JPS59109761A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS59109761A
JPS59109761A JP21980682A JP21980682A JPS59109761A JP S59109761 A JPS59109761 A JP S59109761A JP 21980682 A JP21980682 A JP 21980682A JP 21980682 A JP21980682 A JP 21980682A JP S59109761 A JPS59109761 A JP S59109761A
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
temperature
flows
electric compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21980682A
Other languages
Japanese (ja)
Inventor
中林 英夫
松本 説男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP21980682A priority Critical patent/JPS59109761A/en
Publication of JPS59109761A publication Critical patent/JPS59109761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)発明の分野 冷凍室内に補助冷却器を設け、冷却室内に設けた主冷却
器で冷却した空気を送風機にて冷凍室内器による直接冷
却とにて通常の冷却運転よりも短時間で冷却する方式の
冷凍装置に関する。
[Detailed Description of the Invention] (a) Field of the Invention An auxiliary cooler is provided in the freezing chamber, and the air cooled by the main cooler installed in the cooling chamber is directly cooled by the refrigerator chamber internal using a blower to perform normal cooling. This invention relates to a refrigeration system that cools down in a shorter time than it takes to operate.

(ロ)背景技術及びその問題点 冷凍室と冷蔵室を備え画室間の冷却器室に収納した冷却
器で冷却した空気を送風機にて冷凍室から冷蔵室へ循環
し、冷凍室内壁に直冷式冷却器を設け、両冷却器に冷媒
が直列に流れるようにし、冷蔵室の温度で送風機の運転
を制御し冷凍室の温度で電動圧縮機の運転も停止して冷
蔵庫の運転を停止する方式のものが実公昭54−386
18号公報で公知である。しかしこれは除霜動作中は電
動圧縮機の運転が停止するものであり、除霜動作中の冷
凍室の温度上昇の防止は達成されない。
(B) Background technology and its problems Air that is cooled by a cooler stored in a cooler room between the compartments is equipped with a freezer compartment and a refrigerator compartment, and is circulated from the freezer compartment to the refrigerator compartment using a blower, and is directly cooled to the wall of the freezer compartment. A method in which a type cooler is installed so that refrigerant flows in series between both coolers, the operation of the blower is controlled according to the temperature of the refrigerator compartment, and the operation of the electric compressor is also stopped when the temperature of the freezer compartment is reached, thereby stopping the operation of the refrigerator. The one is from 1974-386.
It is publicly known from Publication No. 18. However, in this case, the operation of the electric compressor is stopped during the defrosting operation, and it is not possible to prevent the temperature of the freezer compartment from rising during the defrosting operation.

また冷凍室と冷蔵室を備え冷凍室はその内壁に直冷式冷
却器を設け、冷凍室への冷気循環路に設けたもう一つの
第2の冷却器で冷却した空気を送風機で循環して通常は
冷却され第2の冷却器へホットガスを流して除霜を行う
ときのみ前記直冷式冷却器へ冷媒を流して冷凍室の冷却
を行っ−こおり、そして冷蔵室には更に第3の冷却器を
設けて冷凍室とは独立して冷却している方式のものが特
公昭52−44825号公報にて公知である。この方式
では第2の冷却器の除霜動作中は冷凍室の温度上昇を抑
制することはできるが冷凍室用に冷却器が二つ必要であ
り、冷凍冷蔵庫としては三個の冷却器が必要となり高価
なものになる。また電動圧縮機の運転も冷凍室と冷蔵室
の画室が十分冷却されるまでは運転を続けるようになっ
ており、冷蔵室の温度が所定の低温になると送風機を停
止し第2冷却器にホットガスを流して除霜し冷凍室が所
定温度になると電動圧縮機の運転を停止する方式である
ため各冷却器の除霜を考慮した温度制御が難しい。
It also has a freezer compartment and a refrigerator compartment, and the freezer compartment is equipped with a direct cooling type cooler on its inner wall, and a blower circulates the air cooled by another second cooler installed in the cold air circulation path to the freezer compartment. Normally, only when defrosting is performed by flowing hot gas into the second cooler, the refrigerant is passed through the direct cooling type cooler to cool the freezer compartment. Japanese Patent Publication No. 52-44825 discloses a system in which a cooler is provided to cool the refrigerator independently of the freezing chamber. With this method, it is possible to suppress the temperature rise in the freezer compartment while the second cooler is defrosting, but two coolers are required for the freezer compartment, and three coolers are required for the refrigerator-freezer. It becomes expensive. In addition, the electric compressor continues to operate until the compartments in the freezer and refrigerator compartments are sufficiently cooled, and when the temperature in the refrigerator compartment reaches a predetermined low temperature, the blower is stopped and the second cooler is heated. Since the system defrosts the air by flowing gas and stops the operation of the electric compressor when the freezer reaches a predetermined temperature, it is difficult to control the temperature in consideration of the defrosting of each cooler.

