JP2874998B2 - Synchronous machine field circuit ground fault detection device - Google Patents

Synchronous machine field circuit ground fault detection device

Info

Publication number
JP2874998B2
JP2874998B2 JP2258338A JP25833890A JP2874998B2 JP 2874998 B2 JP2874998 B2 JP 2874998B2 JP 2258338 A JP2258338 A JP 2258338A JP 25833890 A JP25833890 A JP 25833890A JP 2874998 B2 JP2874998 B2 JP 2874998B2
Authority
JP
Japan
Prior art keywords
ground fault
field
synchronous machine
field circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2258338A
Other languages
Japanese (ja)
Other versions
JPH03207244A (en
Inventor
秀明 津田
伴夫 片瓜
徹 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH03207244A publication Critical patent/JPH03207244A/en
Application granted granted Critical
Publication of JP2874998B2 publication Critical patent/JP2874998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ブラシレス形同期機の界磁回路地絡検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Industrial application field) The present invention relates to a field circuit ground fault detecting device of a brushless synchronous machine.

(従来の技術) 同期機の界磁回路には、地絡事故が発生した場合、機
械にとって致命的な短絡事故に到る前に検出するよう
に、高感度な界磁地絡検出器を設置している。この設計
思想は、ブラシレス形及び非ブラシレス方式等、タイプ
に関係なく踏襲されている。
(Prior art) A high-sensitivity field ground detector is installed in the field circuit of a synchronous machine so that if a ground fault occurs, it will be detected before a fatal short circuit occurs for the machine. doing. This design philosophy is followed regardless of type, such as a brushless type and a non-brushless type.

第3図は従来装置の構成例を示している。 FIG. 3 shows a configuration example of a conventional apparatus.

図中、2点鎖線で囲まれた部分(1)は、回転部を示
し、交流励磁機電機子巻線(2)が静止部分の交流励磁
機界磁巻線(3)の励磁により発生した交流電力を回転
整流器(4)で整流し、同期機界磁巻線(5)に供給さ
れ、同期機電機子巻線(6)に電圧が発生する主回路構
成を持っている。
In the figure, a portion (1) surrounded by a two-dot chain line indicates a rotating portion, and an AC exciter armature winding (2) is generated by exciting an AC exciter field winding (3) in a stationary portion. AC power is rectified by a rotary rectifier (4), supplied to a synchronous machine field winding (5), and has a main circuit configuration in which a voltage is generated in a synchronous machine armature winding (6).

一方、界磁回路地絡検出装置の構成に関しては、交流
励磁機電機子巻線(2)用の図示しないスロット内に設
置された交流励磁機電機子補助巻線(7)に発生した交
流電圧を補助電源用整流器(8)にて整流し、その直流
の一端を回転部(1)上に接地点(E)にて接地し、他
端を励磁コイル(9)を経由し同期機界磁回路導体(1
0)上に接続する。そして励磁コイル(9)に対向する
静止部に検出コイル(11)を設け、これを地絡検出器
(12)に接続する構成としている。
On the other hand, regarding the configuration of the field circuit ground fault detecting device, the AC voltage generated in the AC exciter armature auxiliary winding (7) installed in a slot (not shown) for the AC exciter armature winding (2) Is rectified by an auxiliary power rectifier (8), one end of the direct current is grounded on a rotating part (1) at a ground point (E), and the other end is passed through an exciting coil (9) to synchronize the field of the synchronous machine. Circuit conductor (1
0) Connect on top. Then, a detection coil (11) is provided at a stationary portion facing the excitation coil (9), and this is connected to a ground fault detector (12).

