JPS59110395A - Brushless rotary electric machine - Google Patents

Brushless rotary electric machine

Info

Publication number
JPS59110395A
JPS59110395A JP57219279A JP21927982A JPS59110395A JP S59110395 A JPS59110395 A JP S59110395A JP 57219279 A JP57219279 A JP 57219279A JP 21927982 A JP21927982 A JP 21927982A JP S59110395 A JPS59110395 A JP S59110395A
Authority
JP
Japan
Prior art keywords
magnetic flux
winding
circuit
detection
excitation winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57219279A
Other languages
Japanese (ja)
Inventor
Kenzo Kondo
近藤 鍵三
Tadashi Tokumasu
正 徳増
Koichi Inoue
浩一 井上
Akihiko Suzuki
明彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57219279A priority Critical patent/JPS59110395A/en
Publication of JPS59110395A publication Critical patent/JPS59110395A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • H02H7/065Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors against excitation faults

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To enable to detect the ground-fault trouble of a field circuit without contact by providing a signal processor for comparing the generated magnetic flux of a detecting excitation winding with the residual magnetic flux by a field ground-fault detector to generates a signal when the generated magnetic flux exceeds the residual magnetic flux. CONSTITUTION:A rotor 2 which rotates oppositely to a rotor 1 of a synchronous machine supplies the output of an AC excitor armature 3 to a field winding 5 through a rotary rectifier 4. The output of an AC exciting auxiliary winding 8 is supplied separately from field circuits 6, 7 to the AC input terminal of a power source controller 9, the negative side terminal of the DC output side is grounded to the body of the rotor 2, and the positive side terminal is connected to the circuit 7 through a detecting excitation winding 12. Power is supplied to the winding 8 without brush by DC-exciting the field winding 13. A detector 14 is magnetically coupled to the winding 12, and the output of the detector 14 is connected to an alarm unit 19 through a signal processor 15. The processor 15 compares the detection signal with the amount of a bias setter 23 by a comparator 15 and outputs a ground-fault trouble occurrence signal. In this manner, the ground-fault trouble can be detected without contact.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はブラシレス回転電機に係り、特に同期機側の回
転子界磁回路の地絡故障を非接触で検出する検出装置を
備えるブラシレス回転電機に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a brushless rotating electric machine, and more particularly to a brushless rotating electric machine equipped with a detection device for non-contact detecting a ground fault in a rotor field circuit on a synchronous machine side. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ブラシレス回転電機、例えばブラシレス同期機において
はブラシ、スリップリング等がないため回転子側の電圧
、電流等の電気量を固定側から直接測定することができ
ない。このため従来は測定用ブラシ、スリップリングを
別途設けて測定する方法が一般に行なわれていたが、本
来のブラシのわずらしさを除くためにブラシレスにして
いるメリットが十分生かされず、保守のわずらわしさに
加えて構造的にも複雑である問題点があった。
In a brushless rotating electric machine, for example, a brushless synchronous machine, there are no brushes, slip rings, etc., so electrical quantities such as voltage and current on the rotor side cannot be directly measured from the fixed side. For this reason, the conventional method of measuring was to separately install a measuring brush and a slip ring, but the benefits of using a brushless design to eliminate the troublesomeness of the original brush were not fully utilized, and maintenance became troublesome. In addition to this, there was also the problem of structural complexity.

そこでブラシ、スリップリング等を用いず非接触形の測
定装置によって回転子の電気的諸量を測定する傾向にあ
り、回転部と固定部との間を磁気、電波、光や音波等に
よって連絡し、精報を伝達するようにしているが、磁気
を用いる装置は簡単で一般的である。本出願人はこのよ
うな磁気を用いる非接触形の界磁回路地絡故障の検出装
置に関する構造を特開昭57−88855号でとして既
に提案してある。すなわち回転部の外周に磁極を形成す
るコイルを設け、このコイルに地絡電流が流れることに
より、固定部側に設けた検出部によって磁束を測定する
ことによって地絡故障を非接触で検出するものである。
Therefore, there is a tendency to measure the electrical quantities of the rotor using non-contact measuring devices without using brushes, slip rings, etc., and communication between the rotating part and the fixed part is made using magnetism, radio waves, light, sound waves, etc. , devices that use magnetism are simple and common. The present applicant has already proposed a structure for a non-contact field circuit ground fault detection device using such magnetism in Japanese Patent Laid-Open No. 57-88855. In other words, a coil that forms a magnetic pole is installed on the outer periphery of the rotating part, and when a ground fault current flows through this coil, the magnetic flux is measured by a detection unit installed on the fixed part, thereby detecting a ground fault in a non-contact manner. It is.