(ハ)発明の目的 冷凍室内に補助冷却器を設けて急速冷却運転と通常の冷
却運転とを達成する冷媒回路であって冷却運転効率を向
上し、除霜時間の延長を防止でき、または除霜ヒータの
発熱量の増加の防止ができ、更に電動圧縮機の小容量化
及び起動性の向上を図るものである。
(c) Purpose of the invention A refrigerant circuit that achieves rapid cooling operation and normal cooling operation by providing an auxiliary cooler in a freezing chamber, which improves cooling operation efficiency and prevents extension of defrosting time. This prevents an increase in the amount of heat generated by the frost heater, and further reduces the capacity of the electric compressor and improves start-up performance.

に)発明の実施例 図面に於いて説明する。第1図において(1)は所謂二
温度式冷蔵庫でそれの庫内は仕切壁(2)にて冷凍温度
に保たれる冷凍室(3)と氷点よりも高い温度に保たれ
る冷蔵室(4)とに区画形成されている。(5)は仕切
壁(2)と間隔を保って上方に設けられた冷凍室(3)
の底壁で仕切壁(2)との間に形成した冷却室(6)内
には主冷却器(7)が設置されている。(8)は主冷却
器(7)で冷却した空気を冷凍室(3)と冷蔵室(4)
とに循環させる電動送風機で冷凍室(3)へは送風機(
8)の前方から直接冷気が吐出され、又冷蔵室(4)へ
はダクト(9)を通って降下した冷気が送出されて矢印
の如く循環する。(6)は冷蔵室(4)の温度に応じて
ダクト(9)の冷蔵室(4)への冷気吐出口部分を開閉
するダンパ装置である。αηは電動圧縮機、(6)は凝
縮器、(ハ)は例えば2枚の金属板間に冷媒通路を形成
した所謂ロールボンド式或いは金属板に冷媒管を熱伝導
的に配設した所謂チヱーブオンシート式の冷却器で構成
される補助冷却器で本実施例では冷凍室(3)内に物品
を載置ずろ様棚状に設けられている。第2図において、
(ハ)は凝縮器@を出た冷媒が補助冷却器(至)へ流れ
るか否かを制御する通路制御弁装置としての三方式電磁
弁であり、補助冷却器(2)の入口側のキャピラリチュ
ーブ(ホ)と凝縮器(6)の間の冷媒通路を開閉する。
B) Examples of the invention will be explained with reference to the drawings. In Figure 1, (1) is a so-called two-temperature refrigerator, which has a freezer compartment (3) kept at freezing temperature by a partition wall (2), and a refrigerator compartment (3) kept at a temperature higher than the freezing point. 4) It is divided into two parts. (5) is a freezer compartment (3) located above the partition wall (2) with a distance between it.
A main cooler (7) is installed in a cooling chamber (6) formed between the bottom wall and the partition wall (2). (8) sends the air cooled by the main cooler (7) to the freezer compartment (3) and refrigerator compartment (4).
A blower (
Cold air is directly discharged from the front of the refrigerator compartment (8), and the cold air that has descended through the duct (9) is sent to the refrigerator compartment (4) and circulated as shown by the arrow. (6) is a damper device that opens and closes the cold air discharge port of the duct (9) to the refrigerator compartment (4) according to the temperature of the refrigerator compartment (4). αη is an electric compressor, (6) is a condenser, and (c) is, for example, a so-called roll bond type in which a refrigerant passage is formed between two metal plates, or a so-called chie in which a refrigerant pipe is arranged in a metal plate in a thermally conductive manner. The auxiliary cooler is a tube-on-sheet type cooler, and in this embodiment, it is provided in the freezer compartment (3) in the form of a shelf on which articles are placed. In Figure 2,
(c) is a three-way solenoid valve as a passage control valve device that controls whether or not the refrigerant that exits the condenser flows to the auxiliary cooler (to), and the capillary on the inlet side of the auxiliary cooler (2) Open and close the refrigerant passage between the tube (E) and the condenser (6).