この構成において、万一同期機界磁界回路導体(10)
に地絡が発生すると、前述した補助電源用整流器(8)
により地絡点(1a)から接地点(E)をループにした地
絡電流が発生され、励磁コイル(9)に地絡程度に従っ
た地絡電流が流れ、磁束が発生する。この磁束は回転部
(1)と同一速度で回転する為め、対向側に接地された
静止検出コイル(11)には磁束が鎖交する為め、交流の
電圧が誘起され、地絡検出器(12)へ入力される。この
入力電圧があるレベル以上になると、地絡検出器(12)
は、地絡が発生したと検知して動作し、外部回路へ警報
または停止を促す信号を発生する。第4図は、励磁コイ
ル(9)及び検出コイル(11)の取付構造の概要を示す
図であり、回転部には同期機界磁回路導体(10)部分と
して、正側及び負側の界磁導体(14)、(15)、回転フ
レーム(17)及び回転フレームに取りつけられた励磁コ
イル(9)から成っている。
In this configuration, the synchronous machine field magnetic circuit conductor (10)
When a ground fault occurs, the rectifier for auxiliary power supply (8)
As a result, a ground-fault current is generated from the ground-fault point (1a) to the ground point (E) in a loop, and a ground-fault current flows through the exciting coil (9) according to the ground-fault level, thereby generating magnetic flux. This magnetic flux rotates at the same speed as the rotating part (1), and the magnetic flux interlinks with the stationary detection coil (11) grounded on the opposite side. Input to (12). When this input voltage exceeds a certain level, a ground fault detector (12)
Operates by detecting that a ground fault has occurred, and generates a signal for urging an external circuit to warn or stop. FIG. 4 is a diagram showing an outline of a mounting structure of the exciting coil (9) and the detecting coil (11). The rotating section includes a synchronous machine field circuit conductor (10) as a positive field and a negative field. It comprises magnetic conductors (14) and (15), a rotating frame (17) and an exciting coil (9) mounted on the rotating frame.

又、静止部には励磁コイル(9)に対向した位置に検
出コイル(11)が設置されている。即ち検出コイル(1
1)の周りを励磁コイル(9)は、同期機の速度に従い
回転する事になる。第5図は第4図中の矢印“A"の方向
から検出コイル(11)、励磁コイル(9)を見た側面図
であり、静止している検出コイル(11)に対し励磁コイ
ル(9)が回転している様子を示している。
Further, a detection coil (11) is provided at a position facing the exciting coil (9) in the stationary portion. That is, the detection coil (1
The exciting coil (9) rotates around 1) according to the speed of the synchronous machine. FIG. 5 is a side view of the detection coil (11) and the excitation coil (9) viewed from the direction of arrow "A" in FIG. ) Indicates a rotating state.

この状態で、励磁コイル(9)に電流が流れると磁束
φが第5図に矢印で示した方向に発生し検出コイル(1
1)と鎖交する事により、検出コイル(11)には第6図
に示すようなパルス状の波形が発生する。
In this state, when a current flows through the exciting coil (9), a magnetic flux φ is generated in the direction indicated by the arrow in FIG.
By interlinking with 1), a pulse-like waveform as shown in FIG. 6 is generated in the detection coil (11).

地絡検出器(12)はこのレベルが所定の値以上になっ
た事を検知し、地絡が発生した事を検出している。
The ground fault detector (12) detects that this level has exceeded a predetermined value, and detects that a ground fault has occurred.

(発明が解決しようとする課題) この従来の界磁回路地絡検出装置は、地絡電流検出感
度がDC3mA以上という非常に高感度な機能を有してい
る。この特性は反面、ノイズに対して弱いということに
なる。
(Problems to be Solved by the Invention) This conventional field circuit ground fault detection device has a very high sensitivity function of detecting the ground fault current at DC 3 mA or more. On the other hand, this characteristic is weak against noise.

一例として第4図に示されたように正側及び負側の界
磁導体(14)、(15)が検出コイル(11)に近接し設置
されているような場合、正側の界磁導体(14)には地絡
点(1a)から第4図中矢印の方向へ、負側の界磁導体
(15)に界磁電流が流れ、磁束を発生する。
For example, as shown in FIG. 4, when the positive and negative field conductors (14) and (15) are installed close to the detection coil (11), the positive field conductor In (14), a field current flows from the ground fault point (1a) to the negative field conductor (15) in the direction of the arrow in FIG. 4 to generate a magnetic flux.

