JP4618181B2 - Premixed compression self-ignition gasoline internal combustion engine - Google Patents

Premixed compression self-ignition gasoline internal combustion engine Download PDF

Info

Publication number
JP4618181B2
JP4618181B2 JP2006094883A JP2006094883A JP4618181B2 JP 4618181 B2 JP4618181 B2 JP 4618181B2 JP 2006094883 A JP2006094883 A JP 2006094883A JP 2006094883 A JP2006094883 A JP 2006094883A JP 4618181 B2 JP4618181 B2 JP 4618181B2
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
fuel injection
valve
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006094883A
Other languages
Japanese (ja)
Other versions
JP2007270670A (en
Inventor
正行 山下
勝彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006094883A priority Critical patent/JP4618181B2/en
Publication of JP2007270670A publication Critical patent/JP2007270670A/en
Application granted granted Critical
Publication of JP4618181B2 publication Critical patent/JP4618181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、予混合圧縮自己着火燃焼を行わせるガソリン内燃機関に関する。   The present invention relates to a gasoline internal combustion engine that performs premixed compression self-ignition combustion.

近年、ガソリンを燃料とする内燃機関において、圧縮自己着火燃焼を行わせる内燃機関が提案されている。一般に、圧縮自己着火燃焼は、予混合気を形成し、ピストンの圧縮が進むことで自己着火するので、火炎伝播による燃焼と異なり、局所的な燃焼温度が低く、NOxが極微量にしか発生しないという利点がある。その反面、均質な混合気場においては、シリンダ内全域が一斉に着火するため、負荷の上昇に伴って混合気をリッチ化すると、シリンダ内の圧力上昇率が大きくなりすぎ、振動・騒音が大きくなるという問題がある。そこで、圧縮自己着火燃焼運転を行わせる負荷領域を高負荷側に拡大するためには、着火時期が上死点付近になるようにすることで、シリンダ内の圧力上昇率を抑制する必要がある。   In recent years, an internal combustion engine that performs compression self-ignition combustion in an internal combustion engine that uses gasoline as fuel has been proposed. In general, compression self-ignition combustion forms a premixed gas and self-ignitions as piston compression progresses. Therefore, unlike combustion by flame propagation, the local combustion temperature is low and NOx is generated only in a very small amount. There is an advantage. On the other hand, in a homogeneous air-fuel mixture field, the entire area in the cylinder is ignited all at once, so if the air-fuel mixture is enriched as the load increases, the rate of pressure increase in the cylinder becomes too large, causing significant vibration and noise. There is a problem of becoming. Therefore, in order to expand the load range for performing the compression self-ignition combustion operation to the high load side, it is necessary to suppress the rate of pressure increase in the cylinder by making the ignition timing near the top dead center. .

特許文献1には、燃焼室の周辺部に燃料噴射弁を備えると共に、ピストン冠面の燃料噴射弁側の端部に第1凹室を、第1凹室に対して燃料噴射弁の軸線方向に隣接する第2凹室を形成し、燃料噴射弁で第1凹室及び第2凹室にそれぞれ噴射時期を変えて燃料を噴射して異なる濃度の混合気を形成して圧縮自己着火燃焼を行う内燃機関が開示されている。   In Patent Document 1, a fuel injection valve is provided in the peripheral portion of the combustion chamber, the first concave chamber is provided at the end of the piston crown surface on the fuel injection valve side, and the axial direction of the fuel injection valve is relative to the first concave chamber. A second concave chamber adjacent to the first concave chamber and a fuel injection valve to inject fuel at different injection timings into the first concave chamber and the second concave chamber to form air-fuel mixtures having different concentrations to perform compression self-ignition combustion. An internal combustion engine to perform is disclosed.

特開2002−195040号公報JP 2002-195040 A

特許文献1に記載のものは、1サイクルにおいて燃料噴射弁から二度燃料を噴射して第1凹室にリッチな混合気を、第2凹室にリーンな混合気をそれぞれ生成し、最初に第1凹室にリッチな混合気を圧縮自己着火させ、その発熱によって隣接する第2凹室に配したリーンな混合気を圧縮自己着火燃焼に至らしめる二段階燃焼を行っているので、噴射時期を1サイクルで二度制御することになり制御系の負荷が大きくなると共に、二段階の燃焼を行うため、状況によっては燃焼が不安定になり易い。
本発明は、制御系の負荷が少なく、圧縮自己着火燃焼を安定して行える予混合圧縮自己着火型のガソリン内燃機関を提供することを、その目的とする。
In Patent Document 1, fuel is injected twice from the fuel injection valve in one cycle to generate a rich air-fuel mixture in the first concave chamber and a lean air-fuel mixture in the second concave chamber. Since the rich air-fuel mixture is compressed and ignited in the first concave chamber, and the lean air-fuel mixture disposed in the adjacent second concave chamber is subjected to compression self-ignition combustion by the heat generation, the injection timing Is controlled twice in one cycle, the load on the control system is increased, and two-stage combustion is performed, so that the combustion tends to become unstable depending on the situation.
An object of the present invention is to provide a premixed compression self-ignition type gasoline internal combustion engine that can reduce the load of a control system and stably perform compression self-ignition combustion.