しかしながら、かかる構造のものは磁束を発生するコイ
ルをボルトで回転部に固定し、ボルトは磁気回路の磁極
と遠心力に対する固定とを行なっており、一般にボルト
は鋼材であり、高透磁率であるが残留磁化が高く、一度
コイルに電流を流すと電流を切っても磁化が残る。従っ
て検出部は残留磁化分の含まれた磁束が検出されること
になり、警報装置が誤動作するおそれがある。このため
ボルトの交換や消磁を行うために定期的な保守・点検を
必要とし、またボルトの材料として非磁性材を使うと磁
気回路の磁気抵抗が増加するために磁束密度のレベルが
低下し検出信号のS/N比が低下するなどの欠点があっ
た。
However, in such structures, the coil that generates magnetic flux is fixed to the rotating part with bolts, and the bolts are fixed against the magnetic poles of the magnetic circuit and centrifugal force. Generally, the bolts are made of steel and have high magnetic permeability. has a high residual magnetization, and once a current is applied to the coil, the magnetization remains even after the current is turned off. Therefore, the detection section detects magnetic flux containing residual magnetization, which may cause the alarm device to malfunction. For this reason, regular maintenance and inspection are required to replace and demagnetize the bolts, and if a non-magnetic material is used as the material for the bolts, the magnetic resistance of the magnetic circuit increases, resulting in a decrease in the level of magnetic flux density and detection. There were drawbacks such as a decrease in the S/N ratio of the signal.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑みなされたもので、界磁回路の地
絡故障を正確に非接触で検出できるようにした検出装置
を備えるブラシレス回転電機を提供することを目的とす
る。
The present invention has been made in view of the above drawbacks, and an object of the present invention is to provide a brushless rotating electric machine equipped with a detection device that can accurately detect a ground fault in a field circuit in a non-contact manner.

〔発明の概要〕[Summary of the invention]

すなわち、界磁地絡検出装置に検出励磁巻線の発生磁束
を残留磁束と比較して発生磁束が残留磁束を越えると信
号を発生する信号処理回路を設けたものである。信号処
理回路としては、(1)残留磁束のバイアス設定回路と
発生磁束とを比較する比較回路、(2)平常磁束値を記
憶する初期値記憶回路と発生磁束とを比較する比較回路
、(3)残留磁化されたダミー部材と検出励磁巻線の部
材とのそれぞれの磁束を比較する信号処理回路などがあ
る。
That is, the field ground fault detection device is provided with a signal processing circuit that compares the magnetic flux generated by the detection excitation winding with the residual magnetic flux and generates a signal when the generated magnetic flux exceeds the residual magnetic flux. The signal processing circuit includes (1) a comparison circuit that compares the bias setting circuit for residual magnetic flux and the generated magnetic flux, (2) a comparison circuit that compares the initial value storage circuit that stores the normal magnetic flux value and the generated magnetic flux, (3) ) There is a signal processing circuit that compares the respective magnetic fluxes of the residual magnetized dummy member and the member of the detection excitation winding.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面に示す一実施列について説明する。第
1図は第1の実施列であって、同期機の固定子(1)に
対向して回転する回転子(2)は交流励磁機電機子(3
)の出力を回転整流装置(4)を介して直流に変換した
のち、同期機の界磁巻線(5)に正側の界磁回路(6)
および負側の界磁回路を介して励磁電流を供給する。界
磁回路(6) (7)とは別に回転子(2)には交流励
磁補助巻線(8)の出力を保護ヒューズ(10)を介し
て電源制御回路(9)の交流入方端子に接続し、直流出
力側の負側端子を回転子(2)本体のE点に接続接地し
、正側端子を限流抵抗(11)および検出励磁巻線(1
2)を介して回転整流装置(4)の負側の界磁回路(7
)に接続している。補助巻線(8)は電機子巻線(3)
と同じ鉄心スロット(図示せず)内に巻装し、交流励磁
機界磁巻線(13)を直流励磁することにより、ブラシ
レスで電力が供給される。検出励磁巻線(12)対向し
て固定部側に設ける検出部(14)例えばホール素子が
磁気的結合し、検出部(14)の出力は信号処理回路(
15)を介して警報装置(16)に接続されている。電
源制御回路(9)は固定部の発光素子装置(17)によ
る光を受光して整流回路を開閉する受光素子装置(図示
せず)を内蔵している。
The present invention will now be described with reference to one embodiment shown in the drawings. FIG. 1 shows the first implementation row, in which the rotor (2) rotating opposite the stator (1) of the synchronous machine is connected to the AC exciter armature (3).
) is converted to DC via the rotary rectifier (4), and then the positive field circuit (6) is connected to the field winding (5) of the synchronous machine.
and supplies an excitation current via the negative field circuit. Separately from the field circuit (6) (7), the output of the AC excitation auxiliary winding (8) is connected to the rotor (2) via a protective fuse (10) to the AC input terminal of the power supply control circuit (9). Connect the negative side terminal on the DC output side to point E of the rotor (2) body and ground it, and connect the positive side terminal to the current limiting resistor (11) and the detection excitation winding (1).
2) to the negative field circuit (7) of the rotary rectifier (4).
). Auxiliary winding (8) is armature winding (3)
Electric power is supplied in a brushless manner by winding the AC exciter field winding (13) in the same iron core slot (not shown) and exciting the AC exciter field winding (13) with DC current. A detection section (14) provided on the fixed section side facing the detection excitation winding (12) is magnetically coupled with, for example, a Hall element, and the output of the detection section (14) is sent to the signal processing circuit (
15) to an alarm device (16). The power supply control circuit (9) incorporates a light-receiving element device (not shown) that receives light from the light-emitting element device (17) of the fixed part and opens and closes the rectifier circuit.