この第4図の場合においては、磁束が検出コイル(1
1)を紙面の表側から裏側へ突き抜ける方向に発生す
る。この磁束が回転部の回転につれ回転すると、検出コ
イル(11)と鎖交し、検出コイル(11)には第7図に示
すようなほぼ正弦波状の商用周波電圧が誘起する。この
時、電圧絶対値は界磁電流の大きさに比例する為、同期
機の負荷が大きくなったり、力率が遅れ方向で運転する
場合には、地絡検出器(12)の検出感度に達し、地絡異
常がないにも拘らず検出動作することになる。
In the case of FIG. 4, the magnetic flux is applied to the detection coil (1
1) occurs in a direction that penetrates from the front side to the back side of the paper. When this magnetic flux rotates along with the rotation of the rotating part, it interlinks with the detection coil (11), and a substantially sinusoidal commercial frequency voltage as shown in FIG. 7 is induced in the detection coil (11). At this time, since the absolute value of the voltage is proportional to the magnitude of the field current, when the load on the synchronous machine increases or when the power factor is operated in the delay direction, the detection sensitivity of the ground fault detector (12) is reduced. The detection operation is performed in spite of no ground fault abnormality.

本発明は上記事情に鑑みてなされたものであり、正常
運転時の発生ノイズに対し誤動作する事なく、界磁地絡
発生時には、優れた高感度特性を維持し、適切かつ容易
に異常検出を行う同期機界磁回路地絡検出装置を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and does not malfunction due to noise generated during normal operation, maintains excellent high sensitivity characteristics when a field ground fault occurs, and appropriately and easily detects abnormality. It is an object of the present invention to provide a synchronous machine field circuit ground fault detecting device for performing the same.

[発明の構成] (課題を解決するための手段] 上記目的を達成するため、本発明においては、検出コ
イルの近傍にあるノイズ源となる界磁導体の周囲を第
1、第2の強磁性部材で囲む磁気回路を構成し、かつ、
この磁気回路には空隙または非磁性部材を有し、第2の
強磁性部材を同期機界磁回路導体と検出コイルの間に配
置したことを特徴とする同期機界磁回路地絡検出装置を
提供する。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, according to the present invention, first and second ferromagnetic materials are provided around a field conductor serving as a noise source near a detection coil. Constitute a magnetic circuit surrounded by members, and
A synchronous machine field circuit ground fault detecting device having an air gap or a non-magnetic member in the magnetic circuit, wherein a second ferromagnetic member is disposed between the synchronous machine field circuit conductor and the detection coil. provide.

(作 用) 上記手段を適用することにより、空隙の比透磁率1に
対し強磁性部材の比透磁率は数百〜数千と大きいため、
界磁導体を流れる界磁電流による起磁力は大半が空隙に
費され、検出コイルの位置する強磁性部材に近接したそ
の背後では、磁界の強さが軽減されることにより、この
ノイズ分が小さくなり、シグナルSとノイズNの比であ
るS/N比が向上する。従って検出レベルを所定値以上に
設定することにより、界磁回路地絡発生時には適切には
異常検出を行うことができ、従来誤動作により十分機能
が発揮できなかった同期機界磁回路地絡検出装置の機能
を高める事ができる。
(Operation) By applying the above means, the relative permeability of the ferromagnetic member is as large as several hundred to several thousand with respect to the relative permeability of 1 for the air gap.
Most of the magnetomotive force due to the field current flowing through the field conductor is consumed in the air gap, and behind the ferromagnetic member where the detection coil is located, the noise is reduced by reducing the strength of the magnetic field behind it. That is, the S / N ratio, which is the ratio between the signal S and the noise N, is improved. Therefore, by setting the detection level to a predetermined value or more, an abnormality can be appropriately detected when a field circuit ground fault occurs, and the function of the synchronous machine field circuit ground fault detection device, which has been unable to perform its function sufficiently due to a malfunction, conventionally. Function can be enhanced.

