JPS59110829A - Direct injection type diesel engine - Google Patents

Direct injection type diesel engine

Info

Publication number
JPS59110829A
JPS59110829A JP57222291A JP22229182A JPS59110829A JP S59110829 A JPS59110829 A JP S59110829A JP 57222291 A JP57222291 A JP 57222291A JP 22229182 A JP22229182 A JP 22229182A JP S59110829 A JPS59110829 A JP S59110829A
Authority
JP
Japan
Prior art keywords
combustion chamber
air
swirl
oil
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57222291A
Other languages
Japanese (ja)
Other versions
JPH0375735B2 (en
Inventor
Takashige Tokushima
徳島 孝成
Tetsuo Kitamura
哲郎 北村
Haruhiko Taketomo
竹友 晴彦
Mitsuo Hitomi
光夫 人見
Masao Kishimoto
雅夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57222291A priority Critical patent/JPS59110829A/en
Publication of JPS59110829A publication Critical patent/JPS59110829A/en
Publication of JPH0375735B2 publication Critical patent/JPH0375735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To intensify swirl yielded in a combustion chamber and to improve combustion efficiency, by a method wherein a timing detecting means for detecting the terminal of fuel injection is mounted, and an air flow is created in a combustion chamber through actuation of means for creating an air flow according to the output thereof. CONSTITUTION:When an engine is shifted to high-rotation high-load operation, a first valve 36 is opened by means of the output of a circuit for detecting said operation, forced oil from an oil pump 30 flows in a flow-in chamber 27 of an actuator 15, and flows in a reservoir chamber 28 through a one-way valve 22. In which case, with a second valve 36 simultaneously closed, the forced oil is confined to the interior of the reservoir chamber 28, and an engaging cylinder 19 and a spherical fulcrum 14 are locked to rise position. In this case, when a drive arm 12 is pushed down by a timing cam 13 in response to timing of fuel injection terminal, swing of the arm 12 pushes down a plunger 11a of an air injection pump 11 to inject the air through an injection nozzle 16, resulting in intensification of swirl yielded in a combustion chamber 5.

Description

【発明の詳細な説明】 本発明は、ピストン頂部に燃焼室を設け、該燃焼室に対
して複数の噴孔を有する燃料噴射ノズルを臨設し、この
燃料噴射ノズルから燃焼室内に生成された吸気スワール
に向けて燃料を直接に噴射し、このスワールと噴射燃料
との衝突によって混合気を生成するようにした直接噴射
式ディーゼルエンジンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a combustion chamber at the top of the piston, a fuel injection nozzle having a plurality of nozzle holes adjacent to the combustion chamber, and an intake air generated in the combustion chamber from the fuel injection nozzle. This invention relates to a direct injection diesel engine that injects fuel directly into a swirl and generates an air-fuel mixture through collision between the swirl and the injected fuel.

従来より、この種の直接噴射式ディーゼルエンジンは公
知である(実開昭56−133924号公報参照)。
This type of direct injection diesel engine is conventionally known (see Japanese Utility Model Application No. 56-133924).

かかる直接噴射式エンジンでは、混合気をごく短期間に
効率よく生成する必要があり、混合気の生成効率がエン
ジンの燃焼性等の諸性能を支配するといっても過言では
ナイ。
In such a direct injection engine, it is necessary to efficiently generate an air-fuel mixture in a very short period of time, and it is no exaggeration to say that the efficiency of air-fuel mixture generation governs various performances such as engine combustibility.

かかる混合気の生成効率は基本的には燃焼室内に生成さ
れるスワールの強さによって支配される。
The efficiency of generating such a mixture is basically controlled by the strength of the swirl generated within the combustion chamber.

このため、従来においては、最適なスワール強さを実現
しうるように吸気ボートのボート形状、指向性等を設定
しているが、実際には、最適な7ワール強さを確保する
ことは仲々に困難である。
For this reason, in the past, the boat shape, directivity, etc. of the intake boat were set to achieve the optimal swirl strength, but in reality, it is difficult to ensure the optimal 7-whirl strength. It is difficult to

即ち、スワールの生成は、基本的に吸伝行程に行なわれ
るが、ピストンの上昇に伴なって生成さレタスワールは
徐々ではあるが次第龜こ減衰される。
That is, the swirl is basically generated during the absorption stroke, but as the piston moves upward, the lettuce swirl generated is gradually but gradually attenuated.

このため、燃料の吹き始めと吹き終りとでは、スワール
強さが変化しており、吹き終りの時点ではスワールが減
衰して混合気の生成効率が低下し、燃焼が緩慢となって
後添えを招来する要因となる問題がある。
For this reason, the swirl strength changes between the beginning and end of fuel blowing, and at the end of blowing, the swirl attenuates and the mixture generation efficiency decreases, slowing combustion and causing after-effects. There are problems that lead to this.

そこで、燃料の吹き終り時においても充分に強いスワー
ルが残っているように、吸気ボートのボート形状を設定
すると、今度は燃料の吹き始めにおいてスワールが強く
なりすぎる、この時点にスワールが強すぎると一度に多
くの混、合気が生成されるため、燃焼の大部分が短期間
で行なわれでしまうので、燃焼温度、圧力が急激に上昇
してNOx。
Therefore, if we set the boat shape of the intake boat so that a sufficiently strong swirl remains even when the fuel finishes blowing, the swirl becomes too strong at the beginning of the fuel blow, and if the swirl is too strong at this point. Since a large amount of mixture and air gas is generated at once, most of the combustion takes place in a short period of time, resulting in a rapid rise in combustion temperature and pressure, resulting in NOx.

燃焼騒音の発生という問題が生じる。特にエンジンの高
負荷時にはこの問題が顕著となる。
A problem arises in that combustion noise is generated. This problem becomes particularly noticeable when the engine is under high load.

本発明は、かかる従来の問題、壱に鑑みてなされたもの
であって、吸気ポートの設定によって支配されるスワー
ルに対して、スワールが減衰する燃料の吹き終りのタイ
ミングでスワールを強化する空気流動を燃焼室内に生成
することにより、燃料の吹き終り以後の混合気の生成を
促進してエンジンの燃焼性を改善することを基本的な目
的々している。
The present invention has been made in view of the above-mentioned conventional problem.The present invention has been made in view of the above-mentioned problems in the prior art. Its basic purpose is to improve the combustibility of the engine by generating air-fuel mixture in the combustion chamber to promote the generation of air-fuel mixture after the fuel has finished blowing.

即ち、本発明は、面接噴射式ディーゼルエンジンにおい
て、燃料の噴射の終期を検出するタイミング検出手段と
、このタイミング検出手段により作動され、燃焼室内に
空気流動を生成する空気流動生成手段とを設け、燃料の
噴射の終期以後に。
That is, the present invention provides a surface-injection diesel engine that includes timing detection means for detecting the end of fuel injection, and air flow generation means that is activated by the timing detection means and generates air flow within the combustion chamber. After the end of fuel injection.

生成した空気流動によってスワールの強fヒを図って、
混合気の生成を促進するようにしたものである。
By using the generated air flow to create a strong swirl,
It is designed to promote the generation of air-fuel mixture.

本発明にかかる空気流動生成手段は、したがって、燃料
の吹き終り以後の燃焼性を支配することができ、特に、
高出力が要求されるエンジンの高負荷時に、スワールの
強化を図って燃焼性を改善するために使用するようにす
れば、エンジンの負荷状態に応じた最適燃焼を達成する
ことが可能となる。
Therefore, the air flow generation means according to the present invention can control the combustibility after the end of fuel blowing, and in particular,
If the swirl is strengthened and used to improve combustibility when the engine is under high load and requires high output, it becomes possible to achieve optimal combustion according to the engine load condition.

以下、図示の実施例に基いて不発明をより具体的に説明
する。
Hereinafter, the invention will be explained in more detail based on illustrated embodiments.

第1図に示す直接噴射式ディーゼルエンジン1において
、2はシリンダ本体3のシリンダボア4内を上下方向に
往復運動するピヌトン、5はピヌトン2の頂部に設けた
凹部によって形成される燃焼室、6は燃焼室5の中心部
上方にノズル先端7(3) が位置するようにシリンダヘッド8に装着した燃料噴射
ノズルである。
In the direct injection diesel engine 1 shown in FIG. 1, 2 is a pinuton that reciprocates in the vertical direction within the cylinder bore 4 of the cylinder body 3, 5 is a combustion chamber formed by a recess provided at the top of the pinuton 2, and 6 is a This fuel injection nozzle is attached to the cylinder head 8 so that the nozzle tip 7 (3) is located above the center of the combustion chamber 5.

上記直接噴射式ディーゼルエンジン1は、第2図に示す
ように、燃焼室5の周方向に吸免を指向させる吸気ポー
ト9がら空気を吸入してスワールSを生成し、ピヌトン
2が上死点に達する直前に複数の噴孔(図示せず)を備
えたノズル先端7から燃料を放射状に燃焼室5内に噴射
し、燃焼室5内のスワールSによって混合気を生成し、
生成した混合気は一断熱圧縮によって自己着火燃焼し、
燃焼後の排気ガスは、排気ポートlOから排出する基本
構造を有する。
As shown in FIG. 2, the direct injection diesel engine 1 takes in air through an intake port 9 that directs intake and exhaust in the circumferential direction of the combustion chamber 5 to generate a swirl S, and the pinuton 2 is at the top dead center. Immediately before reaching the combustion chamber 5, fuel is injected radially into the combustion chamber 5 from a nozzle tip 7 equipped with a plurality of nozzle holes (not shown), and a mixture is generated by a swirl S in the combustion chamber 5.
The generated air-fuel mixture undergoes self-ignition combustion through monodiabatic compression.
The basic structure is that the exhaust gas after combustion is discharged from the exhaust port IO.

上記の基本構造を有する直接噴射式ディーゼルエンジン
Jには、さらに−空気流動生成手段としての空気噴射ポ
ンプ1】と、この空気噴射ポンプ11を駆動する駆動ア
ームJ2と、この駆動アーム12を駆動するタイミング
カム13と、駆動アーム】2の揺動皮膚を形成する球状
支点】4を支持する油圧作動式アクチュエータ15とを
設けている。
The direct injection diesel engine J having the above basic structure further includes an air injection pump 1 as an air flow generating means, a drive arm J2 for driving the air injection pump 11, and a drive arm J2 for driving the drive arm 12. A timing cam 13 and a hydraulically actuated actuator 15 that supports a spherical fulcrum [4] forming a swinging skin of the drive arm [2] are provided.

(4) 上記空気噴射ポンプ11は、−mのプランジャポンプと
して、その噴射孔16がピストン2頂部の燃焼室51こ
向けて、好ましくは、第2図シこ示すように、燃焼室5
内のスワールSを強化する方向に指向するように、シリ
ンダヘッド8に設けた取イτ1穴内に挿入固定されてい
る。
(4) The air injection pump 11 is preferably a -m plunger pump with its injection hole 16 facing toward the combustion chamber 51 at the top of the piston 2, as shown in FIG.
It is inserted and fixed into a hole τ1 provided in the cylinder head 8 so as to be oriented in a direction to strengthen the swirl S inside.

上記タイミングカム13は、エンジンの出力軸の2回転
で1回転するカムシャフト17に取付けられ、そのカム
山は、燃料噴射ノズル6の噴射の終期に駆動アーム12
を球状支点14を揺動支点として図の時針廻りに揺動さ
せることができる位相に設定し、燃料の噴射の終期以後
において、駆動アームJ2により、ブラゼジャ11aを
コイルバネllbのバネ力に抗して押下げ、噴射孔16
より加圧空気を燃焼室5に噴射させる。即ち、このタイ
ミングカム】3は、空気噴射ポンプJ1を燃料の噴射の
終期以後の適当なタイミングで駆動制御するタイミング
検出手段を構成する。
The timing cam 13 is attached to a camshaft 17 that rotates once every two revolutions of the output shaft of the engine, and its cam crest is connected to the drive arm 17 at the end of injection from the fuel injection nozzle 6.
is set to a phase that allows it to swing around the hour hand in the figure with the spherical fulcrum 14 as a swing fulcrum, and after the end of fuel injection, the drive arm J2 moves the brassiere 11a against the spring force of the coil spring llb. Press down, injection hole 16
More pressurized air is injected into the combustion chamber 5. That is, the timing cam 3 constitutes a timing detecting means for driving and controlling the air injection pump J1 at an appropriate timing after the end of fuel injection.

次に、球状支点】4を支持する油圧作動式アクチュエー
タ】5の構造および作動を第3図Gこより説明する。
Next, the structure and operation of the hydraulic actuator 5 supporting the spherical fulcrum 4 will be explained with reference to FIG. 3G.

油圧作動式アクチュエータ】5は、不実施例では、エン
ジンの高回転高負荷運転時において球状支点14をその
上昇位置にロックして保持し、それ以外の運転時には球
状支点14が下降しつるようにロックを解除して、駆動
アーム12が空気噴射ポンプ〕1を作動しないように、
駆動アーム12の球状支点]4を不能化するために設け
たものである。
Hydraulically actuated actuator 5 locks and holds the spherical fulcrum 14 in its raised position when the engine is operating at high speed and under high load, and lowers and hangs the spherical fulcrum 14 during other operations. Release the lock and prevent the drive arm 12 from operating the air injection pump]1.
This is provided to disable the spherical fulcrum of the drive arm 12.

即ち、油圧作動式アクチュエータ〕5は、シリンタヘッ
ド8に固定さねた有底筒状のケーシング18に、有底筒
状の嵌合筒J9を下向きに摺動可能に嵌合し、さらに嵌
合筒19の下半部には上部に弁座20を設けた内筒21
を嵌合し、内筒21の弁座20には、一方向弁22をコ
イルスプリング23で付勢支持して装着した基本構造を
有し、嵌合筒19の上方には図示の如く球状支点14を
支持している。
That is, the hydraulic actuator] 5 has a bottomed cylindrical fitting tube J9 that is slidably fitted downward into a bottomed cylindrical casing 18 that is fixed to the cylinder head 8, The lower half of 19 has an inner cylinder 21 with a valve seat 20 on the upper part.
It has a basic structure in which a one-way valve 22 is biased and supported by a coil spring 23 and attached to the valve seat 20 of the inner cylinder 21, and a spherical fulcrum is provided above the fitting cylinder 19 as shown in the figure. 14 is supported.

上記一方向弁22は−コイルスプリング23によって下
縁が下向きに付勢支持されたカバ一部材24の内部にボ
ール25をコイルスプリング26により下向きに付勢し
たものであって、ケーシング18の底部およびこねと小
孔をもって連通ずる内筒21の内部を含むオイル流入室
27と、嵌合筒19の上部のオイル貯溜室28とに仕切
っている。
The one-way valve 22 has a ball 25 inside a cover member 24 whose lower edge is biased and supported downward by a coil spring 23, and a ball 25 biased downward by a coil spring 26. It is partitioned into an oil inflow chamber 27 containing the inside of the inner cylinder 21 communicating with the kneading cylinder through a small hole, and an oil storage chamber 28 at the upper part of the fitting cylinder 19.

上記オイル流入室27には、オイルパン29内のオイル
を加圧して供給するオイルポンプ30に連結したオイル
供給通路3Jを連通し、オイル供給通路31の途中には
、オイル供給を制御する常閉の第1パルプ32を介設し
ている。また、上記オイル貯溜室28は、オイル貯溜室
28に連通孔33を介して連通ずるように嵌合筒】9の
外周に設けたリング溝34を介してオイル排出通路35
に連通し2才イル排出通路35の途中には常開の第2バ
ルブ36を介設している。
The oil inflow chamber 27 is communicated with an oil supply passage 3J connected to an oil pump 30 that pressurizes and supplies oil in the oil pan 29. A first pulp 32 is interposed therebetween. The oil storage chamber 28 is connected to an oil discharge passage 35 through a ring groove 34 provided on the outer periphery of the fitting cylinder 9 so as to communicate with the oil storage chamber 28 through a communication hole 33.
A normally open second valve 36 is interposed in the middle of the 2-year-old oil discharge passage 35 that communicates with the 2-year-old oil discharge passage 35.

上記第1.第2バルブ32.36は、例えば電磁開閉パ
ルプとし、夫々、第1.第2ドライバ回路37.38に
よって開閉駆動する。これら第1゜第2ドライバ回路3
7.38は、エンジンの高回(7) 転高負荷運転時を検出する検出回路39の出力を受けて
、夫々第1.第2バルブ32.36を駆動する。
Above 1st. The second valves 32, 36 are, for example, electromagnetic valves, respectively. Opening/closing driving is performed by second driver circuits 37 and 38. These first and second driver circuits 3
7.38 receives the output of the detection circuit 39 that detects when the engine is running at high engine speed (7) and is operating under high load. Activate the second valve 32,36.

検出回路39は、アクセル開度センサ40の出力とエン
ジンの高負荷に対応して予め設定した第1しきい値e1
とを比較して、出力が第1しきい値e1を越えたときに
’ High ’を出力する第1比較器4Jと、エンジ
ン回転センサ42の出力とエンジンの高回転に対応して
予め設定した第2しきい値e2とを比較し、出力が第2
しきい値e2を越えたときにゝHigh’を出力する第
2比較器43と、第1.第2比較器41.43が同時に
“High”を出力したときに、第1.第2ドライバ回
路37.38に’ High ”を出力するアンド回路
44とからなる。
The detection circuit 39 has a first threshold value e1 preset in response to the output of the accelerator opening sensor 40 and the high load of the engine.
The first comparator 4J outputs 'High' when the output exceeds the first threshold value e1, and the first comparator 4J outputs 'High' when the output exceeds the first threshold value e1. The second threshold value e2 is compared, and the output is the second threshold value e2.
a second comparator 43 that outputs "High" when the threshold value e2 is exceeded; When the second comparators 41 and 43 simultaneously output "High", the first and second comparators 41 and 43 simultaneously output "High". It consists of an AND circuit 44 that outputs 'High' to the second driver circuits 37 and 38.

いま、エンジンが上記第1.第2しきい値el。Now, the engine is the first one above. Second threshold el.

e2によって設定した以上の高回転高負荷運転以外の運
転状態、つまり通常の運転状態で運転されているときに
は、第1パルプ32は閉、第2バルブ36は開で、油圧
作動式アクチュエータ15の(8) オイル流入室27にオイルは供給されず、オイル貯溜室
28はオイルパン29側に開放連通される。
When the operating state is other than the high-speed, high-load operation set by e2, that is, the normal operating state, the first pulp 32 is closed, the second valve 36 is open, and the hydraulic actuator 15 ( 8) No oil is supplied to the oil inlet chamber 27, and the oil reservoir chamber 28 is open and communicated with the oil pan 29 side.

このため、嵌合筒19はオイルによってロックされず、
単にコイルバネ26のバネ力により支持されるに過ぎず
、タイミングカム13の回転に伴なって駆動アーム】2
が下向きに押されると、この下向きの力で球状支点14
はこれを支持する嵌合筒19とともに下降する結果、駆
動アーム】2は空気噴射ポンプJ】を作動させることが
できず、燃焼室5内にヌワールSを強化するような空便
流動は実質上生成されない。なお、第3図において、4
5はオイル貯溜室28から一旦流出したオイルのオイル
貯溜室28への逆流を防止する逆止弁である。
Therefore, the fitting cylinder 19 is not locked by oil,
It is merely supported by the spring force of the coil spring 26, and as the timing cam 13 rotates, the drive arm]2
When is pushed downward, this downward force causes the spherical fulcrum 14 to
As a result, the drive arm [2] is unable to operate the air injection pump J], and the air flow that strengthens the air flow inside the combustion chamber 5 is substantially prevented. Not generated. In addition, in Figure 3, 4
Reference numeral 5 designates a check valve that prevents the oil that has once flowed out of the oil storage chamber 28 from flowing back into the oil storage chamber 28.

ところが、エンジンが第1.第2しきい値e t。However, the engine is the first. Second threshold value et.

e2によって設定される以上の高回転高負荷運転に移2
行されると、検出回路39のアンド回路44から’ H
igh ”が出力され、第】ドライバ回路37は第1パ
ルプ32を開作動し、第2ドライバ回路38は第2バル
ブ36を閉作動する。
Shifts to high-speed, high-load operation higher than that set by e22.
, the AND circuit 44 of the detection circuit 39
igh” is output, the first driver circuit 37 operates to open the first pulp 32, and the second driver circuit 38 operates to close the second valve 36.

このため、オイルポンプ30によって加圧されたオイル
は、オイル供給通路31を通してオイル流入室27に流
入し、このオイル流入室27の圧力の上昇によって一方
向弁22が開かれて、オイル貯溜室28内にこオイルが
流入する。このオイル貯溜室28内に流入したオイルは
、一方向弁22および閉じた第2バルブ36によってオ
イル貯溜室28内に閉じ込められ、その結果、i合部1
9および球状支点14はその上昇位置にロックされる。
Therefore, the oil pressurized by the oil pump 30 flows into the oil inflow chamber 27 through the oil supply passage 31, and as the pressure in the oil inflow chamber 27 increases, the one-way valve 22 is opened and the oil reservoir chamber 28 is opened. Oil flows inside. The oil that has flowed into the oil storage chamber 28 is confined within the oil storage chamber 28 by the one-way valve 22 and the closed second valve 36, and as a result, the i-junction 1
9 and the spherical fulcrum 14 are locked in their raised positions.

したがって、第4図に斜線で示すように、燃料噴射ノズ
ル6による1回の燃料噴射が行なわれると、はぼビヌト
ン上死点TDCに対応した燃料噴射終期のタイミングで
、タイミングカム13が駆動アーム〕2を押下げ、駆動
アームJ2はロックされた球状支点]4を揺動支点とし
て、第1図について説明したように、図の時針廻りに揺
動して空気噴射ポンプ11のプランジャllaを押下げ
、ピヌトンIICを下降させて、加圧空気を燃焼室5に
向けて噴射孔】6から噴射する(第4図点線参照)。こ
の噴射空気は、前述したように、燃焼室5内のスワール
Sを強化する流動を燃焼室5内で生成し、この特産で減
衰しつつあった7ワールSを強化することによって混合
気の生成を促進する。
Therefore, as shown by diagonal lines in FIG. 4, when one fuel injection is performed by the fuel injection nozzle 6, the timing cam 13 moves the drive arm at the timing of the end of fuel injection corresponding to the top dead center TDC. ] 2 is pressed down, and the drive arm J2 is a locked spherical fulcrum] With 4 as a swinging fulcrum, it swings around the hour hand in the figure and pushes the plunger lla of the air injection pump 11. The pinuton IIC is lowered, and pressurized air is injected toward the combustion chamber 5 from the injection hole 6 (see the dotted line in Figure 4). As mentioned above, this injected air generates a flow within the combustion chamber 5 that strengthens the swirl S in the combustion chamber 5, and by strengthening the swirl S that has been attenuating due to this special feature, the air-fuel mixture is generated. promote.

このスワールSの強化により、既に燃焼を開始していた
燃料は、後添えを生ずることなく早期に燃焼を終了する
ことができる。
By strengthening the swirl S, the combustion of the fuel that has already started can be completed early without any additional combustion.

以上の実施例では、エンジンが高回転高負荷運転に移行
された場合にのみ、空気噴射ポンプ11を作動させるよ
うにしたが、本発明はこれに限られるものではない。即
ち、いかなる運転状態で空気噴射ポンプ1]を作動させ
るかは、スワールSの強度を実際に支配する吸気ポート
9の設定との関係で決められるべきものである。
In the embodiments described above, the air injection pump 11 is operated only when the engine shifts to high-speed, high-load operation, but the present invention is not limited to this. That is, the operating state in which the air injection pump 1 is operated should be determined in relation to the setting of the intake port 9, which actually controls the intensity of the swirl S.

また、タイミング検出手段、空気流動生成手段は、上記
の実施例に限定されるものでないことはいうまでもない
Further, it goes without saying that the timing detection means and the air flow generation means are not limited to the above embodiments.

以上の説明から明らかなように、本発明によれば、燃料
噴射の終期以後にスワールを強化するこ〔11) とができるので、タイミングを適当に設定すれば、初期
燃焼を比較的緩慢に行なわせてNOx 、燃焼騒音を抑
制するとともに、着火後はスワールの強化によって後添
えの少ない効率的な燃焼を行なわせることができるとい
った利点が得られる。
As is clear from the above explanation, according to the present invention, it is possible to strengthen the swirl after the end of fuel injection [11], so if the timing is set appropriately, initial combustion can be performed relatively slowly. In addition, NOx and combustion noise can be suppressed, and after ignition, swirl can be strengthened to achieve efficient combustion with less after-effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の一実施例を示す直接噴射式ディーゼル
エンジンの要部垂直断面図、第2図は第1図に示すピヌ
トンの平面説明図、第3図は第1図に示した油圧作動式
アクチュエータの構造および作動制御を示す説明図、第
4図はクランク角を基準として燃料噴射のタイミングお
よび空気流動生成手段の作動のタイミングを示すグラフ
である。 2・・・ピヌFン、    5・・・燃焼室、6・・・
燃料噴射ノズル、11・・・空気噴射ポンプ、】2・・
・駆動アーム、  13・・・タイミングカム。 特 許 出 願 人  東洋工業株式会社代  理  
人 升理士 青白 葆外2名(12)
Figure 1 is a vertical sectional view of the main parts of a direct injection diesel engine showing an embodiment of the invention, Figure 2 is a plan view of the pinneton shown in Figure 1, and Figure 3 is the hydraulic pressure shown in Figure 1. FIG. 4 is a graph showing the timing of fuel injection and the timing of the operation of the air flow generating means based on the crank angle. 2... PinuFun, 5... Combustion chamber, 6...
Fuel injection nozzle, 11... Air injection pump, ]2...
・Drive arm, 13...timing cam. Patent applicant: Toyo Kogyo Co., Ltd. Agent
Person Masu Rishi Aohaku 2 people (12)

Claims (1)

【特許請求の範囲】[Claims] (1)  ピストン頂部に燃焼室を設け、該燃焼室に対
して複数の噴孔を有する燃料噴射ノズルを臨設した直接
噴射式ディーゼルエンジンにおいて、燃料の噴射の終期
を検出するタイミング検出手段を設けるとともに、タイ
ミング検出手段により作動され、燃焼室内に空気流動を
生成する空気流動生成手段を設けたことを特徴とする直
接噴射式%式%
(1) In a direct injection diesel engine that has a combustion chamber at the top of the piston and a fuel injection nozzle having a plurality of injection holes attached to the combustion chamber, a timing detection means for detecting the end of fuel injection is provided, and , a direct injection type % type, characterized in that it is actuated by a timing detection means and is provided with an air flow generation means for generating an air flow within the combustion chamber.
JP57222291A 1982-12-17 1982-12-17 Direct injection type diesel engine Granted JPS59110829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57222291A JPS59110829A (en) 1982-12-17 1982-12-17 Direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222291A JPS59110829A (en) 1982-12-17 1982-12-17 Direct injection type diesel engine

Publications (2)

Publication Number Publication Date
JPS59110829A true JPS59110829A (en) 1984-06-26
JPH0375735B2 JPH0375735B2 (en) 1991-12-03

Family

ID=16780062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222291A Granted JPS59110829A (en) 1982-12-17 1982-12-17 Direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPS59110829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361535U (en) * 1986-10-09 1988-04-23
JPS63119829U (en) * 1987-01-30 1988-08-03
JPH03242425A (en) * 1990-02-20 1991-10-29 Hino Motors Ltd Diesel engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392016A (en) * 1977-01-24 1978-08-12 Kubota Ltd Combustion chamber for diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392016A (en) * 1977-01-24 1978-08-12 Kubota Ltd Combustion chamber for diesel engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361535U (en) * 1986-10-09 1988-04-23
JPH066190Y2 (en) * 1986-10-09 1994-02-16 トヨタ自動車株式会社 Direct injection internal combustion engine
JPS63119829U (en) * 1987-01-30 1988-08-03
JPH066191Y2 (en) * 1987-01-30 1994-02-16 トヨタ自動車株式会社 Direct injection internal combustion engine
JPH03242425A (en) * 1990-02-20 1991-10-29 Hino Motors Ltd Diesel engine

Also Published As

Publication number Publication date
JPH0375735B2 (en) 1991-12-03

Similar Documents

Publication Publication Date Title
US7533656B2 (en) Exhaust valve arrangement and a fuel system incorporating an exhaust valve arrangement
US8156927B2 (en) Combustion chamber structure for direct injection diesel engine
US7198033B2 (en) Fuel supply system of internal combustion engine
JPH09256850A (en) Gas engine of divideo combustion chamber type
JP4007310B2 (en) Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JP2002129990A (en) Combustion control device for compression ignition type engine
JP2001507427A (en) Engine with fuel injector integrated intake / exhaust valve
JP2009525431A (en) Two-stroke combustion engine using liquid injection
JP3882838B2 (en) Diesel engine exhaust valve control method and exhaust valve control device
JPS59110829A (en) Direct injection type diesel engine
JPH0654106B2 (en) Engine fuel injector
JP2009174432A (en) Engine intake/exhaust control method and engine intake/exhaust control device
US4693420A (en) Air-assist fuel injection nozzle
JP2000282823A (en) Hydraulic exhaust valve drive unit
US6527199B1 (en) Fuel injection valve for an internal combustion engine
JP4618181B2 (en) Premixed compression self-ignition gasoline internal combustion engine
JP2005133581A (en) Reverse rotation prevention mechanism for diesel engine
JPH10288038A (en) Direct injection type diesel engine
JP2001241370A (en) Fuel injection valve
JP2792407B2 (en) Fuel injection device for diesel engine and control method therefor
JP3724045B2 (en) Engine intake system
JP2000054930A (en) Fuel injection device for diesel engine
JPH11107862A (en) Exhaust gas recirculation system of internal combustion engine
JPH05240049A (en) Six-cycle engine
JPH04103827A (en) Direct injection type diesel engine