第2図および第3図は検出装置であって、検出励磁巻線
(12)は回転軸anにリングα樟を取付け、リング(
IIに設けた凹部(18a)の中に絶縁環(19a)に
巻線(19b)を巻装したコイル(19)をボルト(2
0)で固定し、ボルト(20)に対向する位置に検出素
子(21)例えばホール素子を取付ける鉄心(22)が
固定部に装着してある。
FIGS. 2 and 3 show a detection device, in which a detection excitation winding (12) has a ring α camphor attached to the rotating shaft an, and a ring (
A coil (19) with a winding (19b) wound around an insulating ring (19a) is inserted into the recess (18a) provided in the bolt (2).
0), and an iron core (22) to which a detection element (21) such as a Hall element is attached is attached to the fixed part at a position opposite to the bolt (20).

コイル(19)の発生する磁束は検出部(l4)によっ
て非接触に検出する。地絡電流が流れたことによる磁化
分が加算されるので、検出部(14)で検出される信号
量は上記バイパス量を越え比較回路(24)から地絡故
障が発生したことを知らせる信号を出す。
The magnetic flux generated by the coil (19) is detected in a non-contact manner by the detection unit (l4). Since the magnetization due to the flow of the ground fault current is added, the signal amount detected by the detection section (14) exceeds the above-mentioned bypass amount, and the comparator circuit (24) outputs a signal indicating that a ground fault has occurred. put out.

第5図は第2の実施例であって、信号処理回路(15)
においてボルト(21)の残留磁化による正常運転時に
おける信号を初期値として自動的に記憶設定する記憶回
路(25)により比較回路(24)から地絡故障が発生
したことを知らせる信号を出す。従って、残留磁化の経
年変化による減少が生ずる場合も、適当な時間間隔ごと
に初期値を記憶設定し直せば、地絡故障の検出を正確に
行なうことができる。
FIG. 5 shows a second embodiment, in which a signal processing circuit (15)
At this point, a memory circuit (25) which automatically stores and sets a signal during normal operation due to residual magnetization of the bolt (21) as an initial value outputs a signal from the comparator circuit (24) to notify that a ground fault has occurred. Therefore, even if the residual magnetization decreases due to aging, if the initial value is stored and reset at appropriate time intervals, it is possible to accurately detect a ground fault.

第6図は第3の実施例であって、第3図と異なるところ
は固定部に複数の検出部(14)が設けてあり、回転部
側には検出励磁巻線(12)のほかにボルト(20)と
同一形状、同一材料のダミーボルト (26)がバラン
スウェイト(27)を凹部(18a)に装着している。
Fig. 6 shows a third embodiment, and the difference from Fig. 3 is that a plurality of detection parts (14) are provided on the fixed part, and a detection excitation winding (12) is provided on the rotating part side. A dummy bolt (26) of the same shape and material as the bolt (20) attaches the balance weight (27) to the recess (18a).

検出励磁巻線(14)のボルト(20)は界磁地絡故障
時に流れる電流によって磁化される方向に予め飽和磁化
しておき、ダミーボルト(26)も同様に飽和磁化し、
検出励磁巻線(14)が検出部(14)に対向すると同
時にダミーボルト(26)は他の検出部(14)に対向
させている。ボルト(20)とダミーボルト (26)
の磁束はそれぞれ検出部(14)で測定し、第7図のよ
うに信号処理回路(l5)の比較回路(28)で比較し
て、その差を判定回路(29)で判定して警報装置(1
6)を作動する。
The bolt (20) of the detection excitation winding (14) is previously saturated magnetized in the direction in which it will be magnetized by the current flowing during a field ground fault, and the dummy bolt (26) is also saturated magnetized in the same way.
At the same time as the detection excitation winding (14) faces the detection part (14), the dummy bolt (26) faces the other detection part (14). Bolt (20) and dummy bolt (26)
The respective magnetic fluxes are measured by the detection unit (14), compared by the comparison circuit (28) of the signal processing circuit (15) as shown in Fig. 7, and the difference is determined by the determination circuit (29) and the alarm device is activated. (1
6).

正常運転時はボルト(20)とダミーボルト(26)の
残留磁化は飽和磁化されているので同じであり、磁束に
差はない。一方界磁地絡時には検出励磁巻線(12)に
地終電流が流れ、コイル(19)の作る磁束が残留磁化
分に加算されて、ボルト(20)の磁束がダミーボルト
(26)の磁束より大きくなる。これを検出部(14)
で測定し比較回路(28)で両者の磁束による信号を比
較して両者の差を判定回路(29)で判定して警報装置
(16)を動作させる。従って残留磁化が経年変化する
ような場合でも、ボルト(20)とダミーボルト(26
)の変化は同一なので何ら支障はない。
During normal operation, the residual magnetization of the bolt (20) and the dummy bolt (26) are the same because they are saturated magnetized, and there is no difference in magnetic flux. On the other hand, in the event of a field ground fault, a ground current flows through the detection excitation winding (12), the magnetic flux created by the coil (19) is added to the residual magnetization, and the magnetic flux of the bolt (20) becomes the magnetic flux of the dummy bolt (26). Become bigger. This is detected by the detection part (14)
The comparator circuit (28) compares the signals resulting from both magnetic fluxes, and the determination circuit (29) determines the difference between the two, thereby operating the alarm device (16). Therefore, even if the residual magnetization changes over time, the bolt (20) and the dummy bolt (26
) changes are the same, so there is no problem.

第8図は第4の実施例であって、第6図のダミーボルト
(26)の代りに検出励磁巻線(12)と同様の巻線を
巻回したダミー巻線(30)を用いたものである。ダミ
ー巻線(30)をリング(l8)に装着後にダミー巻線
(30)に電流を流すことにより、ダミーボルト(26
)を含む磁気回路全体を飽和磁化させることができる。
FIG. 8 shows a fourth embodiment, in which a dummy winding (30) wound with the same winding as the detection excitation winding (12) is used in place of the dummy bolt (26) in FIG. It is something. By applying a current to the dummy winding (30) after attaching the dummy winding (30) to the ring (l8), the dummy bolt (26
) can be saturated magnetized.

この場合ダミー巻線(28)と検出励磁巻線(12)と
を直列あるいは並列接続して同時に電流を流すようにす
ればダミーボルト(26)とボルト(20)の磁気飽和
レベルの管理は容易となる。
In this case, the magnetic saturation level of the dummy bolt (26) and the bolt (20) can be easily managed by connecting the dummy winding (28) and the detection excitation winding (12) in series or in parallel to allow current to flow at the same time. becomes.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、ブラシレス回転電機にお
いて界磁地絡検出装置に検出励磁巻線の発生磁束を残留
磁束と比較して発生磁束が残留磁束を越えると信号を発
生する信号処理回路を設けるようにしたので、部材の磁
気的履歴にかかわらず、確実に界磁回路の地絡故障を非
接触に検出することができるすぐれた効果がある。
As described above, according to the present invention, in a brushless rotating electrical machine, the field ground fault detection device compares the generated magnetic flux of the excitation winding with the residual magnetic flux, and when the generated magnetic flux exceeds the residual magnetic flux, the signal processing circuit generates a signal. Since this is provided, there is an excellent effect in that ground faults in the field circuit can be reliably detected in a non-contact manner regardless of the magnetic history of the members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のブラシレス回転電機の一実施例におけ
る非接触形の界磁地絡検出装置を示す回路構成図、第2
図は第1図の検出装置の構造を示す正面図、第3図は第
2図のA−A線に沿う縦断面図、第4図は第1図におけ
る信号処理回路を示す回路図、第5図は第2の実施例の
信号処理回路を示す回路図、第6図は第3の実施例の検
出装置を示す縦断面図、第7図は第3の実施例における
信号処理回路を示す回路図、第8図は第4の実施例の検
出装置を示す縦断面図である。 12・・・検出励磁巻線14・・・検出部15・・・信
号処理回路16・・・警報装置18・・・リンク19・
・・コイル 20・・・ボルト21・・・検出素子 22・・・鉄心23・・・バイアス設定回路24・・・
比較回路25・・・記憶回路26・・・ダミーポルト2
8・・・比較回路29・・・判定回路30・・・ダミー
腺輪代理人弁理士井上一男
FIG. 1 is a circuit configuration diagram showing a non-contact type field ground fault detection device in an embodiment of the brushless rotating electric machine of the present invention, and FIG.
The figure is a front view showing the structure of the detection device in Fig. 1, Fig. 3 is a longitudinal sectional view taken along line A-A in Fig. 2, Fig. 4 is a circuit diagram showing the signal processing circuit in Fig. 1, FIG. 5 is a circuit diagram showing the signal processing circuit of the second embodiment, FIG. 6 is a vertical sectional view showing the detection device of the third embodiment, and FIG. 7 is a circuit diagram showing the signal processing circuit of the third embodiment. The circuit diagram and FIG. 8 are longitudinal sectional views showing the detection device of the fourth embodiment. 12...Detection excitation winding 14...Detection section 15...Signal processing circuit 16...Alarm device 18...Link 19...
... Coil 20 ... Volt 21 ... Detection element 22 ... Iron core 23 ... Bias setting circuit 24 ...
Comparison circuit 25...Memory circuit 26...Dummy port 2
8... Comparison circuit 29... Judgment circuit 30... Dummy gland ring agent patent attorney Kazuo Inoue

Claims (5)

【特許請求の範囲】[Claims] 1.回転部外周に検出励磁巻線を固定して磁極を形成す
る部材と、この部材に対向して固定部に配設し前記検出
励磁巻線と磁気的に結合する検出部とよりなる非接触形
の界磁地絡検出装置を備えるブラシレス回転電機におい
て、前記界磁地絡検出装置に前記検出励磁巻線の発生磁
束と前記部材の残留磁束とを比較して発生磁束が残留磁
束を越えると信号を発生する信号処理回路を設けたこと
を特徴とするブラシレス回転電機。
1. A non-contact type consisting of a member that fixes a detection excitation winding to the outer periphery of a rotating part to form a magnetic pole, and a detection part that is disposed on a fixed part opposite to this member and magnetically couples with the detection excitation winding. In a brushless rotating electric machine equipped with a field ground fault detection device, the field ground fault detection device compares the generated magnetic flux of the detection excitation winding with the residual magnetic flux of the member, and sends a signal when the generated magnetic flux exceeds the residual magnetic flux. A brushless rotating electrical machine characterized by being provided with a signal processing circuit that generates.
2.信号処理回路は残留磁束のバイアス設定回路と、残
留磁束と発生磁束とを比較する比較回路を設けたことを
特徴とする特許請求の範囲第1項記載のブラシレス回転
電機。
2. 2. The brushless rotating electric machine according to claim 1, wherein the signal processing circuit includes a residual magnetic flux bias setting circuit and a comparison circuit for comparing the residual magnetic flux and the generated magnetic flux.
3.信号処理回路は初期値として部材の正常磁束値を記
憶する初期値記憶回路と、正常磁束と発生磁束とを比較
する比較回路を設けたことを特徴とする特許請求の範囲
第1項記載のブラシレス回転電機。
3. The brushless motor according to claim 1, wherein the signal processing circuit is provided with an initial value storage circuit that stores the normal magnetic flux value of the member as an initial value, and a comparison circuit that compares the normal magnetic flux with the generated magnetic flux. Rotating electric machine.
4.回転部に装置し残留磁化されたダミー部材と検出励
磁巻線の部材との磁束をそれぞれ検出する検出部を設け
て残留磁束と発生磁束とを比較する信号処理回路を設け
たことを特徴とする特許請求の範囲第1項記載のブラシ
レス回転電機。
4. The present invention is characterized in that a detection section is installed in the rotating section and detects the magnetic flux of a residually magnetized dummy member and a member of the detection excitation winding, and a signal processing circuit is provided for comparing the residual magnetic flux and the generated magnetic flux. A brushless rotating electric machine according to claim 1.
5.ダミー部材に検出励磁巻線と同じダミー巻線を巻装
したことを特徴とする特許請求の範囲第4項記載のブラ
シレス回転電機。
5. 5. The brushless rotating electric machine according to claim 4, wherein the dummy member is wound with a dummy winding that is the same as the detection excitation winding.
JP57219279A 1982-12-16 1982-12-16 Brushless rotary electric machine Pending JPS59110395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57219279A JPS59110395A (en) 1982-12-16 1982-12-16 Brushless rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219279A JPS59110395A (en) 1982-12-16 1982-12-16 Brushless rotary electric machine

Publications (1)

Publication Number Publication Date
JPS59110395A true JPS59110395A (en) 1984-06-26

Family

ID=16733022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219279A Pending JPS59110395A (en) 1982-12-16 1982-12-16 Brushless rotary electric machine

Country Status (1)

Country Link
JP (1) JPS59110395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671632A2 (en) * 1994-02-25 1995-09-13 Kabushiki Kaisha Toshiba Field winding ground fault detector and relay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671632A2 (en) * 1994-02-25 1995-09-13 Kabushiki Kaisha Toshiba Field winding ground fault detector and relay
EP0671632A3 (en) * 1994-02-25 1996-09-18 Toshiba Kk Field winding ground fault detector and relay.

Similar Documents

Publication Publication Date Title
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
US7518332B2 (en) Brushless synchronous motor and driving control apparatus therefor
JPH0332028B2 (en)
EP1418655A2 (en) Speed sensitive field ground detection mode for a generator field winding
US4349813A (en) Blown fuse sensor
US4635045A (en) Failed fuse detector and detecting method for rotating electrical equipment
JPS59110395A (en) Brushless rotary electric machine
Campbell et al. Detection of rotor winding shorted turns in turbine generators and hydrogenerators
US20020047356A1 (en) Brushless alternating-current generating apparatus and method for measuring field winding temperature therefor
US6762593B2 (en) Rotary electric machine
JPS59178993A (en) Method and device for detecting decelerated state of dc motor
JPH0634564B2 (en) Ground fault detector for generator
SU951571A1 (en) Device for checking turn short-circuits in electric machine rotor winding
JPS6041815Y2 (en) Silicon fault detection device for rotating rectifier
JPH0433549A (en) Brushless exciter field ground-fault trouble detector
JPS6314573B2 (en)
JPS6248300A (en) Detector for exciting current of brushless synchronous machine
JPS6110461Y2 (en)
JP2874998B2 (en) Synchronous machine field circuit ground fault detection device
US4814700A (en) Field current measurement device
JPS59110358A (en) Brushless rotary electric machine
JPS5821347Y2 (en) Brushless synchronous machine field monitoring device
US3127541A (en) Protective system for synchronous electrical machines
JPH01190234A (en) Non-contact type field ground fault detection device
KR830001539Y1 (en) Tachometer generator