(実施例) 以下、本発明の一実施例について第1図および第2図
を参照して説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 and FIG.

第1図は同期機界磁回路導体(10)の正側および負側
の界磁導体(14)および(15)の周囲を空隙(g1)、
(g2)を有して第1、第2の強磁性部材(23)、(24)
で囲んだ構造とし、検出コイル(11)を第2の強磁性部
材(24)の略中央部の外面に1点鎖線で図示した略円形
の対向範囲(16)に近接してその背後に設置したことを
示す。なお第1、第2の強磁性部材(23)、(24)の片
方、またはそれらの一部は従来から有った構造材で兼用
していても良い。また空隙(g1)、(g2)はどちらか片
方だけでも良いし、非磁性部材であれば何でも良い。他
は従来例として示した第3図および第4図と同様であ
る。
FIG. 1 shows a gap (g 1 ) around the positive and negative field conductors (14) and (15) of the synchronous machine field circuit conductor (10).
First, second ferromagnetic member has a (g 2) (23), (24)
And the detection coil (11) is installed on the outer surface of the substantially central portion of the second ferromagnetic member (24) in proximity to and behind the substantially circular opposing area (16) shown by a dashed line. Indicates that you have done. One of the first and second ferromagnetic members (23) and (24), or a part thereof, may be shared by a conventional structural material. The gaps (g 1 ) and (g 2 ) may be only one of them, or may be any non-magnetic member. Other parts are the same as those shown in FIGS. 3 and 4 as the conventional example.

次にこの実施例の作用を説明する。 Next, the operation of this embodiment will be described.

第2図は第1図のB矢視において、同期機界磁回路導
体(10)に流れる界磁電流による磁界の等ポテンシャル
線(25)、(26)を示す。ただし強磁性部材(23)に対
して検出コイル(11)の位置する側の空間の半分のみ示
す。破線で示した等ポテンシャル線(25)は第2の強磁
性部材(24)がない従来の場合であり、同期機界磁回路
導体(10)から放射線状に伸びる。なお検出コイル(1
1)の位置の磁界の強さはその位置での等ポテンシャル
線(25)又は(26)の間隔で表わされる。実線で示した
等ポテンシャル線(26)は本実施例による第2の強磁性
部材(24)を設置した場合である。等ポテンシャル線
(26)の本数は従来と同じであるが、その分布が従来と
大きく異なる。つまり、空隙(g1)、(g2)の比透磁率
が1であるのに対し、強磁性部材(24)の非透磁率は数
百〜数千と大きいため、正側、負側の界磁導体(14)、
(15)を取り巻く起磁力は大半が空隙(g1)、(g2)で
費やされる。すなわち大半の本数の等ポテンシャル線が
そこに集中し、検出コイル(11)のある強磁性部材(2
4)の近傍では、わずかな本数の等ポテンシャル線(2
6)しか存在せず、その間隔は広くなり磁界の強さは軽
減される。これにより、正側又は負側の界磁導体(14)
又は(15)に流れる界磁電流による検出コイル(11)へ
のノイズ成分が小さくなりS/N比が向上する。
FIG. 2 shows equipotential lines (25) and (26) of a magnetic field due to a field current flowing through the synchronous machine field circuit conductor (10) when viewed from the arrow B in FIG. However, only half of the space on the side where the detection coil (11) is located with respect to the ferromagnetic member (23) is shown. The equipotential line (25) shown by a broken line is a conventional case without the second ferromagnetic member (24), and extends radially from the synchronous machine field circuit conductor (10). The detection coil (1
The strength of the magnetic field at the position 1) is represented by the interval between the equipotential lines (25) and (26) at that position. The equipotential line (26) shown by a solid line is a case where the second ferromagnetic member (24) according to the present embodiment is installed. The number of equipotential lines (26) is the same as the conventional one, but the distribution is significantly different from the conventional one. That is, while the relative magnetic permeability of the air gaps (g 1 ) and (g 2 ) is 1, the non-magnetic permeability of the ferromagnetic member (24) is as large as several hundreds to several thousands, so that the positive side and the negative side Field conductor (14),
Most of the magnetomotive force surrounding (15) is spent in the air gaps (g 1 ) and (g 2 ). That is, most of the equipotential lines are concentrated there, and the ferromagnetic member (2
In the vicinity of 4), a small number of equipotential lines (2
6), the spacing is widened and the strength of the magnetic field is reduced. This allows the positive or negative field conductor (14)
Alternatively, the noise component to the detection coil (11) due to the field current flowing through (15) is reduced, and the S / N ratio is improved.