上記目的を達成するため、請求項1の発明では、燃焼室の略中央に配置されて燃料を噴射する燃料噴射弁と、燃焼室に通じる吸気流路を狭めることで吸気流動を促進させる吸気流動制御弁と、機関の圧縮行程後期から圧縮上死点までの所定の範囲で、要求燃料噴射量の全量を一度に噴射するように燃料噴射弁の駆動を制御するとともに、吸気流動制御弁が吸気流動を促進させる位置を占めるように制御して燃焼室内の混合気を圧縮自己着火させる制御手段とを有することを特徴としている。
請求項2の発明では、所定の範囲が圧縮上死点前40°から圧縮上死点までの範囲であることを特徴とし、請求項3の発明では、料噴射弁は多噴孔であることを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a fuel injection valve that is disposed substantially in the center of the combustion chamber and injects fuel, and an intake air flow that promotes the intake air flow by narrowing the intake air passage that leads to the combustion chamber. The control valve controls the drive of the fuel injection valve so that the entire required fuel injection amount is injected at a time within a predetermined range from the late stage of the compression stroke of the engine to the compression top dead center. And control means for controlling to occupy a position for promoting flow and compressing and self-igniting the air-fuel mixture in the combustion chamber.
The invention according to claim 2 is characterized in that the predetermined range is a range from 40 ° before compression top dead center to compression top dead center, and in the invention according to claim 3, the charge injection valve is a multi-injection hole. It is characterized by.

本発明によれば、燃料噴射弁を燃焼室の略中央に配置し、機関の圧縮行程後期から圧縮上死点までの所定の範囲で要求燃料噴射量の全量を1度に噴射させ、吸気流動制御弁が吸気流動を促進させる位置を占めるように制御することで、高圧でかつ吸気流動が促進された燃焼室の吸気に対して燃焼室の中央から燃料が噴射されて霧化された燃料が一気に混合されるため、短期間で予混合が一気に行われて圧縮自己着火燃焼が圧縮上死点近傍で安定して発生し易くなり、自己着火燃焼の早期発生や遅れによる不具合を低減することができる。また、圧縮上死点前という限られた期間において燃料噴射を複数回実行してないので、制御系への負担を軽減することができる。   According to the present invention, the fuel injection valve is arranged substantially in the center of the combustion chamber, and the entire required fuel injection amount is injected at a time within a predetermined range from the latter half of the compression stroke of the engine to the compression top dead center, and the intake air flow By controlling the control valve to occupy a position that promotes intake air flow, fuel is injected from the center of the combustion chamber with respect to the intake air of the combustion chamber that is high pressure and the intake air flow is promoted, and the atomized fuel Because they are mixed at once, premixing is performed in a short period of time, and compression self-ignition combustion is likely to occur stably in the vicinity of compression top dead center, reducing problems due to early occurrence and delay of self-ignition combustion. it can. Further, since the fuel injection is not executed a plurality of times in a limited period before the compression top dead center, the burden on the control system can be reduced.

以下、本発明の実施の形態について図面を用いて説明する。図1において、符号1は内燃機関であるエンジンを示す。このエンジン1は、シリンダブロック2aに形成されたシリンダ2bと、その内部を上下に往復移動するピストン16と、シリンダブロック2aの上部に設けられたシリンダーヘッド2によって燃焼室40が形成されている。ピストン16はその冠面が一様にくぼんだボール型とされている。このエンジン1の動弁機構はDOHC4バルブ式が採用されている。吸気側の動弁機構50は、吸気流路12と燃焼室40とを連通するようにシリンダーヘッド2に形成された吸気ポート11を開閉する吸気弁7aと、吸気弁7aの上端に図示しないロッカーアームを介して当接する吸気カム3aが形成された吸気カムシャフト21と、吸気弁7aを閉弁方向に付勢する周知のバルブスプリングとから構成されている。排気側の動弁機構51は、燃焼室40に通じるようにシリンダーヘッド2に形成された排気ポート17を開閉する排気弁7bと、排気弁7bの上端に図示しないロッカーアームを介して当接する排気カム3bが形成された排気カムシャフト22と、排気弁7bを閉弁方向に付勢する周知のバルブスプリングとから構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes an engine which is an internal combustion engine. In this engine 1, a combustion chamber 40 is formed by a cylinder 2b formed in a cylinder block 2a, a piston 16 that reciprocates up and down in the cylinder 1 and a cylinder head 2 provided in an upper portion of the cylinder block 2a. The piston 16 has a ball shape in which the crown surface is uniformly recessed. The valve mechanism of the engine 1 employs a DOHC 4-valve type. The intake side valve mechanism 50 includes an intake valve 7a for opening and closing an intake port 11 formed in the cylinder head 2 so as to communicate the intake passage 12 and the combustion chamber 40, and a rocker (not shown) at the upper end of the intake valve 7a. The intake camshaft 21 is formed with an intake cam 3a that abuts via an arm, and a known valve spring that biases the intake valve 7a in the valve closing direction. The exhaust-side valve mechanism 51 includes an exhaust valve 7b that opens and closes the exhaust port 17 formed in the cylinder head 2 so as to communicate with the combustion chamber 40, and an exhaust that abuts the upper end of the exhaust valve 7b via a rocker arm (not shown). The exhaust camshaft 22 is formed with a cam 3b, and a known valve spring that biases the exhaust valve 7b in the valve closing direction.

吸気カムシャフト21と排気カムシャフト22の各端には、タイミングプーリ4a,4bがそれぞれ装着されている。これらタイミングプーリ4a,4bは図示しないタイミングベルトを介してクランク軸6に連結されている。タイミングプーリ4a,4bとカムシャフト21,22は、クランク軸6の回転に伴って回転駆動され、これらのカムシャフト21,22により吸気弁7a及び排気弁7bがエンジン1の回転に同期して開閉駆動される。本形態では、基本的に吸気流動として燃焼室40内にタンブル流が発生する構造となっている。   Timing pulleys 4a and 4b are mounted on the ends of the intake camshaft 21 and the exhaust camshaft 22, respectively. These timing pulleys 4a and 4b are connected to the crankshaft 6 via a timing belt (not shown). The timing pulleys 4 a and 4 b and the camshafts 21 and 22 are rotationally driven as the crankshaft 6 rotates, and the intake and exhaust valves 7 a and 7 b are opened and closed in synchronization with the rotation of the engine 1 by the camshafts 21 and 22. Driven. In this embodiment, a tumble flow is basically generated in the combustion chamber 40 as an intake air flow.

シリンダーヘッド2には、燃焼室内へ燃料を噴射する燃料噴射手段としての燃料噴射弁15と、燃焼室40に臨み燃焼室40内において点火を行う点火手段としての点火プラグ19が設けられている。燃料噴射弁15は、シリンダブロック2aを図1において上方から見たときに燃焼室40の略中央に配置され、高圧で燃料を噴射する高圧噴射ノズルとされている。燃料噴射弁15には、高圧な燃料が供給されるように構成されている。燃料噴射弁15の先端に設けられた複数の噴射孔15aを図2に示すように燃焼室40内に臨んでいる。燃料噴射弁15の噴射孔15aの数は、燃料の拡散性を考慮すると少なくとも6つ以上が望ましい。本形態において、燃料噴射弁15は、噴射孔15aが円周方向に等間隔で6つ形成された多噴孔とされていて、燃焼室40に放射上に燃料を噴射するように構成されている。   The cylinder head 2 is provided with a fuel injection valve 15 as fuel injection means for injecting fuel into the combustion chamber, and an ignition plug 19 as ignition means for facing the combustion chamber 40 and igniting the combustion chamber 40. The fuel injection valve 15 is arranged at the approximate center of the combustion chamber 40 when the cylinder block 2a is viewed from above in FIG. 1, and is a high-pressure injection nozzle that injects fuel at a high pressure. The fuel injection valve 15 is configured to be supplied with high-pressure fuel. A plurality of injection holes 15a provided at the tip of the fuel injection valve 15 face the combustion chamber 40 as shown in FIG. The number of the injection holes 15a of the fuel injection valve 15 is preferably at least 6 in consideration of the diffusibility of the fuel. In this embodiment, the fuel injection valve 15 is a multi-injection hole in which six injection holes 15a are formed at equal intervals in the circumferential direction, and is configured to inject fuel into the combustion chamber 40 radially. Yes.

吸気経路12内にはスロットル弁14と、吸気流路12を狭める方向に作動することで吸気流動を促進させる吸気流動制御弁(以下「FCV」と記す)37とが設けられている。スロットル弁14は、図示しないワイヤまたは電子制御機構を介してアクセルペダル34と連結されていて、アクセルペダル34の踏込量に応じてその開度が調整されるようになっている。   A throttle valve 14 and an intake flow control valve (hereinafter referred to as “FCV”) 37 that promotes intake flow by operating in a direction to narrow the intake flow path 12 are provided in the intake path 12. The throttle valve 14 is connected to an accelerator pedal 34 via a wire (not shown) or an electronic control mechanism, and its opening degree is adjusted according to the depression amount of the accelerator pedal 34.

FCV37は、燃料噴射弁15よりも吸気上流側、すなわち燃料噴射弁15とスロットル弁14の間に位置する吸気流路12に図示しないフランジによって回動自在に支持されている。FCV37は、通常、図3に実線で示す中立位置を占め、ステッピングモータ38によって回動されることで、図3において吸気流路12の下方内壁面12a側に上流側端部37aが接触する作動位置を占める。FCV37が中立位置とは、吸気流路12の流路面積が最も大きくなる吸気流路12と略平行な位置であり、作動位置は筒内のタンブル流を強化させる位置である。   The FCV 37 is rotatably supported by a flange (not shown) in the intake passage 12 located upstream of the fuel injection valve 15, that is, between the fuel injection valve 15 and the throttle valve 14. The FCV 37 normally occupies a neutral position shown by a solid line in FIG. 3 and is rotated by the stepping motor 38 so that the upstream end 37a contacts the lower inner wall surface 12a of the intake passage 12 in FIG. Occupy position. The neutral position of the FCV 37 is a position substantially parallel to the intake flow path 12 where the flow passage area of the intake flow path 12 is the largest, and the operation position is a position where the tumble flow in the cylinder is strengthened.

エンジン1は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたエンジン制御ユニット(以下「ECU」と記す)31で制御される。   The engine 1 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing a control program and a control map, an engine control unit (hereinafter referred to as “CPU”), a timer counter, and the like. ECU ”) 31).

ECU31には、燃料噴射弁15、点火プラグ19、エンジン1の回転状態を検出する回転検出手段となるエンジン回転数センサ32、エンジン負荷となるスロットル弁14の開度を検出する開度検出手段となるスロットル開度センサ33、ステッピングモータ38が接続されている。ECU31は、これらセンサから入力される情報に応じて、点火プラグ19による点火時期、燃料噴射時期、燃焼切換時期やタンブル強化時期とともに、エンジン1の吸気、圧縮、爆発、排気の各行程を判断している。   The ECU 31 includes a fuel injection valve 15, an ignition plug 19, an engine speed sensor 32 serving as a rotation detection unit that detects the rotation state of the engine 1, and an opening detection unit that detects the opening of the throttle valve 14 serving as an engine load. A throttle opening sensor 33 and a stepping motor 38 are connected. The ECU 31 determines the intake, compression, explosion, and exhaust strokes of the engine 1 along with the ignition timing, fuel injection timing, combustion switching timing, and tumble strengthening timing by the spark plug 19 in accordance with information input from these sensors. ing.

すなわち、ROMにはエンジン回転数とスロットル弁14の開度から求めた燃焼切換手段となる図4に示すマップが予め記憶されていて、エンジン回転数とスロットル開度が領域Aにあるときには圧縮自己着火燃焼領域と判断し、領域Bにあるときには火花着火燃焼領域と判断する。ECU31は、エンジン1の運転状態が圧縮自己着火燃焼領域の場合には、圧縮上死点までの所定の範囲となる圧縮上死点前40°(40°BTDC)から圧縮上死点(TDC)までの間乃至圧縮上死点前20°(20°BTDC)から圧縮上死点(TDC)の間において、機関の負荷と回転数に基いて算出される要求燃料噴射量を燃料噴射弁15からの1回だけの噴射で噴射するように噴射制御を行うとともにステッピングモータ38を駆動してFCV37を作動位置へと移動する。圧縮自己着火燃焼領域の場合には点火プラグ19は非作動状態とするように各部を制御する。ECU31は、エンジン1の運転状態が火花着火燃焼領域の場合にはステッピングモータ38は駆動せずFCV37を中間位置に置くとともに、燃料噴射弁15からの噴射時期を吸気行程時に行うとともに、点火プラグ19から火花を飛ばすように各部を制御する。   That is, the ROM stores in advance a map shown in FIG. 4 as combustion switching means obtained from the engine speed and the opening degree of the throttle valve 14, and when the engine speed and the throttle opening degree are in the region A, the compression self It is determined as an ignition combustion region, and when it is in region B, it is determined as a spark ignition combustion region. When the operating state of the engine 1 is in the compression self-ignition combustion region, the ECU 31 performs compression top dead center (TDC) from 40 ° (40 ° BTDC) before the compression top dead center, which is a predetermined range up to the compression top dead center. From the fuel injection valve 15 to the required fuel injection amount calculated based on the engine load and the rotational speed during the period up to 20 ° before compression top dead center (20 ° BTDC) to compression top dead center (TDC). The injection control is performed so that the injection is performed only once, and the stepping motor 38 is driven to move the FCV 37 to the operating position. In the case of the compression self-ignition combustion region, each part is controlled so that the spark plug 19 is in an inoperative state. When the operating state of the engine 1 is in the spark ignition combustion region, the ECU 31 does not drive the stepping motor 38 and places the FCV 37 at an intermediate position, performs the injection timing from the fuel injection valve 15 during the intake stroke, and sets the spark plug 19. Each part is controlled so that a spark is blown from.

このような構成において、吸気流路12内には、エンジン1の始動に伴いシリンダ2b内を図1において上下に往復移動するピストン16の下降に伴って、エアクリーナ13から吸入空気が導入され、吸気経路12内のスロットルバルブ14の開度に応じて流量調整された後に吸気ポート11を経て吸気弁7aの開弁時にシリンダ2b内に流入する。   In such a configuration, intake air is introduced into the intake passage 12 from the air cleaner 13 as the piston 16 that reciprocates up and down in FIG. After the flow rate is adjusted according to the opening degree of the throttle valve 14 in the path 12, the air flows into the cylinder 2b through the intake port 11 when the intake valve 7a is opened.

このとき、エンジン1が火花着火燃焼領域にある場合には、ピストン1が上昇を始める前、すなわち吸気行程において、燃料噴射弁15から高圧で燃料が燃焼室40内に噴射され、燃焼室40内で吸入空気によって発生しているタンブル流によって吸入空気と混合されつつ圧縮される。そして、点火信号が点火プラグ19に印加されると、火花により混合気に着火され、火炎伝播による燃焼が開始される。排気ポート17と接続する排気経路18には、燃焼室40内での燃焼後の排ガスが、排気弁7bの開弁時にピストン16の上昇に伴って排気ポート17から案内され、排気経路18上に設けられた触媒としての三元触媒20及び図示しない消音器を経て外部に排出される。   At this time, when the engine 1 is in the spark ignition combustion region, the fuel is injected into the combustion chamber 40 at a high pressure from the fuel injection valve 15 before the piston 1 starts to rise, that is, in the intake stroke. And compressed by being mixed with the intake air by the tumble flow generated by the intake air. When an ignition signal is applied to the spark plug 19, the air-fuel mixture is ignited by a spark and combustion by flame propagation is started. In the exhaust path 18 connected to the exhaust port 17, exhaust gas after combustion in the combustion chamber 40 is guided from the exhaust port 17 as the piston 16 rises when the exhaust valve 7 b is opened, It is discharged to the outside through the three-way catalyst 20 as a catalyst provided and a silencer (not shown).

エンジン1が圧縮自己着火燃焼領域にある場合には、ステッピングモータ38が吸気行程において駆動され、FCV37が作動位置へと移動する。すると吸入空気は図2に示すように、FCV37の下流側端部37bと上方内壁面12bとの間を空間に案内されるため、上面内壁面12b側の流速が上がるので、筒内のタンブル流が強化される。   When the engine 1 is in the compression self-ignition combustion region, the stepping motor 38 is driven in the intake stroke, and the FCV 37 moves to the operating position. Then, as shown in FIG. 2, since the intake air is guided to the space between the downstream end 37b of the FCV 37 and the upper inner wall surface 12b, the flow velocity on the upper inner wall surface 12b side is increased. Will be strengthened.

ECU31は、ピストン1が上昇し圧縮行程に入り、圧縮上死点前40°、好ましくは圧縮上死点前20°になると、燃料噴射弁15を駆動して高圧の燃料が噴射孔15aから燃焼室40内に一度だけ噴射する。このとき、図2に示すように噴射孔15aは微小であり、かつ円周方向に等間隔で6つ形成されているので、燃料噴霧36は微細化されて燃焼室40に放射上に噴射される。また、このとき燃焼室40内は圧縮行程であるので、その内部の圧力と温度は高く、かつタンブル流が促進された状態にある。よって高圧噴射されて微細化された燃料噴霧36は、燃焼室40の中央から放射状に広がり強いタンブル流によって一気に混合されるため、予混合が十分に行われて圧縮自己着火燃焼が圧縮上死点近傍で発生して燃焼が開始される。燃焼ガスは吸気弁7bが開弁することで排気ポート17から排気経路18を経て三元触媒20及び図示しない消音器を経て外部に排出される。   When the piston 1 moves up and enters the compression stroke and reaches 40 ° before compression top dead center, preferably 20 ° before compression top dead center, the ECU 31 drives the fuel injection valve 15 to burn high-pressure fuel from the injection hole 15a. It sprays in the chamber 40 only once. At this time, as shown in FIG. 2, since the injection holes 15a are minute and are formed at equal intervals in the circumferential direction, the fuel spray 36 is miniaturized and injected radially into the combustion chamber 40. The At this time, since the inside of the combustion chamber 40 is in the compression stroke, the internal pressure and temperature are high, and the tumble flow is promoted. Therefore, the fuel spray 36 that has been atomized by high-pressure injection and spreads radially from the center of the combustion chamber 40 and is mixed at once by a strong tumble flow, so that premixing is sufficiently performed and compression self-ignition combustion is performed at the compression top dead center Combustion is started in the vicinity. When the intake valve 7b is opened, the combustion gas is discharged from the exhaust port 17 through the exhaust path 18 to the outside through the three-way catalyst 20 and a silencer (not shown).

このように、高圧で燃料を噴射する燃料噴射弁15を燃焼室42の略中央に配置し、圧縮上死点までの所定の範囲となる圧縮上死点前40°好ましくは圧縮上死点前20°で駆動して高圧燃料を1度に噴射させ、FCV37が吸気流動を促進させる位置を占めるようにしているので、高圧でかつ吸気流動が促進された燃焼室40の吸気に対して燃焼室40の中央から高圧噴射された微細化された燃料噴霧36が一気に混合されるため、予混合が一気に行われて圧縮自己着火燃焼が圧縮上死点近傍で安定して発生し易くなり、自己着火燃焼の早期発生や遅れによる不具合を低減することができる。また、圧縮上死点TDC前という限られた期間において燃料噴射を複数回実行してないので、ECU31への負担を軽減することができる。   In this way, the fuel injection valve 15 for injecting fuel at a high pressure is arranged in the approximate center of the combustion chamber 42, and is 40 ° before compression top dead center, preferably before compression top dead center, which is a predetermined range up to compression top dead center. Since the high-pressure fuel is injected at a time by driving at 20 ° so that the FCV 37 occupies a position where the intake air flow is promoted, the combustion chamber corresponds to the intake air of the combustion chamber 40 at a high pressure and the intake air flow is promoted Since the atomized fuel spray 36 injected at a high pressure from the center of 40 is mixed all at once, premixing is performed all at once, and compression self-ignition combustion is likely to occur stably near the compression top dead center. Problems due to early occurrence or delay of combustion can be reduced. Further, since the fuel injection is not executed a plurality of times in a limited period before the compression top dead center TDC, the burden on the ECU 31 can be reduced.

本形態において、燃料噴射弁15からの噴射圧を高圧にしたのは、燃料噴霧36の気化を早め燃焼室40内の吸入空気と混合し易くするためには燃料噴霧36の微粒化が有効であり、噴射圧と微粒化の関係から噴射圧を高圧にするほど微粒化はより進むため、高圧噴射は混合時間の低減に有効となるからである。一般に、噴射圧と噴霧微粒化(ザウタ)の関係は、図5に示すように噴射圧が高く噴射孔が小径なほど小さくなる特性を持っている。本願発明者の考察によると、噴射圧は20MPa以上が望ましい。   In the present embodiment, the injection pressure from the fuel injection valve 15 is increased because atomization of the fuel spray 36 is effective in order to accelerate the vaporization of the fuel spray 36 and to facilitate mixing with the intake air in the combustion chamber 40. The reason is that, as the injection pressure is increased from the relationship between the injection pressure and the atomization, the atomization is further promoted, so that the high-pressure injection is effective in reducing the mixing time. In general, the relationship between the injection pressure and the atomization of spray (Sauta) has a characteristic that the injection pressure becomes higher and the injection hole becomes smaller as shown in FIG. According to the inventor's consideration, the injection pressure is desirably 20 MPa or more.

圧縮自己着火燃焼領域における噴射時期は、噴射開始と同時に着火が起こってもエンジン1に損傷のないタイミング以降が好ましく、40〜20°BTDC以降で噴射開始しTDCまでの間に噴射を完了するようにした。また、圧縮自己着火燃焼領域において燃料噴霧36の混合時間を短くするには、必要な筒内流動はタンブルの場合では6以上に相当する筒内流動エネルギーが必要であるため、FCV37を駆動してタンブル流を促進するようにした。   The injection timing in the compression self-ignition combustion region is preferably after the timing at which the engine 1 is not damaged even if ignition occurs simultaneously with the start of injection, and the injection starts after 40 to 20 ° BTDC and completes before TDC. I made it. In addition, in order to shorten the mixing time of the fuel spray 36 in the compression self-ignition combustion region, the necessary in-cylinder flow requires in-cylinder flow energy equivalent to 6 or more in the case of tumble, so the FCV 37 is driven. The tumble flow was promoted.

燃料噴霧36の混合時間とスワール比やタンブル比の関係について説明すると、スワール比やタンブル比は、エンジン1回転に対する筒内空気(剛体と仮定)の回転比を表す。よって燃料噴霧36の混合を考えた場合,スワールでは最低でも1回は回転することが最低条件と考え,その場合、噴射開始からTDCまでの期間が30°CAしかないことを考え合わせると、360°/30°=12に相当するスワール比が要求されることとなる。ただしタンブルの場合は圧縮行程で剛体渦半径が縮小するため,燃料噴射時のタンブル回転速度は向上し、その要求値は約半減するものとして、要求タンブル比は6となる。通常のエンジンのタンブル比は0.5〜2.0程度である。なお、ここでのタンブル比、スワール比は吸気行程終了時に持つ筒内空気の回転エネルギーで算出される値を用いる。   The relationship between the mixing time of the fuel spray 36 and the swirl ratio or tumble ratio will be described. The swirl ratio or tumble ratio represents the rotation ratio of in-cylinder air (assumed to be a rigid body) with respect to one rotation of the engine. Therefore, when mixing the fuel spray 36 is considered, it is considered that the minimum condition is that the swirl rotates at least once. In this case, considering that the period from the start of injection to TDC is only 30 ° CA, 360 is considered. A swirl ratio corresponding to ° / 30 ° = 12 is required. However, in the case of tumble, since the rigid vortex radius is reduced in the compression stroke, the tumble rotation speed at the time of fuel injection is improved, and the required value is about halved, so the required tumble ratio is 6. The normal engine tumble ratio is about 0.5 to 2.0. The tumble ratio and swirl ratio here use values calculated from the rotational energy of the in-cylinder air at the end of the intake stroke.

燃料噴射弁15を多噴孔化すると、燃料噴霧36が分散されるため混合が容易になり、要求タンブル比の低減が可能となる。さらに、噴射孔15aを小口径化すればするほど噴霧の微粒化が促進されるので、混合時間が短縮される一方、流量が低下するため最大燃料流量の確保が難しくなる一面もあるが、小口径化と同時に多噴孔化しているのでトータルの流量を確保することができる。   When the fuel injection valve 15 is made to have a plurality of injection holes, the fuel spray 36 is dispersed, so that the mixing becomes easy and the required tumble ratio can be reduced. Furthermore, since the atomization of the spray is promoted as the injection hole 15a is made smaller, the mixing time is shortened. On the other hand, since the flow rate is reduced, it is difficult to ensure the maximum fuel flow rate. The total flow rate can be secured because the number of nozzles is increased at the same time as the caliber.

このような考察に基づき、本願発明者は、噴孔孔15aの数や大きさ、燃料噴射弁15の噴射圧や噴射時期、FCV37の作動を上記のように設定するのが望ましいと考えた。なお、本形態では吸気流動をタンブル流としてFCV37を用いて強化したが、吸気流動はスワール流であっても無論よく、FCV37を図3に示す状態から90度周方向に回転させて配置すればよい。   Based on such considerations, the present inventor considered that it is desirable to set the number and size of the nozzle holes 15a, the injection pressure and injection timing of the fuel injection valve 15, and the operation of the FCV 37 as described above. In this embodiment, the intake flow is reinforced with the FCV 37 as a tumble flow, but it goes without saying that the intake flow is a swirl flow, and if the FCV 37 is rotated 90 degrees in the circumferential direction from the state shown in FIG. Good.

本発明の実施形態にかかる内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine according to an embodiment of the present invention. 燃焼室側から見た燃料噴射弁の噴射孔と噴霧の状態を示す拡大図である。It is an enlarged view which shows the injection hole of the fuel injection valve seen from the combustion chamber side, and the state of spray. 吸気流動制御弁の構成と、その吸気流路に対する位置関係と吸入空気の流れを示す拡大図である。It is an enlarged view showing the configuration of the intake flow control valve, the positional relationship with respect to the intake flow path, and the flow of intake air. 圧縮自己着火燃焼領域と火花着火燃焼領域との切換え特性を示すマップである。It is a map which shows the switching characteristic of a compression self-ignition combustion area | region and a spark ignition combustion area | region. 噴射圧と噴霧微粒化の関係を示す線図である。It is a diagram which shows the relationship between an injection pressure and spray atomization.

符号の説明Explanation of symbols

1 内燃機関
12 吸気流路
15 燃料噴射弁
15a 噴射孔
31 制御手段
37 吸気流動制御弁
39 吸気制御装置
40 燃焼室
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 12 Intake flow path 15 Fuel injection valve 15a Injection hole 31 Control means 37 Intake flow control valve 39 Intake control apparatus 40 Combustion chamber

Claims (3)

燃焼室の略中央に配置されて燃料を噴射する燃料噴射弁と、
前記燃焼室に通じる吸気流路を狭めることで吸気流動を促進させる吸気流動制御弁と、
機関の圧縮行程後期から圧縮上死点までの所定の範囲で、要求燃料噴射量の全量を一度に噴射するように前記燃料噴射弁の駆動を制御するとともに、前記吸気流動制御弁が吸気流動を促進させる位置を占めるように制御して前記燃焼室内の混合気を圧縮自己着火させる制御手段とを有することを特徴とする予混合圧縮自己着火型のガソリン内燃機関。
A fuel injection valve that is disposed substantially in the center of the combustion chamber and injects fuel;
An intake flow control valve that promotes intake flow by narrowing the intake flow path leading to the combustion chamber;
The drive of the fuel injection valve is controlled so that the entire required fuel injection amount is injected at a time within a predetermined range from the late stage of the compression stroke of the engine to the compression top dead center, and the intake flow control valve controls the intake flow. A premixed compression self-ignition type gasoline internal combustion engine comprising control means for controlling the fuel gas in the combustion chamber to occupy a position to be promoted to compress and self-ignite.
請求項1記載の予混合圧縮自己着火型のガソリン内燃機関において、
前記所定の範囲は、圧縮上死点前40°から圧縮上死点までの範囲であることを特徴とする予混合圧縮自己着火型のガソリン内燃機関。
The premixed compression self-ignition gasoline internal combustion engine according to claim 1,
The premixed compression self-ignition gasoline internal combustion engine, wherein the predetermined range is a range from 40 ° before compression top dead center to compression top dead center.
請求項1または2記載の予混合圧縮自己着火型のガソリン内燃機関において、
前記燃料噴射弁は多噴孔であることを特徴とする予混合圧縮自己着火型のガソリン内燃機関。
The premixed compression self-ignition gasoline internal combustion engine according to claim 1 or 2,
2. A premixed compression self-ignition gasoline internal combustion engine characterized in that the fuel injection valve has multiple injection holes.
JP2006094883A 2006-03-30 2006-03-30 Premixed compression self-ignition gasoline internal combustion engine Expired - Fee Related JP4618181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094883A JP4618181B2 (en) 2006-03-30 2006-03-30 Premixed compression self-ignition gasoline internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094883A JP4618181B2 (en) 2006-03-30 2006-03-30 Premixed compression self-ignition gasoline internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007270670A JP2007270670A (en) 2007-10-18
JP4618181B2 true JP4618181B2 (en) 2011-01-26

Family

ID=38673740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094883A Expired - Fee Related JP4618181B2 (en) 2006-03-30 2006-03-30 Premixed compression self-ignition gasoline internal combustion engine

Country Status (1)

Country Link
JP (1) JP4618181B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711584B2 (en) * 2011-03-30 2015-05-07 本田技研工業株式会社 Internal combustion engine
JP6555309B2 (en) * 2017-08-25 2019-08-07 マツダ株式会社 Engine fuel injector
JP6536640B2 (en) * 2017-08-25 2019-07-03 マツダ株式会社 Engine fuel injection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214741A (en) * 2000-01-28 2001-08-10 Nissan Motor Co Ltd Compressed self-ignition type internal combustion engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2005256778A (en) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd Engine equipped with exhaust gas circulating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214741A (en) * 2000-01-28 2001-08-10 Nissan Motor Co Ltd Compressed self-ignition type internal combustion engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2005256778A (en) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd Engine equipped with exhaust gas circulating device

Also Published As

Publication number Publication date
JP2007270670A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US20030182931A1 (en) In-cylinder injection type spark-ignition internal combustion engine and control method thereof
JP5494545B2 (en) Spark ignition gasoline engine
JP2002206446A5 (en)
JP4007310B2 (en) Internal combustion engine capable of premixed compression self-ignition operation using two types of fuel
JP5257054B2 (en) Spark ignition direct injection engine
JP2002206446A (en) Internal combustion engine and fuel injection control device for the internal combustion engine
JP4161789B2 (en) Fuel injection control device
CN110621871B (en) Method and device for controlling internal combustion engine
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP4618181B2 (en) Premixed compression self-ignition gasoline internal combustion engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2008157197A (en) Cylinder injection type spark ignition internal combustion engine
JP2009243360A (en) Engine combustion control device
JP3873560B2 (en) Combustion control device for internal combustion engine
JP2007162631A (en) Control device of internal combustion engine
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP6519598B2 (en) Control device for internal combustion engine
JP2007285204A (en) Internal combustion engine
JP5991251B2 (en) Fuel injection control device for diesel engine
JP2014156852A (en) Compression ignition engine
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007303428A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4442491B2 (en) Direct injection internal combustion engine and combustion method thereof
JP2004162577A (en) Cylinder injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4618181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees