.0 を満足する寸法を有し、且つ容器上部と容器底部との間
に存在し得る直線部分の長さをHR、ネック部を除いた
容器高さをAとしたとき、HR/Aの比が0.4以下で
あることを特徴とする炭酸飲料用耐圧プラスチック容器
が提供される。
According to the present invention, a hollow container body is formed by biaxial stretch blow molding of polyethylene terephthalate, and the upper and bottom portions of the container have a hemispherical or semi-spheroidal shape, and a container body that surrounds the bottom of the container body. The height of the container body excluding the neck is A.
, when the maximum horizontal diameter of the body is B, it has a dimension that satisfies the following formula 1.0≦A/B≦3.0, and a straight portion that may exist between the top of the container and the bottom of the container. Provided is a pressure-resistant plastic container for carbonated beverages characterized in that the ratio of HR/A is 0.4 or less, where the length is HR and the height of the container excluding the neck portion is A.

耐圧性の面だけから考えて有利と考えられる容器形状は
、無限に長い二重円筒である。
A container shape that is considered advantageous from the standpoint of pressure resistance alone is an infinitely long double cylinder.

その理由は半径γそして厚みμの二重円筒壁に発生する
円周方向主応力σは内圧がPの場合次式で表わされる。
The reason for this is that when the internal pressure is P, the circumferential principal stress σ generated in the double cylindrical wall of radius γ and thickness μ is expressed by the following equation.

σ=−・P・・・・・・(1) すなわち、一定内容積で考えた場合γが無限に小さく長
さが無限に長い二重円筒と考えられる。
σ=−·P (1) In other words, when considering a constant internal volume, it can be considered as a double cylinder with infinitely small γ and infinitely long length.

しかしこの様な容器は実用性は全くないと云える。However, it can be said that such a container has no practical use.

従って実際の耐圧容器は流通・消費機構における便宜性
と内容品保持能(一定内容積の二重円筒において表面積
が最小になる物理的条件はh/γ=2(hは高さ、γは
二重円筒の半径)の場合である)が配慮され、一定径の
ネック部、容器高さ軸方向に実質的に直線な胴部、該胴
部とネック部を直線あるいは曲線で結ぶ眉部そして前述
した特開昭51−70086号公報に記載される様な凸
部形状がらなる底部あるいは特公昭48−5708号公
報に記載される様な花弁型底部からなる容器が使用され
ている。
Therefore, in actual pressure containers, convenience in the distribution and consumption mechanism and ability to hold contents (the physical condition that minimizes the surface area in a double cylinder with a constant internal volume is h/γ = 2 (h is height, γ is 2) (radius of a heavy cylinder) is taken into consideration; a neck of constant diameter, a body substantially straight in the axial direction of the height of the container, an eyebrow connecting the body and the neck with a straight line or a curve, and the above-mentioned Containers have been used that have a bottom with a convex shape as described in Japanese Patent Application Laid-Open No. 51-70086, or a petal-shaped bottom as described in Japanese Patent Publication No. 48-5708.

しかし本考案者は、本質的に耐圧形状として最も有利で
あると考えられる球を、炭酸飲料等の内容品を包装する
ための二輪延伸ブローポリエチレンテレフタレート容器
に対して内容品保持性、商品性を含む他の機能面そして
戊形性等の面がら総合的に検討した結果、二重円筒の理
論の延長上で発生した現在の容器に比較して耐圧性容器
として優れている事を見い出した。
However, the present inventor has developed a ball, which is considered to be essentially the most advantageous as a pressure-resistant shape, to improve content retention and marketability for two-wheeled stretch-blown polyethylene terephthalate containers for packaging contents such as carbonated drinks. As a result of comprehensively examining other functional aspects including shapeability and other aspects, it was found that this container is superior as a pressure-resistant container compared to current containers that were developed as an extension of the double cylinder theory.

容器を球にすると、大容量の容器の場合には、胴径が大
きくなる不便さがあるが、下記式1<A/B≦3.0・
・・・・・(2) を満足する回転楕円体とすると、この不便さも克服でき
る。
If the container is made into a sphere, there is an inconvenience that the diameter of the body will increase in the case of a large-capacity container, but the following formula 1<A/B≦3.0・
If we use a spheroid that satisfies (2), this inconvenience can be overcome.

更に容器形状が球あるいは回転楕円体になるために延伸
が比較的均一的に行われ且つ底部の延伸も比較的容易に
行なわれる結果、 容器のネック部を除いた高さ軸方向の各部における容器
円周方向の厚みの標準偏差(Q−,.)が50以下であ
り、且つネック部を除いた容器の各部の厚みの最小厚み
をμ而n最大厚みをμmaxとした時μmax/μmi
nが1.0乃至8.0の範囲にある厚みの分布の小さい
容器が提供される。
Furthermore, since the shape of the container is spherical or spheroidal, the stretching is relatively uniform and the bottom portion is also relatively easy to stretch. When the standard deviation (Q-,.) of the thickness in the circumferential direction is 50 or less, and the minimum thickness of each part of the container excluding the neck is μmax, and the maximum thickness is μmax, μmax/μmi
A container with a narrow thickness distribution is provided, with n ranging from 1.0 to 8.0.

ポリエチレンテレフタレートニ軸延伸ブロー容器の厚み
の分布を小さくする事は容器物性を向上させるために極
めて重要な事であり、厚み分布が極めて小さくその結果
容器各部の密度の分布が小さい本考案に基づく容器は例
えば特願昭52−107694に記載される熱処理技術
の適用が容易になる。
Reducing the thickness distribution of a polyethylene terephthalate biaxially stretched blow container is extremely important for improving the physical properties of the container, and the container based on the present invention has an extremely small thickness distribution, resulting in a small density distribution in each part of the container. For example, the heat treatment technique described in Japanese Patent Application No. 52-107694 can be easily applied.

更に、容器全域に渡り延伸が比較的容易になり厚み分布
すなわち密度の分布が小さくなる結果、特願昭53−4
7659に記載される様な容器の経時収縮が抑制される
Furthermore, it is relatively easy to stretch over the entire area of the container, and the thickness distribution, that is, the density distribution, becomes smaller.
Container shrinkage over time as described in No. 7659 is suppressed.

容器を球状あるいは回転楕円体にするために生じるもう
一つの障害として、ラベル等が貼れない欠点は、容器の
高さ軸方向にラベルを貼付けるための直線部分が存在し
、その直線部分の長さ(HR)の容器ネック部を除いた
容器高さ(A)に対する割合(HR/A)が0.4以下
にすれば、本考案の趣旨はそこなわれない。
Another problem that arises when making containers spherical or spheroidal is that labels cannot be attached. As long as the ratio (HR/A) of the container height (HR) to the container height (A) excluding the container neck portion is 0.4 or less, the purpose of the present invention is not impaired.

本考案の容器は自立性がない為、例えば特開昭51−7
0086号公報に記載されるベースカップ(ハカマ部品
)によって底部は包囲される必要がある。
Since the container of the present invention is not self-supporting, for example,
The bottom needs to be surrounded by the base cup (Hakama part) described in the 0086 publication.

このハカマ部品は直接内容品に接触しない為ある程度の
強度を保有すれば良い。
Since these Hakama parts do not come into direct contact with the contents, they only need to have a certain level of strength.

経済性の点から云えば本考案の容器製造時に発生するス
クラップあるいは他の容器のスクラップを使用すること
が出来る。
From an economic point of view, it is possible to use scraps generated during the manufacture of containers of the present invention or scraps from other containers.

ベースカップと容器の接合は前記特開昭51−7008
6号公報に記載されるようなひっこんだ結節部により物
理的にはめこまれても良く、接着剤を使用して結合する
方法でも良く更に容器とベースカップが熱的に接着可能
な場合は高周波接着等の技術も適用される。
The connection between the base cup and the container is described in Japanese Patent Application Laid-Open No. 51-7008.
It may be physically fitted using a recessed knot as described in Publication No. 6, or it may be joined using an adhesive. Furthermore, if the container and base cup can be thermally bonded, high frequency Techniques such as gluing may also be applied.

本考案の前記容器は一般にエチレンテレフタレート単位
を主体とするポリエステルから形或され且つ一端部に密
封用首部を有し、他端部が閉じられたパリソンを、延伸
ブロー戒形する公知の戒形技術により提供される。
The container of the present invention is generally formed from polyester mainly containing ethylene terephthalate units, and has a sealing neck at one end and a closed parison at the other end using the known forming technique of stretch-blowing. Provided by.

上記原料ポリエステルとしては、ポリエチレンテレフタ
レートが好適に使用されるが、ポリエチレンテレフタレ
ート容器の特性及び本考案の要旨を損わない範囲内で共
重合或分として、イソフタル酸・p−β−オキシエトキ
シ安息香酸・ナフタレン2,6−ジカノレボン酸・ジフ
エノキシエタン−4,4′−ジカノレボン酸・5−ナト
リウムスノレホイソフタル酸・アジピン酸・セバシン酸
またはこれらのアルキルエステル誘導体などのジカルボ
ン酸或分、プロピレングリコール・1,4−ブタンジオ
ール・ネオペンチルグリコール・1,6−ヘキシレング
リコール・シクロヘキサンジメタノール・ビスフェノー
ルAのエチレンオキシド付加物などのグリコール戒分を
含有するコポリエステル等も使用し得る。
Polyethylene terephthalate is preferably used as the raw material polyester, but isophthalic acid/p-β-oxyethoxybenzoic acid may be copolymerized within a range that does not impair the characteristics of the polyethylene terephthalate container and the gist of the present invention.・Dicarboxylic acids such as naphthalene 2,6-dicanolebonic acid, diphenoxyethane-4,4'-dicanolebonic acid, 5-sodium snorehoisophthalic acid, adipic acid, sebacic acid or their alkyl ester derivatives, propylene glycol Copolyesters containing glycol components such as 1,4-butanediol, neopentyl glycol, 1,6-hexylene glycol, cyclohexanedimethanol, and an ethylene oxide adduct of bisphenol A may also be used.

更にこのポリエステルは顔料・染料等の着色剤、紫外線
吸収剤、帯電防止剤などの添加剤を含有することも出来
る。
Furthermore, this polyester can also contain additives such as coloring agents such as pigments and dyes, ultraviolet absorbers, and antistatic agents.

用いるポリエチレンテレフタレートは固有粘度〔η〕が
0.5以上、特に0.6以上のものが延伸ブロー容器の
機械的強度の面で好適である。
The polyethylene terephthalate used has an intrinsic viscosity [η] of 0.5 or more, particularly 0.6 or more, from the viewpoint of mechanical strength of the stretch blow container.

以下、本考案の効果を実施例により説明する。Hereinafter, the effects of the present invention will be explained using examples.

実施例 1 フェノール/テトラクロロエタンの重量比が50/50
の混合溶媒中で30゜Cにおける極限粘度(IV)が0
.75のポリエチレンテレフタレートのペレットを、窒
素ガス循環熱風乾燥機を用いて水分含有率が0.01%
以下になるまで十分乾燥した。
Example 1 Phenol/tetrachloroethane weight ratio is 50/50
The intrinsic viscosity (IV) at 30°C in a mixed solvent of
.. 75 polyethylene terephthalate pellets were dried to a moisture content of 0.01% using a nitrogen gas circulating hot air dryer.
It was sufficiently dried until it became below.

このペレットを日精樹脂工業株式会社製二軸延伸ブロー
威形装置(ASB 150)を使用し第1図の回転楕円
体の長軸半径aと短軸半径b(a/b=A/Bである)
が第1表に示す寸法を有するボトルを10種類と第2図
の二重円筒の第1表に示す寸法を有するボトルそして第
3図の形状及び寸法を有する通常のボトルを或形した。
Using a biaxial stretching blow shaping device (ASB 150) manufactured by Nissei Jushi Kogyo Co., Ltd., the pellets were formed into a spheroid with major axis radius a and minor axis radius b (a/b = A/B) as shown in Figure 1. )
produced 10 types of bottles having the dimensions shown in Table 1, a double cylindrical bottle shown in FIG. 2 having the dimensions shown in Table 1, and a regular bottle having the shape and dimensions shown in FIG.

全てのボトルはボトル重量が約46gそして第3図のボ
トル以外はネツク下までのボトルの内容積が約940
ccになる様に戊形を行った。
The weight of all bottles is approximately 46g, and the internal volume of the bottle to the bottom of the bottle is approximately 940g, except for the bottle in Figure 3.
I did a round shape to make it cc.

これら12種類のボトルの入れ目線内容積、ボトル外表
面積、ボトル4 kg/−の内圧をかけた買合の内容積
の瞬間変形率そしてカーボネーションロスを第1表の脚
注の方法により測定した結果を第1表に示す。
Results of measuring the internal volume of these 12 types of bottles, the external surface area of the bottle, the instantaneous deformation rate of the internal volume of the bottle when an internal pressure of 4 kg/- was applied, and the carbonation loss using the method described in the footnotes in Table 1. are shown in Table 1.

内圧によるボトルの変形は、ボトルの肉厚とボトル形状
によって大きく左右される。
The deformation of a bottle due to internal pressure is greatly influenced by the bottle wall thickness and bottle shape.

同一重量のボトルの場合、表面積の小さいボトルは肉厚
が大きい為本明細書に前述した式から明らかな様に発生
する応力は小さくなり変形量は小さくなる。
In the case of bottles of the same weight, since a bottle with a smaller surface area has a larger wall thickness, the stress generated is smaller and the amount of deformation is smaller, as is clear from the equation described above in this specification.

又同一内容積の場合ボトルの胴径及び底の径の太きいほ
ど発生する応力は大きく変形量は大きくなる。
Further, in the case of the same internal volume, the larger the diameter of the body and the diameter of the bottom of the bottle, the greater the stress generated and the greater the amount of deformation.

第1表の内容積の内圧による瞬間変形率は上述の二つの
要因が絡み合って影響を及ぼしているが、本考案の回転
楕円体ボトルは、次式 1≦A/B≦3 が満足される場合、二重円筒ボトルの最も表面積の小さ
いボトル及び市販の炭酸飲料ボトルと実質上同一形状の
ボトルに比較して耐圧性が優れている事が分る。
The instantaneous deformation rate due to the internal pressure of the internal volume in Table 1 is affected by the interaction of the two factors mentioned above, but the spheroidal bottle of the present invention satisfies the following formula 1≦A/B≦3. In this case, it can be seen that the pressure resistance is excellent compared to a double cylindrical bottle with the smallest surface area and a bottle having substantially the same shape as a commercially available carbonated beverage bottle.

ボトルに充填された炭酸飲料中の炭酸ガスの損失(カー
ボネーションロス)は炭酸飲料を充填したボトルのヘッ
ドスペースの圧力を測定する事により評価出来る。
The loss of carbon dioxide (carbonation loss) in a carbonated drink filled in a bottle can be evaluated by measuring the pressure in the head space of a bottle filled with carbonated drink.

この圧力損失は、炭酸ガスのボトル壁からの透過、ボト
ル壁への収着そして内圧によるボトル内容積の増加が加
或されたものである。
This pressure loss is due to permeation of carbon dioxide gas through the bottle wall, sorption to the bottle wall, and increase in bottle internal volume due to internal pressure.

ボトル壁であるポリエチレンテレフタレート材質中への
炭酸ガスの収着は第1表のボトルは全て同一目付である
為各ボトルの炭酸ガスの平衡収着量は同一と考えられる
Regarding the sorption of carbon dioxide gas into the polyethylene terephthalate material that is the bottle wall, since all the bottles in Table 1 have the same basis weight, the equilibrium sorption amount of carbon dioxide gas in each bottle is considered to be the same.

内容積の増加による内圧の減少の面から見れば、前述の
如く回転楕円体ボトルが優れている事は明らかである。
From the standpoint of reducing internal pressure due to increased internal volume, it is clear that the spheroidal bottle is superior as described above.

炭酸ガスの透過によるカーボネーションロスの面から考
えれば、一定時間後のガスの透過量は透過面積すなわち
ボトルの表面積に直接比例する。
Considering carbonation loss due to permeation of carbon dioxide gas, the amount of permeation of gas after a certain period of time is directly proportional to the permeation area, that is, the surface area of the bottle.

従って炭酸飲料ボトルのカーボネーションロスを小さく
する為に表面積は出来得るかぎり小さくする必要がある
Therefore, in order to reduce the carbonation loss of carbonated beverage bottles, the surface area must be made as small as possible.

この様な観点から第F表に示す様に回転楕円体ボトルの
カーボネーションロスは小さく優れている事が分る。
From this point of view, as shown in Table F, it can be seen that the spheroidal bottle has a small carbonation loss and is superior.

?1;第1. 2. 3図の入れ目線6まで4゜Cの水
道水を充填し、その水の重量より求めたボトルの内容積
? 1; 1st. 2. The internal volume of the bottle was calculated from the weight of the water filled up to filling line 6 in Figure 3 with tap water at 4°C.

*2;ネツク部とは第1〜3図のネックリング直下の直
線部より上のネック部を除いたボトルの外表面積を実測
した値。
*2; The neck area is the actual measured value of the outer surface area of the bottle excluding the neck area above the straight line area directly below the neck ring in Figures 1 to 3.

*3;ボトル高さはボトルの全高さよりネック部の長さ
を差し引いた値。
*3; Bottle height is the value obtained by subtracting the length of the neck from the total height of the bottle.

*4;ボトルを20’Cの室温下において4kg/an
の窒素で内圧をかけボトル体積の瞬間的増加量を加圧前
の入れ目内容積で割り百分率で表わした数値。
*4; 4kg/an when the bottle is at room temperature of 20'C
The value is expressed as a percentage by dividing the instantaneous increase in bottle volume by applying internal pressure with nitrogen by the internal volume before pressurization.

*5;ボトルに、市販のガラス瓶入りコカコーラを十分
に冷却後リパック(再充填)シ24゜C恒温室に3ケ月
間保存後ボトル内ヘッドスペースの圧をPkg/cn1
、充填後コカコーラが24゜Cに達した時の圧力をP。
*5; Repack (refill) a commercially available glass bottle of Coca-Cola after sufficiently cooling it, and store it in a constant temperature room at 24°C for 3 months, then reduce the pressure in the head space inside the bottle to Pkg/cn1.
, P is the pressure when Coca-Cola reaches 24°C after filling.

kg/c[Il2とした時カーポネーションロスは(P
o−P /Po)xlOOで表わす。
When kg/c [Il2, the carponation loss is (P
It is expressed as o-P/Po)xlOO.

*6;米国で市販されていた炭飲用ボトルのは・゛同一
寸法形状のもの。
*6; The charcoal drinking bottles sold in the United States had the same size and shape.

* 全でのデータはボトルIO本の測定結果の算術平均
値で示す。
*The total data is shown as the arithmetic mean value of the measurement results of IO bottles.

実施例 2 実施例1で使用したl2種類のボI・ルのネック部を除
いた部分のボトル円周方向の肉厚分布を、ネック直下の
入れ目線からボトル底部中心まで軸方向に等間隔に5等
分した位置で測定し標準偏差を求めた。
Example 2 The wall thickness distribution in the circumferential direction of the bottle of the two types of bottles used in Example 1, excluding the neck, was measured at equal intervals in the axial direction from the cut line just below the neck to the center of the bottom of the bottle. Measurements were taken at five equally divided positions and the standard deviation was determined.

更にネック部を除いたボトルの各部の厚みの最大値(μ
max)及び最小値(μ而n)を測定しμmax/μ而
nを求めた。
Furthermore, the maximum thickness of each part of the bottle excluding the neck (μ
max) and the minimum value (μ?n) were measured to determine μmax/μ?n.

別個に、これら12種類のボトルをボトル戊形直後に温
度3TC相対湿度60%雰囲気中に保存し満注内容積の
経時変化を4゜C水置換法にて測定した。
Separately, immediately after bottle shaping, these 12 types of bottles were stored in an atmosphere at a temperature of 3TC and a relative humidity of 60%, and changes in the filled volume over time were measured using a 4°C water displacement method.

これらの結果を第2表にまとめて示す。These results are summarized in Table 2.

第2表より明らかな様に、ボトル高さ/ボトル最大胴径
の値が3.0以下の回転楕円体ボトルはボトル円周方向
の厚みの標準偏差が50以下でありμmax/μ而nは
8.0以下で肉厚分布より均一的な結果、二軸延伸ブロ
ーポリエチレンテレフタレートボトルの1欠点と考えら
れる経時収縮率が低いレベルに抑制される。
As is clear from Table 2, for spheroidal bottles with a value of bottle height/bottle maximum body diameter of 3.0 or less, the standard deviation of the thickness in the bottle circumferential direction is 50 or less, and μmax/μ/n is As a result of the thickness distribution being more uniform at 8.0 or less, the shrinkage rate over time, which is considered to be one of the drawbacks of biaxially stretched blown polyethylene terephthalate bottles, is suppressed to a low level.

*1;番号1〜5はボトル高さ軸方向の位置を、ネック
直下よりボトル底部中心までを等間隔に5等分した位置
を示し、各位置でボトル円周方向に等間隔に8点厚みを
測定し標準偏差を求めた。
*1; Numbers 1 to 5 indicate the positions in the axial direction of the bottle height, divided into 5 equal intervals from just below the neck to the center of the bottom of the bottle, and at each position, there are 8 points equally spaced in the circumferential direction of the bottle. was measured and the standard deviation was determined.

ボトル10本につき各位置1〜5での厚みの標準備差を
求め算術平均値で示す。
The standard difference in thickness at each position 1 to 5 for 10 bottles is determined and expressed as an arithmetic mean value.

*2;式(Vo−V /Vo) X 100で表わす。*2; Represented by the formula (Vo-V/Vo)X100.

■oは或形直後のボトルの満注内容積を示し、■は3T
C相対湿度60%雰囲気中に2週間保存後のボトルの満
注内容積を示す。
■o indicates the full volume of the bottle immediately after a certain shape, ■ is 3T
C shows the full volume of the bottle after two weeks of storage in an atmosphere of 60% relative humidity.

実施例 3 実施例1と同一の材料及び或形装置を使用して第4図の
胴部に直線部分を有し第3表の寸法を有する回転楕円体
ボトルを或形した。
Example 3 Using the same materials and forming equipment as in Example 1, a spheroidal bottle having a straight section in the body of FIG. 4 and dimensions as shown in Table 3 was formed.

これらのボトルの実測外表面積とボトルに4 kg/(
m”の内圧をかけた場合の入れ目線内容積の瞬間変形率
を第3表に併せて示す。
The measured external surface area of these bottles and the 4 kg/(
Table 3 also shows the instantaneous deformation rate of the internal volume at the cutting line when an internal pressure of m'' is applied.

第3表より明らかな様に、ボトル胴部の直線部分のボト
ル高さに対する割合い(HR/ (HR+ 2a)が0
.4以下そしてボトル高さのボトル最大胴径に対する比
(’: 2 a+HR)/2 b )を3.0以下であ
る事を満足する回転楕円体ボトルは耐圧容器として優れ
ている事が分る。
As is clear from Table 3, the ratio of the straight part of the bottle body to the bottle height (HR/ (HR + 2a) is 0.
.. 4 or less and the ratio of the bottle height to the maximum bottle body diameter (': 2 a + HR)/2 b ) is found to be excellent as a pressure-resistant container.

$1.2,3:第3図に示す。$1.2,3: Shown in Figure 3.

*4;胴部直線部分のネック部を除いたボトル高さに対
する割合い。
*4: Ratio of the straight part of the body to the height of the bottle excluding the neck.

*5;ネツク部を除いたボトル高さ/ボトル最大胴径。*5; Bottle height excluding neck/maximum bottle diameter.

*6;第1表の脚注(1)と同一 *7;第1表の脚注(2)と同一 *8;第1表の脚注(4)と同一。*6; Same as footnote (1) in Table 1 *7; Same as footnote (2) in Table 1 *8; Same as footnote (4) in Table 1.

尚、添付図面第1図及び第4図に示す容器において、回
転楕円体容器壁の上方部分及び下方部分の楕円長軸半径
aは、互いに同寸法となっているが、前記不等式(2)
を満足する範囲内で、また第4図の場合には、更に前記
割合(HR/H)が0.4以下となる範囲内で、上方部
分及び下方部分の楕円軸半径が互いに異なった寸法とな
っていても、本考案の目的が同様に達威されるものと理
解されるべきである。
In the containers shown in FIGS. 1 and 4 of the accompanying drawings, the major axis radius a of the ellipse in the upper and lower portions of the spheroidal container wall is the same, but the inequality (2)
Within the range that satisfies However, it should be understood that the purpose of the present invention can be achieved in the same manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案による回転楕円体ボトルのボトル高さ軸
方向の断面図、第2図は二重円筒ボトルの同様な断面図
、第3図は米国において市販された炭酸飲料用3202
と実質上同一形状を有するボトルの同様な断面図そして
第4図は本考案による胴部に直線部分を有する回転楕円
体ボトルの同様な断面図を示す。 1・・・・・・回転楕円体ボトル、2・・・・・・ハカ
マ部品(ベースカップ)、3・・・・・・ネック部、4
・・・・・・ネックスクリュー、5・・・・・・ネック
リング、6・・・・・・入れ目線、7・・・・・・二重
円筒ボトル、8・・・・・・胴部に直線部を有する回転
楕円体ボトル。
Fig. 1 is a sectional view of a spheroidal bottle according to the present invention in the bottle height axis direction, Fig. 2 is a similar sectional view of a double cylindrical bottle, and Fig. 3 is a 3202 bottle for carbonated beverages commercially available in the United States.
FIG. 4 shows a similar cross-sectional view of a spheroidal bottle having a straight section in the body according to the present invention. 1...Spheroidal bottle, 2...Hakama parts (base cup), 3...Neck part, 4
...Neck screw, 5...Neck ring, 6...Setting line, 7...Double cylindrical bottle, 8...Body A spheroidal bottle with a straight section.

Claims (1)

【実用新案登録請求の範囲】 ポリエチレンテレフタレートの二軸延伸ブロー戒形によ
り形或され且つ容器の上部及び底部が半球乃至は半回転
楕円体となった中空容器胴と、前記容器胴の底部を包囲
するように容器胴に固定されたハカマ部品とから戊り、
該容器胴はネック部を除いた高さをA、水平方向の最大
胴径をBとしたとき、下記式 1.0≦A/B≦3.0 を満足する寸法を有し、容器上部と容器底部との間に存
在し得る直線部分の長さをHR、ネック部を除いた容器
高さをAとしたとき、HR/Aの比が0.4以下である
ことを特徴とする炭酸飲料用耐圧プラスチック容器。
[Claims for Utility Model Registration] A hollow container body formed by biaxially stretched blow molding of polyethylene terephthalate and having a hemispherical or semi-spheroidal top and bottom, and a container body surrounding the bottom of the container body. Remove from the hakama parts fixed to the container body so that
The container body has dimensions that satisfy the following formula 1.0≦A/B≦3.0, where A is the height excluding the neck portion, and B is the maximum diameter of the body in the horizontal direction. A carbonated beverage characterized in that the ratio of HR/A is 0.4 or less, where HR is the length of the straight part that may exist between the bottom of the container and A is the height of the container excluding the neck part. Pressure-resistant plastic container.
JP4002279U 1979-03-29 1979-03-29 Pressure-resistant plastic containers for carbonated beverages Expired JPS5911083Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002279U JPS5911083Y2 (en) 1979-03-29 1979-03-29 Pressure-resistant plastic containers for carbonated beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002279U JPS5911083Y2 (en) 1979-03-29 1979-03-29 Pressure-resistant plastic containers for carbonated beverages

Publications (2)

Publication Number Publication Date
JPS55142433U JPS55142433U (en) 1980-10-13
JPS5911083Y2 true JPS5911083Y2 (en) 1984-04-05

Family

ID=28907953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002279U Expired JPS5911083Y2 (en) 1979-03-29 1979-03-29 Pressure-resistant plastic containers for carbonated beverages

Country Status (1)

Country Link
JP (1) JPS5911083Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193332A (en) * 1981-04-27 1982-11-27 Teijin Ltd Manufacture of polyester container
JPS59147033U (en) * 1983-03-22 1984-10-01 株式会社吉野工業所 Small synthetic resin containers for vending machines

Also Published As

Publication number Publication date
JPS55142433U (en) 1980-10-13

Similar Documents

Publication Publication Date Title
US4743479A (en) Multi-layered vessels and method for molding the same
US5133468A (en) Footed hot-fill container
US4318489A (en) Plastic bottle
US5427258A (en) Freestanding container with improved combination of properties
US5780130A (en) Container and method of making container from polyethylene naphthalate and copolymers thereof
JPH0343342A (en) Pressure-proof selfstanding bottle
BRPI0609387A2 (en) stretch and blow molded container, and injection molded preform
BR112015018253B1 (en) ASSEMBLY COMPRISING A PREFORM OR PLASTIC CONTAINER AND A REMOVABLE CLOSURE
OA12669A (en) Container for a flowable product, process of manufacture and the use thereof.
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
ES2386342T3 (en) Preform and bottle using PET / PEN blends and copolymers
KR20060111469A (en) A container for product with less packaging material
JPS6221616B2 (en)
JPS5911083Y2 (en) Pressure-resistant plastic containers for carbonated beverages
JPH04154536A (en) Saturated polyester bottle
ES2342607T3 (en) POLYESTER COMPOSITION THAT INCLUDES SILICON PARTICLES AND ITS USE TO MANUFACTURE PACKAGING ITEMS.
US20030222047A1 (en) Hot-fillable container and method for bottling a beverage
JPH01288421A (en) Biaxial orientation polyester bottle
JPH07309320A (en) One-piece type heat-resistant polyester bottle and manufacture thereof
JPH0379189B2 (en)
JPS6279258A (en) Polyester bottle and production thereof
JPH0126940B2 (en)
JP2018150076A (en) Plastic bottle and filling body
JPH0347176B2 (en)
JPH06144453A (en) Vessel with cap