(ハ)は主冷却器(7)の入口側の冷媒通路制御弁とし
ての三方式電磁弁で、凝縮器(6)と電磁弁翰の間の冷
媒通路に入口を接続したキャビラリチー−プ(ホ)と主
冷却器(7)の間の冷媒通路を開閉する。(2)は逆止
弁で補助冷却器(至)から主冷却器(7)へ冷媒を流す
連絡管6pに接続され補助冷却器(ハ)から主冷却器(
7)への流れに対しては冷媒通路を開きその逆向きの流
れに対しては冷媒通路を閉じるように作用する。翰はア
キュムレータαeと電動圧縮機(ロ)の入口側との間の
冷媒通路に設けた逆止弁で電動圧縮機αυの吸込み方向
に対して冷媒通路を開きその逆向きの冷媒の流れを阻止
する。翰は補助冷却器a、3の出口側と主冷却器(7)
の出口側を接続したバイパス管で補助冷却器(至)の出
口側に近い連絡管Gηとの接続部近くに上方に折曲した
ダム部(1)を形成しており、キャピラリチューブ(ハ
)(ホ)以外の冷媒バイブの内径よりも小さい内径を有
していて後述の急速冷却動作の安定を図っている。
(C) is a three-way solenoid valve that functions as a refrigerant passage control valve on the inlet side of the main cooler (7), and is a cabillary chest (holster) whose inlet is connected to the refrigerant passage between the condenser (6) and the solenoid valve. ) and the main cooler (7). (2) is a check valve that is connected to the communication pipe 6p that flows the refrigerant from the auxiliary cooler (to) to the main cooler (7), and is connected to the connecting pipe 6p that flows the refrigerant from the auxiliary cooler (c) to the main cooler (
7), the refrigerant passage is opened and the refrigerant passage is closed against the flow in the opposite direction. A check valve installed in the refrigerant passage between the accumulator αe and the inlet side of the electric compressor (b) opens the refrigerant passage in the suction direction of the electric compressor αυ and prevents the flow of refrigerant in the opposite direction. do. The wires are the outlet side of auxiliary coolers a and 3 and the main cooler (7)
A dam part (1) bent upward is formed near the connection part with the communication pipe Gη near the outlet side of the auxiliary cooler (to) with the bypass pipe connected to the outlet side of the capillary tube (c). It has an inner diameter smaller than the inner diameter of the refrigerant vibrator other than (e) to stabilize the rapid cooling operation described below.

第3図において、に)は実質的に冷凍室(3)の温度制
御を行う温度調節器で冷凍室(3)の温度或いは冷凍室
(3)への循環冷気通路の温度を通常感知するように設
けられ、若しくは冷却器(7)の温度を感知して開閉動
作する。(ハ)は除霜用タイマで電動機(3:3A)の
回転にて動作するカムスイッチ(33B)を有する。
In Fig. 3, 2) is a temperature controller that essentially controls the temperature of the freezer compartment (3), and normally senses the temperature of the freezer compartment (3) or the temperature of the circulating cold air passage to the freezer compartment (3). or by sensing the temperature of the cooler (7). (C) is a defrosting timer and has a cam switch (33B) that is operated by the rotation of an electric motor (3:3A).

(財)は冷却器(7)の除霜終了温度検出用サーモスク
ットである。(2)は除霜リレーでスイッチ(35A)
(35B)(35C) (35D) (35E)を有す
る。(至)は急冷タイマで電動機(36A)の回転で動
作するカムスイッチ(36B)を有する。(ロ)は急冷
指令スイッチ、鰻は急冷リレーでスイッチ(38A) 
(38B) (38C)を有する。0唄ま急冷中止スイ
ッチ、に)は電源である。θ→は遅延動作タイマであり
、(6)は電源トランス、(ト)はトランス(6)の2
次側に接続した直流電圧出力用の整流回路、(財)は比
較回路で一方の基準入力ライン(S)には抵抗(ハ)(
ト)の按分出力が接続され他方の測定入力ライン(8)
には抵抗O′7)とコンデンサ(ハ)の積分回路の積分
出力を入力している。θりは比較回路−の出力にて励磁
しスイッチ(49A)を閉じるリレーである。
(Foundation) is a thermo cut for detecting the defrosting end temperature of the cooler (7). (2) is a defrost relay switch (35A)
(35B) (35C) (35D) (35E). (to) is a quenching timer and has a cam switch (36B) operated by the rotation of an electric motor (36A). (B) is a quenching command switch, and eel is a quenching relay switch (38A)
(38B) has (38C). 0 song quench stop switch, 2) is the power supply. θ→ is a delay operation timer, (6) is a power transformer, and (g) is a transformer (6) 2.
The rectifier circuit for DC voltage output connected to the next side is a comparator circuit, and one reference input line (S) is connected to a resistor (C) (
(8) is connected to the other measurement input line (8).
The integral output of the integrating circuit consisting of the resistor O'7) and the capacitor (C) is input to the circuit. θ is a relay that is excited by the output of the comparator circuit and closes the switch (49A).

この構成において、通常の冷却運転状態ではリレーθ傷
が励磁してスイッチ(49A)が閉じ、リレー(2)の
スイッチ(35A)(35C)は閉じ(35B) (3
5D)(35E)は開いており、リレーに)のスイッチ
(38A)(38B) (38C)は開いており、タイ
マ(ト)のスイッチ(33B)は接点(5)に閉じてお
り、サーモスタンド(ハ)は略0℃以下の温度にて閉じ
ており、スイッチ(ロ)は開き(イ)は閉じ、タイマ(
至)のスイッチ(36B)は閉じている。このため温度
調節器(イ)が閉じているとき電動圧縮機θ′Dと電動
送風機(8)が運転され電磁弁(ハ)が通電されて冷媒
通路を開き電磁弁翰は非通電で冷媒通路を閉じているた
め冷媒は電動圧縮機αD−凝縮凝縮器−2−キャピラリ
チューブ)−電磁弁(ハ)−主冷却器(7)−アキュム
レータ(1!19−逆止弁(ハ)−電動圧縮機α1)へ
順次循環し冷凍室(3)と冷蔵室(4)が冷却される。
In this configuration, under normal cooling operation conditions, the relay θ flaw is excited and the switch (49A) is closed, and the switches (35A) (35C) of the relay (2) are closed (35B) (3
5D) (35E) is open, switches (38A) (38B) (38C) of relay) are open, switch (33B) of timer (g) is closed to contact (5), thermo stand (c) is closed at a temperature below approximately 0℃, switch (b) is open and (a) is closed, and the timer (
The switch (36B) is closed. Therefore, when the temperature controller (A) is closed, the electric compressor θ'D and the electric blower (8) are operated, and the solenoid valve (C) is energized to open the refrigerant passage. Since the is closed, the refrigerant is transferred to the electric compressor αD - condenser condenser - 2 - capillary tube) - solenoid valve (c) - main cooler (7) - accumulator (1! 19 - check valve (c) - electric compressor It is sequentially circulated to the machine α1) to cool the freezer compartment (3) and refrigerator compartment (4).

除霜用タイマ電動機(33A)は温度調節器(イ)の閉
路時間通電され積算動作する。電動機(33A)の抵抗
値はヒータ0Qの抵抗値より十分大であるためヒータ0
Qは実質上発熱しない状態である。温度調節器(イ)が
所定の下限設定温度を検出すると開路しリレー00は非
励磁となり、電動圧縮機αD及び電動送風機(8)は停
止し電磁弁Q4は非通電となって冷媒通路を閉じる。冷
凍室の温度が上昇し温度調節器に)が上限設定温度を検
出すると接点が閉じトランス(6)に電源が印加され整
流回路■が直流出力を生じコンデンサ(ト)が充電を始
め基準入力ライン(Slの電位に測定入力ライン(旬の
電位が達すると比較回路−の出力が生じてリレーθつが
励磁しそのスイッチ(49A)は閉じて電動圧縮機(1
1)が始動する。一方温度制御装置(イ)の閉路によっ
て直ちに電磁弁(財)が通電されて冷媒通路を開くと共
に電動送風機(8)が始動し更にタイマ電動機(33A
)は始動する。即ち電磁弁(ハ)等の通電から遅れて電
動圧縮機(1,1)が始動する。この遅れ時間は比較的
短かく家庭用冷凍冷蔵庫では数拾秒乃至数分間程度であ
り主冷却器(7)の温度の上昇は太したことはなく庫内
温度−上昇による悪影響は殆んど問題ない。一つの実験
でもこの遅延時間は30秒乃至3分程度で良い結果を得
られる。このようにして電動圧縮機0])の始動によっ
て前述の冷媒回路によって主冷却器(7)が冷却され冷
凍室と冷蔵室は冷却されろ。冷蔵室(4)の温度はダン
パサーモスタンド91にて一定の温度範囲に保たれろ。
The defrosting timer motor (33A) is energized during the closing time of the temperature regulator (a) and performs an integration operation. The resistance value of the electric motor (33A) is sufficiently larger than the resistance value of heater 0Q, so heater 0
Q is a state in which substantially no heat is generated. When the temperature controller (a) detects a predetermined lower limit temperature setting, it opens, relay 00 becomes de-energized, electric compressor αD and electric blower (8) stop, and solenoid valve Q4 becomes de-energized, closing the refrigerant passage. . When the temperature in the freezer compartment rises and the temperature controller () detects the upper limit set temperature, the contact closes and power is applied to the transformer (6), the rectifier circuit (■) generates a DC output, and the capacitor ((G)) begins to charge and the reference input line (When the potential of the measurement input line reaches the potential of Sl, the output of the comparison circuit is generated, the relays θ are energized, the switch (49A) is closed, and the electric compressor (1)
1) starts. On the other hand, as soon as the temperature control device (a) is closed, the solenoid valve is energized to open the refrigerant passage, the electric blower (8) is started, and the timer motor (33A
) starts. That is, the electric compressor (1, 1) starts with a delay from the energization of the solenoid valve (c) and the like. This delay time is relatively short, ranging from a few tens of seconds to a few minutes in a home-use refrigerator/freezer, and the rise in temperature of the main cooler (7) has never been significant, so the negative effects of the rise in internal temperature are almost no problem. do not have. Even in one experiment, good results can be obtained with this delay time of about 30 seconds to 3 minutes. In this way, by starting the electric compressor 0), the main cooler (7) is cooled by the above-mentioned refrigerant circuit, and the freezer compartment and refrigerator compartment are cooled. The temperature of the refrigerator compartment (4) is maintained within a constant temperature range by the damper thermostand 91.

除霜タイマ(至)が所定の積算に達するとスイッチ(3
3B)が接点(Blへ切換るためリレー(ハ)が励磁し
てスイッチ(35A) (35C)を開き(35B) 
(35D) (35E)を閉じるため、電動送風機(8
)は停止し電磁弁(ハ)は非通電となって冷媒通路を閉
じ、電磁弁(財)は通電されて冷媒通路を開き電動機(
33A、)は短絡されて運転を停止し、電動圧縮機0力
は引続き運転されろ。
When the defrost timer (to) reaches the predetermined integration value, the switch (3
3B) switches to the contact (Bl), so the relay (c) is energized and opens the switch (35A) (35C) (35B)
(35D) To close (35E), electric blower (8
) stops, the solenoid valve (C) is de-energized and closes the refrigerant passage, and the solenoid valve (C) is energized to open the refrigerant passage and start the electric motor (
33A, ) is short-circuited and stops operating, and the electric compressor 0 power continues to operate.

このため冷媒は電動圧縮機αη−凝縮器0オー電磁弁(
ハ)−キャビラリチー−ブ(ハ)−補助冷却器α埠−バ
イパス1fH−アキュムレータ0υ−電動圧縮機(ロ)
へ流れる循環を行い冷凍室(3)の温度は略温度制御装
置翰で制御されろ下限温度以下の低温になるよう冷媒通
路が構成されている。そしてヒータ(イ)に通電して主
冷却器(7)の除霜が行われる。除霜にて主冷却器(7
)の温度が−L昇し例えば10°Cになるとサーモスタ
ンド■が開くため、リレーに)が非励磁となってスイッ
チ(35A) (35C)が閉じ(35B) (35D
)(35E)が開きヒータα0の発熱による除霜動作を
終了する。除霜動作中に補助冷却器(へ)にて出陳室温
は、略温度制御装置に)にて制御されるときの冷凍室下
限温度以下になるので、除霜動作の終了時には温度制御
装置(イ)が開いておれば電動圧縮機(ロ)は停止し、
また下限設定温度近い低温を検出しておれば電動圧縮機
(ロ)が継続して運転され温度制御装置(イ)が所定の
下限設定温度において開路する。除霜終了後に温度制御
装置翰が閉じていると、スイッチ(35B)によってタ
イマ電動機(33A)は短絡が解除されているので通電
され所定の数分間のタイムセーフ後にスイッチ(33B
)は接点(5)に復帰するので電動送風機(8)が始動
する。また電磁弁(ハ)が非通電となって冷媒通路を閉
じると共に電磁弁(ハ)が通電されて冷媒通路を開き通
常の冷却運転となる。
Therefore, the refrigerant is transferred from the electric compressor αη to the condenser 0 solenoid valve (
C) - Cavillary archive (C) - Auxiliary cooler α - Bypass 1fH - Accumulator 0υ - Electric compressor (B)
The refrigerant passage is configured so that the temperature of the freezer compartment (3) is approximately controlled by a temperature control device and kept at a low temperature below the lower limit temperature. Then, the heater (A) is energized to defrost the main cooler (7). The main cooler (7
) rises by -L and reaches, for example, 10°C, the thermostand ■ opens, so the relay ) becomes de-energized and the switch (35A) (35C) closes (35B) (35D
) (35E) is opened and the defrosting operation due to the heat generated by the heater α0 is completed. During the defrosting operation, the auxiliary cooler lowers the temperature below the lower limit temperature of the freezer compartment when controlled by the temperature control device, so at the end of the defrosting operation, the temperature control device If a) is open, the electric compressor (b) will stop,
Further, if a low temperature close to the lower limit set temperature is detected, the electric compressor (b) continues to operate and the temperature control device (a) opens at a predetermined lower limit set temperature. If the temperature control device cover is closed after defrosting, the timer motor (33A) is released from the short circuit by the switch (35B), so it is energized and the switch (33B) is turned on after a predetermined time-safe period of several minutes.
) returns to the contact point (5), so the electric blower (8) starts. Further, the solenoid valve (c) is de-energized to close the refrigerant passage, and the solenoid valve (c) is energized to open the refrigerant passage and perform normal cooling operation.

なおサーモスタット(財)はこの冷却運転にて低下した
主冷却器(7)のO℃程度の温度にて閉路する。
Note that the thermostat closes when the temperature of the main cooler (7) drops to about 0°C during this cooling operation.

次に自己復帰型の急冷指令スイッチ(ロ)を一時的に閉
じるとリレーに)が励磁してスイッチ(38A)(38
B) (38C)が閉じIJ L/−(ハ)は自己保持
し急冷タイマ電動機(36A)に通電し、また温度調節
器に)を短絡した連続冷却運転回路を形成し、更に電磁
弁盤に通電して冷媒通路を開く。このため凝縮器(6)
を出た冷媒はキャビラリチー−プ翰とこれに並列回路で
ある電磁弁−−キャピジリチーーブに)−補助冷却器a
杓−逆止弁(イ)の通路を流れて電磁弁(ハ)から主冷
却器(7)を流れ電動圧縮機aηへ帰還する循環をする
。このため補助冷却器(2)上に載置した食品等は補助
冷却器(ハ)による直接冷却と主冷却器(7)を通る冷
風による間接冷却とにて短時間にて冷凍が促進されろ。
Next, when the self-returning type rapid cooling command switch (b) is temporarily closed, the relay) is energized and the switch (38A) (38
B) (38C) is closed, IJ L/- (c) is self-holding, energizes the quenching timer motor (36A), and forms a continuous cooling operation circuit that short-circuits (to the temperature controller), and further connects to the solenoid valve board. Turn on the power and open the refrigerant passage. For this reason, the condenser (6)
The refrigerant that exits the capillary chevron and the electromagnetic valve which is a parallel circuit to it - to the capillary chevron) - to the auxiliary cooler a
It flows through the path of the ladle-check valve (a), flows from the solenoid valve (c) to the main cooler (7), and returns to the electric compressor aη for circulation. Therefore, food placed on the auxiliary cooler (2) can be frozen in a short time by direct cooling by the auxiliary cooler (c) and indirect cooling by cold air passing through the main cooler (7). .

この急速冷凍はタイマ(至)で設定した時間桁われスイ
ッチ(36B)が開いて終る。スイッチ(36B)が開
くとリレー(ハ)の自己保持が解除されてスイッチ(3
8A) (38B) (38C)が開き電磁弁盤が非通
電となって補助冷却器(ハ)への冷媒通路を閉じろ。こ
の急速冷凍動作の終了後は通常の冷却運転状態となる。
This quick freezing ends when the switch (36B) opens after the time set by the timer. When the switch (36B) opens, the self-holding of the relay (c) is released and the switch (36B) is released.
8A) (38B) (38C) open and the solenoid valve board becomes de-energized, closing the refrigerant passage to the auxiliary cooler (c). After the rapid freezing operation is completed, the normal cooling operation state is resumed.

急速冷凍の途中の中止は自己復蝉型のスイッチ(ハ)を
一時開くことにより達成されろ。
Cancellation of rapid freezing in the middle can be achieved by temporarily opening the self-recovery type switch (c).

急冷タイマ(ト)は設定時間の終了にて、またスイッチ
(至)の開路にて初期状態に戻る。またキャピラリチー
−ブ(ハ)を第3図のP点と凝縮器(ロ)の出口部に設
けるようにしてもよい。また逆止弁翰は電動圧縮機αη
がロータリ式の圧縮機の場合は圧縮機の吐出側と吸込側
が圧力分離されないので必要であるがレシプロ式圧縮機
では圧力分離されるので省いてもよい。
The quenching timer (g) returns to its initial state at the end of the set time and when the switch (to) is opened. Further, a capillary tube (c) may be provided at the point P in FIG. 3 and at the outlet of the condenser (b). Also, the check valve handle is powered by an electric compressor αη.
In the case of a rotary type compressor, this is necessary because the pressure is not separated between the discharge side and the suction side of the compressor, but in the case of a reciprocating type compressor, the pressure is separated, so it may be omitted.

上記において通常の冷却運転では電動圧縮機(ロ)が停
止すると電磁弁(4)(ハ)は閉じているため冷媒回路
の高圧側と低圧側は分離された状態を保つ。このため凝
縮器@の高温冷媒が主冷却器(7)及び補助冷却器α1
へ流入して熱損失を生じることがない。
In the above normal cooling operation, when the electric compressor (b) stops, the solenoid valves (4) and (c) are closed, so the high pressure side and the low pressure side of the refrigerant circuit remain separated. Therefore, the high temperature refrigerant in the condenser @ is transferred to the main cooler (7) and the auxiliary cooler α1.
There is no possibility of heat loss from flowing into the air.

また除霜動作においては電磁弁(ハ)が閉じているので
凝縮器(6)の冷媒が主冷却器(7)へ流入して除霜時
間を長くすることもなく、また除霜時間を短縮するため
に除霜ヒータ(ト)のワット数を大きくすることもない
。また急速冷凍状態では電磁弁(ハ)(ハ)が開いて両
冷却器(7)C13へ流入するので補助冷却器U上の食
品等の急速冷凍が速かに行えるものである。
In addition, during defrosting operation, the solenoid valve (c) is closed, so the refrigerant in the condenser (6) does not flow into the main cooler (7) and prolong the defrosting time, and the defrosting time is shortened. There is no need to increase the wattage of the defrost heater (g) to do so. In addition, in the quick freezing state, the electromagnetic valves (C) and (C) open and the water flows into both coolers (7) C13, so that the food on the auxiliary cooler U can be quickly frozen.

また逆止弁(財)の存在にて除霜動作において冷媒が確
実に補助冷却器03へ流れるように作用し補助冷却器(
2)の機能を十分に発揮できるものである。電磁弁(ホ
)の代りにP点に三方式電磁弁を設け、非通電では補助
冷却器(至)への流路を閉じて主冷却器(7)方向への
即ちキャピラリチューブ(1)方向への冷媒通路を開き
、通電にて主冷却器(7)方向への冷媒通路を閉じて補
助冷却器(至)への冷媒通路を開くように構成してもよ
い。また第2図の冷媒回路において電磁弁盤とキャピラ
リチューブ翰の位置を冷媒の流れ方向に対し入れ替えて
も本発明の範囲であり、更にまたキャビラリチー−プ(
ホ)をQ点と電磁弁(財)の間に配置してもよく、また
キャピラリチーープ(ホ)を電磁弁(ハ)と主冷却器(
7)の間に配置しても本発明の範囲である。また本発明
は冷凍庫に適用しても同様の作用及び効果がある。
In addition, the presence of the check valve ensures that the refrigerant flows to the auxiliary cooler 03 during defrosting operation.
2) can be fully demonstrated. A three-way solenoid valve is installed at point P in place of the solenoid valve (e), and when the current is not energized, the flow path to the auxiliary cooler (to) is closed and the flow is directed toward the main cooler (7), that is, toward the capillary tube (1). The refrigerant passage to the main cooler (7) may be opened by energization, and the refrigerant passage toward the main cooler (7) may be closed, and the refrigerant passage to the auxiliary cooler (to) may be opened. It is also within the scope of the present invention to replace the positions of the electromagnetic valve plate and the capillary tube bracket with respect to the flow direction of the refrigerant in the refrigerant circuit shown in FIG.
E) may be placed between point Q and the solenoid valve (F), and the capillary cheep (E) may be placed between the solenoid valve (C) and the main cooler (F).
7) is within the scope of the present invention. Further, the present invention has similar functions and effects even when applied to a freezer.

(j→ 発明の効果 冷凍室を急速冷凍状態にすることができると共に逆止弁
の作用によって除霜動作において冷媒が確実に補助冷却
器に流れるようになり補助冷却器にて除霜動作中十分な
低温に維持できアイスクリームが軟弱になることも防止
できろ。更にまた電動圧縮機が停止すると電磁弁は冷媒
通路を閉じているので冷媒回路の高圧側と低圧側は圧力
分離され凝縮器から主冷却器及び補助冷却器へ高温冷媒
が流入することによって生じろ熱損失は防止され庫内温
度維持上好ましく、また電動圧縮機は始動が電磁弁の開
路よりも若干遅延するので冷媒回路の圧力バランスへの
移行がなされたとき始動するようにでき、電動圧縮機の
始動性が向上し小容量の電動圧縮機の電動機の採用が可
能となる。また除霜動作においても凝縮器の高温冷媒が
主冷却器へ流入しないので除霜ヒータの容量アンプをす
ることなく、また除籍時間が長くなる欠点も解決される
(j→ Effects of the invention The freezing chamber can be brought into a rapid freezing state, and the action of the check valve ensures that the refrigerant flows to the auxiliary cooler during defrosting operation, so that the auxiliary cooler is able to maintain sufficient flow during the defrosting operation. It can maintain a low temperature and prevent the ice cream from becoming soft.Furthermore, when the electric compressor stops, the solenoid valve closes the refrigerant passage, so the high pressure side and low pressure side of the refrigerant circuit are pressure-separated, and the ice cream is removed from the condenser. Heat loss caused by high-temperature refrigerant flowing into the main cooler and auxiliary cooler is prevented, which is good for maintaining the temperature inside the refrigerator.Also, since the electric compressor starts slightly later than the opening of the solenoid valve, the pressure in the refrigerant circuit increases. It can be configured to start when the transition to balance is achieved, improving the startability of the electric compressor and making it possible to use an electric motor for a small-capacity electric compressor.Also, during defrosting operation, the high-temperature refrigerant in the condenser is Since it does not flow into the main cooler, there is no need to increase the capacity of the defrosting heater, and the disadvantage of a long removal time is also solved.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の実施例を示(〜、第1図は冷凍冷蔵庫の
縦断側面図、第2図は冷媒回路図、第3図は制御回路図
である。 (3)・・・冷凍室、 (7)・・・主冷却器、 (8
)・・・電動送風機、 αの・・・電動圧縮機、 (6
)・・・凝縮器、 (へ)・・・補助冷却器、 El 
&41・・・制御弁、 (ロ)@・・・ギヤピラリチー
−プ、 翰・・・逆止弁、 に)・・・温度制御装置、
θυ・・・タイマ。 第1図 第2図 811 第3図 つに1 3
Each figure shows an embodiment of the present invention (~, Figure 1 is a vertical side view of a refrigerator-freezer, Figure 2 is a refrigerant circuit diagram, and Figure 3 is a control circuit diagram. (3)... Freezer compartment , (7)...Main cooler, (8
)...Electric blower, α's...Electric compressor, (6
)...Condenser, (to)...Auxiliary cooler, El
&41...Control valve, (b)@...Gearpilary cheep, Kan...Check valve, ni)...Temperature control device,
θυ...timer. Figure 1 Figure 2 811 Figure 3 Tsuni 1 3

Claims (1)

【特許請求の範囲】[Claims] 1、冷却室内に設けた主冷却器で冷却した空気を送風機
にて冷凍室へ循環して冷却するものにおいて、前記冷凍
室内を直接冷却するよう設けた補助冷却器と、実質的に
前記冷凍室の温度制御を行うよう前記電動送風機及び電
動圧縮機の運転を制御する温度制御装置と、通常の冷却
運転では凝縮器を出た冷媒が第1キヤピラリチユーブ及
び第1制御弁を通って前記主冷却器へ流れる第1の冷媒
回路と、前記主冷却器の除霜動作では凝縮器を出た冷媒
が第2制御弁及び第2キヤピラリチユーブを通って前記
補助冷却器を流れて前記主冷却器の出口側へ流れる第2
の冷媒回路と、急速冷凍運転では凝縮器を出た冷媒が前
記第2制御弁及び第2キヤピラリチユーブを通って前記
補助冷却器を流れた後に逆止弁を含む連絡管路を通って
前記第1制御弁の上流側に流れ前記第1制御弁を通った
後に前記主冷却器を流れる第3の冷媒回路と、前記温度
制御装置が所定の下限設定温度を検出した状態では前記
各制御弁は冷媒通路を閉じている制御回路と、前記電動
圧縮機の始動が前記制御弁の冷媒通路の開路よりも若干
遅延するよう制御するタイマとから成る冷凍装置。
1. In a device in which air cooled by a main cooler installed in a cooling chamber is circulated to a freezer compartment using a blower, an auxiliary cooler installed to directly cool the inside of the freezer compartment, and an auxiliary cooler installed to directly cool the inside of the freezer compartment; a temperature control device that controls the operation of the electric blower and the electric compressor to perform temperature control; and a temperature control device that controls the operation of the electric blower and the electric compressor to control the temperature of the electric blower; A first refrigerant circuit flows to the cooler, and in the defrosting operation of the main cooler, the refrigerant exiting the condenser flows through the auxiliary cooler through a second control valve and a second capillary tube to the main cooler. The second flow to the outlet side of the vessel
a refrigerant circuit, and in a quick freezing operation, the refrigerant exiting the condenser passes through the second control valve and the second capillary tube, flows through the auxiliary cooler, and then passes through the communication line including a check valve. a third refrigerant circuit that flows upstream of the first control valve and flows through the main cooler after passing through the first control valve; and a third refrigerant circuit that flows through the main cooler after passing through the first control valve; A refrigeration system comprising a control circuit that closes a refrigerant passage, and a timer that controls the start of the electric compressor to be delayed slightly from the opening of the refrigerant passage of the control valve.
JP21980682A 1982-12-14 1982-12-14 Refrigerator Pending JPS59109761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21980682A JPS59109761A (en) 1982-12-14 1982-12-14 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21980682A JPS59109761A (en) 1982-12-14 1982-12-14 Refrigerator

Publications (1)

Publication Number Publication Date
JPS59109761A true JPS59109761A (en) 1984-06-25

Family

ID=16741325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21980682A Pending JPS59109761A (en) 1982-12-14 1982-12-14 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59109761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828542A (en) * 1994-07-15 1996-02-02 Tsugiyoshi Osawa Burglarproof device for wheel for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828542A (en) * 1994-07-15 1996-02-02 Tsugiyoshi Osawa Burglarproof device for wheel for automobile

Similar Documents

Publication Publication Date Title
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
US2909907A (en) Refrigerating apparatus with hot gas defrost means
JPS59109761A (en) Refrigerator
JPS5824774A (en) Refrigerator
JPH085172A (en) Cooler for refrigerator with deep freezer
KR20190087020A (en) A refrigerator and a control method the same
KR910000132Y1 (en) Arrangement for defrosting from refrigerator
JPH0117021Y2 (en)
JPS5984069A (en) Storehouse
JPS5974477A (en) Refrigerator
JPH08136112A (en) Refrigerator
JPS6030702Y2 (en) refrigerator
JPS59109760A (en) Refrigerator
JPH05203329A (en) Refrigeration device
JPS6036867Y2 (en) refrigerator
JPS6115495Y2 (en)
JPS5816152A (en) Refrigerator
JPS5944566A (en) Storehouse
JPS5974476A (en) Refrigerator
JPS6340770Y2 (en)
JPS5878079A (en) Refrigerator
JPS5986880A (en) Cooling device
JPS58133583A (en) Quick cooling device for refrigerator
JPS5984070A (en) Refrigerator
JPH0263153B2 (en)