[発明の効果] 以上説明したように、本発明によれば、構造的な原因
で検出コイルに商用周波のノイズが載った場合でも、常
に地絡検出装置はノイズに対して応動する事なく、界磁
回路地絡発生時のパルス状電圧に対して応動し、適切に
界磁回路地絡検出を行う事が可能な同期機界磁回路地絡
検出装置を提供できる。
[Effects of the Invention] As described above, according to the present invention, even when commercial frequency noise is loaded on the detection coil due to a structural cause, the ground fault detecting device does not always respond to the noise. It is possible to provide a synchronous machine field circuit ground fault detection device that can respond to a pulse-like voltage when a field circuit ground fault occurs and can appropriately detect the field circuit ground fault.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の要部を示す斜視図、第2図
は第1図のB矢視における等ポテンシャル線図、第3図
は従来技術による回路図、第4図は従来技術による第3
図の原理を説明するための説明図、第5図は第4図のA
矢視の励磁コイルおよび検出コイルの取付図、第6図は
第3図の検出コイルの出力電圧波形図、第7図は第3図
の検出コイルに誘導された商用周波電圧波形図である。 1……回転部 1a……地絡点 2……交流励磁機電機子巻線 3……交流励磁機界磁巻線 4……回転整流器 5……同期機界磁巻線 6……同期機電機子巻線 7……交流励磁機電機子補助巻線 8……補助電源用整流器 9……励磁コイル 10……同期機界磁回路導体 11……検出コイル 12……地絡検出器 14……正側界磁導体 15……負側界磁導体 16……検出コイルの対向範囲 23……第1の強磁性部材 24……第2の強磁性部材 E……接地点
FIG. 1 is a perspective view showing a main part of an embodiment of the present invention, FIG. 2 is an equipotential diagram as viewed in the direction of arrow B in FIG. 1, FIG. 3 is a circuit diagram according to the prior art, and FIG. Third by technology
FIG. 5 is an explanatory view for explaining the principle of FIG.
FIG. 6 is a mounting diagram of the exciting coil and the detecting coil as viewed from the arrow, FIG. 6 is an output voltage waveform diagram of the detecting coil of FIG. 3, and FIG. 7 is a commercial frequency voltage waveform diagram induced by the detecting coil of FIG. DESCRIPTION OF SYMBOLS 1 ... Rotating part 1a ... Earth fault point 2 ... AC exciter armature winding 3 ... AC exciter field winding 4 ... Rotary rectifier 5 ... Synchronous machine field winding 6 ... Synchronous machine Armature winding 7 ……………………………………………………………………………………………………………………… ………………………………………………………………………. ... Positive field conductor 15... Negative field conductor 16... Opposite range of detection coil 23... First ferromagnetic member 24.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−77359(JP,A) 特開 昭55−164378(JP,A) (58)調査した分野(Int.Cl.6,DB名) H02K 19/00 - 19/38 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-77359 (JP, A) JP-A-55-164378 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H02K 19/00-19/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回転電機子形の交流励磁機を備え、その出
力を回転整流器により整流し、同期発電機または同期電
動機の界磁源とし、界磁回路が地絡したとき補助電源と
回路を形成し、回転部外に磁束を発生する励磁コイル
と、その磁束を静止部で検出する検出コイルと、検出コ
イルの出力を受けて地絡を検出する地絡検出器とを備え
たブラシレス形同期機の界磁回路地絡検出装置におい
て、検出コイルの近傍にあるノイズ源となる同期機界磁
回路導体の周囲を第1、第2の強磁性部材で囲む磁気回
路を構成し、かつ、この磁気回路には空隙または非磁性
部材を有し、第2の強磁性部材を同期機界磁回路導体と
検出コイルの間に配置したことを特徴とする同期機界磁
回路地絡検出装置。
A rotating armature type AC exciter is provided, the output of which is rectified by a rotary rectifier, and used as a field source for a synchronous generator or a synchronous motor. When a field circuit is grounded, an auxiliary power supply and a circuit are connected. A brushless synchronous system comprising an exciting coil formed and generating a magnetic flux outside the rotating part, a detecting coil detecting the magnetic flux at a stationary part, and a ground fault detector receiving an output of the detecting coil and detecting a ground fault. In the field circuit ground fault detecting device of the machine, a magnetic circuit surrounding a synchronous machine field circuit conductor serving as a noise source near the detection coil with first and second ferromagnetic members is formed, and A synchronous machine field circuit ground fault detecting device, wherein the magnetic circuit has an air gap or a non-magnetic member, and the second ferromagnetic member is arranged between the synchronous machine field circuit conductor and the detection coil.
JP2258338A 1989-10-31 1990-09-27 Synchronous machine field circuit ground fault detection device Expired - Fee Related JP2874998B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28393189 1989-10-31
JP1-283931 1989-10-31

Publications (2)

Publication Number Publication Date
JPH03207244A JPH03207244A (en) 1991-09-10
JP2874998B2 true JP2874998B2 (en) 1999-03-24

Family

ID=17672068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2258338A Expired - Fee Related JP2874998B2 (en) 1989-10-31 1990-09-27 Synchronous machine field circuit ground fault detection device

Country Status (1)

Country Link
JP (1) JP2874998B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026470B2 (en) * 1979-06-08 1985-06-24 株式会社東芝 Ground fault detection device for brushless rotating electric machines
JPH0634564B2 (en) * 1986-09-18 1994-05-02 日本工営株式会社 Ground fault detector for generator

Also Published As

Publication number Publication date
JPH03207244A (en) 1991-09-10

Similar Documents

Publication Publication Date Title
US4136312A (en) Method and apparatus for detection of rotor faults in dynamoelectric machines
US4364005A (en) Brushless tachometer generator
KR100450185B1 (en) Detecting device of rotating body position in electric machine using coupling between mechanical coils and control method thereof
JP3488578B2 (en) Bearing wear monitoring device for canned motor
JPS60220220A (en) Radial magnetic bearing with integral rotor
JP2874998B2 (en) Synchronous machine field circuit ground fault detection device
JP3573086B2 (en) Randell type rotating electric machine having magnetic rotation angle detecting device
US3848157A (en) Brushless dc-tachometer
JPH05247738A (en) Independent motor apparatus for spindle of fine spinning frame
JP6542336B2 (en) Magnetic shield device, ground fault detection device and magnetic shield method
JPH0634564B2 (en) Ground fault detector for generator
JPS61280753A (en) Variable speed permanent magnet motor
JP3255834B2 (en) Conductor flaw detection device
JP2001178095A (en) Rotary transformer
JP2674012B2 (en) Metal detector
KR830001539Y1 (en) Tachometer generator
JP3081709B2 (en) Apparatus and method for detecting field ground fault of variable speed generator motor
JPS58221172A (en) Electric current detector
JPS59110395A (en) Brushless rotary electric machine
JP3517092B2 (en) Vibration control device for rotating electric machine
JPS6217661A (en) Apparatus for detecting rotational speed
JP2000236689A (en) Method and apparatus for detection of magnetic field grounding
JPS6248300A (en) Detector for exciting current of brushless synchronous machine
JPH04244765A (en) Brushless motor
JPS61295852A (en) Rotating phase detector of dc motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees