JPS5910913A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS5910913A
JPS5910913A JP12031082A JP12031082A JPS5910913A JP S5910913 A JPS5910913 A JP S5910913A JP 12031082 A JP12031082 A JP 12031082A JP 12031082 A JP12031082 A JP 12031082A JP S5910913 A JPS5910913 A JP S5910913A
Authority
JP
Japan
Prior art keywords
optical system
focus detection
focal length
zooming
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12031082A
Other languages
Japanese (ja)
Inventor
Kazuo Fujibayashi
和夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12031082A priority Critical patent/JPS5910913A/en
Priority to US06/505,073 priority patent/US4506970A/en
Publication of JPS5910913A publication Critical patent/JPS5910913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To perform always satisfactory focus detection even if a focal length changes by providing an optical path splitting means in the optical path of the optical image-forming system of a zoom lens. CONSTITUTION:An image-forming optical system is constituted of an image- forming lens 6 from a focusing lens 1 and an optical path splitting means 4 is provided on the optical path. Powers are reversely varied by a compensator 8 and a variator 9 cooperatively with zooming by a variator 2 and a compensator 3, whereby the focal length constituted of 1, 2, 3, 4, 8, 9, 10 forming an optical system for focus detection is made constant irrespectively of the zooming of the image-forming optical system. As a result, even if the zoom lens is zoomed to the telephoto end after the focus is detected at the wide angle end, the deviation in the depth of field is obviated.

Description

【発明の詳細な説明】 本発明は、結像光学系の焦点検出装置に関し符に結像光
学系の予定結像面の共軛点とその近傍の光軸方向の位置
の少なくとも2つの位置に配置された各々の受光素子か
らの出力を比較することによって結像光学系の合焦検出
を行う焦点検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus detection device for an imaging optical system, and relates to a focus detection device for an imaging optical system. The present invention relates to a focus detection device that detects the focus of an imaging optical system by comparing outputs from each arranged light receiving element.

従来、上記焦点検出装置において、受光素子光学系の穣
点距離の変化に依存していた。符に撮影光学系がズーム
レンズの場合には望遠端での検出精度は良いが、広角側
のズーム位置では焦点深度が深くなる為に検出精度が悪
くなっていた。例えば広角端で焦点検出を行ない望遠端
の方向にズーミングをすると、広角端では焦点深度内に
ある被写体であっ−Cも望遠端では焦点深度外になる場
合があり、像がボケ−てし捷うという欠点があった。
Conventionally, the focus detection device described above has relied on changes in the convergence point distance of the light-receiving element optical system. In particular, when the photographic optical system is a zoom lens, the detection accuracy is good at the telephoto end, but the detection accuracy deteriorates at the wide-angle zoom position because the depth of focus becomes deep. For example, if you perform focus detection at the wide-angle end and then zoom toward the telephoto end, the object that is within the depth of focus at the wide-angle end may be outside the depth of focus at the telephoto end, resulting in a blurred image. There was a drawback.

本発明は結像光学系の焦点距離が変化しても常に良好な
る焦点検出を行うことのできる焦点検出装置の提供を目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focus detection device that can always perform excellent focus detection even when the focal length of an imaging optical system changes.

本発明の目的を達成する為の焦点検出装置の構成の特徴
は結像光学系の光路中に光路分割手段を設け、光路分割
手段により分割された光束の方向に結像光学系と異なる
川魚検出用光学系を設け、焦点検出用光学系中に前記結
像光学系の焦点距離の変化に伴い焦点距離を変化させる
塾点距離変化手段を設け、焦点1実出用光学系の光軸上
であって結像光学系−の予定結像面とその光軸−ヒの位
置の少なくとも2つの位置と共軛な位置に受光素子を配
置し、前記各々の受光素子からの出力を用いて合焦検出
を行うことである。
The feature of the configuration of the focus detection device for achieving the object of the present invention is that an optical path splitting means is provided in the optical path of the imaging optical system, and the direction of the light beam split by the optical path splitting means is different from that of the imaging optical system. A detection optical system is provided, and a point distance changing means for changing the focal length in accordance with a change in the focal length of the imaging optical system is provided in the focus detection optical system, and a point distance changing means is provided in the focus detection optical system, and a point distance changing means is provided in the focus detection optical system, and a point distance changing means is provided in the focus detection optical system to change the focal length according to a change in the focal length of the imaging optical system. A light-receiving element is disposed at a position that is coextensive with at least two positions, the planned image-forming plane of the imaging optical system and the position of its optical axis A, and the output from each of the light-receiving elements is used to combine the images. This is to perform focus detection.

できるので史に好ましい。そし−〇史に本発明の目的を
よりよく達成する為には結像光学系のズ+ミングによる
変倍作用と焦点距離変化手段のズーミングによる変倍作
用とが略逆変倍にしておくことが好捷しい。
It is favorable for history because it can be done. In order to better achieve the object of the present invention, the zooming action of the imaging optical system by zooming and the zooming action of the focal length changing means should be approximately inversely reversed. is friendly.

次に図に従って本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の焦点検出装置の光学配置の櫃略図であ
る。
FIG. 1 is a schematic diagram of the optical arrangement of the focus detection device of the present invention.

図中、1はフォーカシングレンズ、2け変倍作用をもつ
バリエータ、3は像面補正作用をもつコンベンセータ、
4は光路分割手段、5は絞り、6は結像レンズ、7は予
定結像面のフィルム面である。
In the figure, 1 is a focusing lens, a variator with a double magnification function, 3 a convencator with an image plane correction function,
4 is an optical path splitting means, 5 is an aperture, 6 is an imaging lens, and 7 is a film surface which is a planned image formation surface.

十記フォーカシングレンズ1から結像レンズ6により結
像光学系を構成する。
The focusing lens 1 to the imaging lens 6 constitute an imaging optical system.

8と9は変倍用光学系であり8は像面補正作用をもつコ
ンペンセータ、9は変倍作用をもつバリエータ、10は
結像レンズ、11は焦点4・芙出用の分割プリズムであ
り光束を3つの方向に分シ、1]シている。そして3つ
の方向に分割した方向には受光索子12a、 12b、
 12Cが配置さit、ている。上記のゼンペンセータ
8から分割プリズム11に至るj安素で焦点棟出用元掌
示を構成する。
8 and 9 are optical systems for variable magnification, 8 is a compensator that has an image plane correction function, 9 is a variator that has a variable magnification function, 10 is an imaging lens, and 11 is a splitting prism for focal point 4 and aperture, which divides the light beam. is divided into three directions, 1]. Then, in the direction divided into three directions, there are light receiving cables 12a, 12b,
12C is placed in it. The j-ammonium element extending from the above-mentioned Zen Pen Setter 8 to the splitting prism 11 constitutes a base for focusing.

第2図は本発明の焦点検出装置のII(!理の説明図で
ある。Lは結像レンズ、Fは予定結像ff+i、Plは
9勿体側のデフォーカス位1^1、P2は像側り込テフ
ォーカス位置を各々示す。第1図にお・いて、受光素子
12bの位置が結像光学系の予定結像面Fに和尚する位
置とした場合、受光素子12aの位置はPl、受光素子
12Cの位置はP2に対応する。
FIG. 2 is an explanatory diagram of the II (! principle) of the focus detection device of the present invention. L is the imaging lens, F is the expected image formation ff+i, Pl is the defocus position 1^1 on the 9 side, and P2 is the image formation lens. The side focus positions are shown respectively.In Fig. 1, when the position of the light receiving element 12b is set to the position where it is aligned with the planned image forming plane F of the imaging optical system, the position of the light receiving element 12a is P1, The position of the light receiving element 12C corresponds to P2.

第1図の受光素子12a、 12b、 12cで結像光
学系のボケ巾を検知し、受光素子12 a、 12 b
、 12 cの出力比較により結像光学系の合焦を判断
する。
The blur width of the imaging optical system is detected by the light receiving elements 12a, 12b, and 12c in FIG. 1, and the light receiving elements 12a, 12b
, 12c, the focus of the imaging optical system is determined by comparing the outputs of the images.

受光素子12aと12Cの出力が一致し、かつ受光素子
12’bの出力が受光素子12a及び12cの出力より
高い場合が合焦でありそれ以外は焦点外れとみなされる
When the outputs of the light-receiving elements 12a and 12C match and the output of the light-receiving element 12'b is higher than the outputs of the light-receiving elements 12a and 12c, the object is in focus, and otherwise it is considered to be out of focus.

第1図において撮影系をズーミングするとフィルム面7
におけるピント移動量は変倍比の2乗に比例して変化す
る。もし焦点検出光学系の焦点距離が一定である場合に
は受光素子128゜12b、12Cにおけるピント移動
量も変倍比の2東に比例して変化する。第31W(a)
、 (b)、 (c)は各々受光系子12 a、 12
 b、 12 cにおける出力Sの変化をフォーカシン
グレンズ1の移動量lzを横軸にとって対比して示した
ものである。(−1,(b)。
In Figure 1, when zooming the photographing system, the film surface 7
The focus movement amount changes in proportion to the square of the magnification ratio. If the focal length of the focus detection optical system is constant, the amount of focus movement in the light receiving elements 128.degree. 12b, 12C also changes in proportion to the magnification ratio. 31st W(a)
, (b) and (c) are light receiving elements 12a and 12, respectively.
The changes in the output S at points b and 12c are shown in comparison with the amount of movement lz of the focusing lens 1 on the horizontal axis. (-1, (b).

(c)は各々結像光学系の広角端、中間焦点距離、望遠
端のズーム位置に対応してフォーカシングレンズlの移
動量ΔIが増えていく様子を示している。フォーカシン
グレンズ1の同じ移動量に対してもズーム位置の違いに
よって出力Sが変化する。これは被写界深度が焦点距離
によって変化するだめである。この為に広角側のズーム
位置でピント合せをした仮留遠側にズーミングした時に
ズーミングすることによって被写界深朋が狭くなってい
くから合点位置が外れる場合がある。従って結像光学系
のズーミングに関係なく受光素子12a、 12b、 
12cにおける合焦検出の精度を一定にし、常に望遠端
の被写界深度内で焦点検出が行なえるようなことが留置
しい。
(c) shows how the amount of movement ΔI of the focusing lens l increases corresponding to the zoom position at the wide-angle end, intermediate focal length, and telephoto end of the imaging optical system, respectively. Even for the same amount of movement of the focusing lens 1, the output S changes depending on the zoom position. This is because the depth of field changes depending on the focal length. For this reason, when zooming to the far side after focusing at the zoom position on the wide-angle side, the depth of field becomes narrower due to zooming, so the focus position may be off. Therefore, regardless of the zooming of the imaging optical system, the light receiving elements 12a, 12b,
It is desirable to keep the accuracy of focus detection at 12c constant so that focus detection can always be performed within the depth of field at the telephoto end.

これを大曳する手段として、第1図に示すようにバリエ
ータ2とコンベンセータ3によるズーミングに連動しで
焦点検出光学系の変倍用のバリエータ9とコンベンセー
タ8を移動さゼで結像光学系の変倍作用を減少させるの
がよい。す−ahちコンベンセータ8とバリエータ9に
よって逆変倍し、焦点検出用光学系となる第1図の1、
2.3.4.8.9.10で構成される焦点距離を結像
光学系のズーミングにかかわらず一定にすることである
。この結果広角端で焦点検出を?Tなってから望遠端に
ズーミングしても薮写界深度を外すことかなくなる。−
力木発明によれば焦点検出光学系にズーム作用をもたせ
ることによって測距視野範囲を結像光学矛の、焦点距離
に応じて変えられるという効釆もある。従って焦点検出
光学系が一定の焦点距離の場合、撮影画面に対する測距
視野は結像光学系をズーミングしても変化しない。結像
光学系か広角の場合撮影−Di1には近い被写体から遠
い被写体が入り混ることが多いため、もし測距視野が大
きい時は遠近競合を起して測距精度が低下する。−また
結像光学系が望遠の場合、画角が狭いため、測距視野が
小さくなり手振れなどで測距視野範囲を外しやすくなる
。この為に広角の場合には測距視野は小さい方がよく、
一方望遠の場合には測距視野は大きい方がよいと自゛え
る。従って結像光学系をズーミングによって測距視野範
囲が変化しない場合には広角側あるいは望遠側のどちら
かで不都合が生ずる。第4図(a)、 (bl、 (c
)は撮影範囲に対する測距視野範囲を示す図であり、斜
線部が測距視野を示す。第4図(、)は広角撮影でfl
ll距視野が広く、遠近競合が起りゃすい状態をボす。
As a means of overcoming this, as shown in Fig. 1, the variator 9 and convencator 8 for changing the magnification of the focus detection optical system are moved in conjunction with the zooming by the variator 2 and convencator 3. It is better to reduce the magnification effect. 1 in Fig. 1, which is reversely magnified by the convencator 8 and variator 9 and becomes a focus detection optical system.
2.3.4.8.9.10 is to be made constant regardless of zooming of the imaging optical system. Does this result in focus detection at the wide-angle end? Even if you zoom to the telephoto end after reaching T, you will not miss the depth of field. −
According to Rikiki's invention, the focus detection optical system has a zoom function, thereby making it possible to change the field of view range for distance measurement in accordance with the focal length of the imaging optical spear. Therefore, when the focus detection optical system has a constant focal length, the distance measurement field of view with respect to the photographic screen does not change even if the imaging optical system is zoomed. When the imaging optical system is wide-angle, objects near and far are often mixed in the photographing Di1, so if the field of view for distance measurement is large, competition between distance and distance will occur, resulting in a decrease in distance measurement accuracy. - Furthermore, when the imaging optical system is telephoto, the angle of view is narrow, so the field of view for distance measurement becomes small, making it easy to miss the range of field of view for distance measurement due to camera shake, etc. For this reason, in the case of a wide angle, it is better to have a smaller distance measurement field of view.
On the other hand, in the case of a telephoto lens, the larger the field of view for distance measurement, the better. Therefore, if the distance measurement field of view does not change by zooming the imaging optical system, problems will occur on either the wide-angle side or the telephoto side. Figure 4 (a), (bl, (c)
) is a diagram showing the distance measurement field of view range with respect to the photographing range, and the shaded area indicates the distance measurement field of view. Figure 4 (,) is a wide-angle shot.
ll The distance field of view is wide, which eliminates situations where near and far conflicts are likely to occur.

(b)、 (c)はそれぞれ広角撮影と望遠撮影におい
て測距視野範囲が通FAな大きさであることを−示す。
(b) and (c) show that the range of the distance measurement field of view is as large as the standard FA in wide-angle photography and telephoto photography, respectively.

本発明において結像光学系111群を焦点検出光学系の
合成焦点距離を結像光学系のズーミングと無関赤に一定
になるように構成することが可能であり、測距部#fは
ズーミングすることによって相対的に変化し、広角側で
は小さく望遠側では太きぐすることができる。すなわち
、測距視野は広角1則では第41.J(b)のようにな
り、望遠側では第4図(c)のようになる。もし焦点検
出光学系にズーム作用がない場合には、広角側で第4図
(、)のようになり遠近競合が起りやすくなるので好ま
しくない。尚焦点検出用光学系は必ずしもズーム作用を
必要とするものではなく、単に結像光学系の焦点距離に
応じて焦点距離が変わるものであればよい。
In the present invention, it is possible to configure the imaging optical system 111 group so that the composite focal length of the focus detection optical system is constant at red, which is independent of the zooming of the imaging optical system, and the distance measuring unit #f performs zooming. This makes it possible for the lens to change relatively, making it smaller at the wide-angle end and thicker at the telephoto end. In other words, the distance measurement field of view is the 41st field of view according to the wide-angle rule 1. J(b), and on the telephoto side, it becomes as shown in FIG. 4(c). If the focus detection optical system does not have a zooming effect, it is not preferable because it becomes like the one shown in FIG. It should be noted that the focus detection optical system does not necessarily require a zoom function, but may simply be one whose focal length changes depending on the focal length of the imaging optical system.

本発明に係る川魚検出装置において結像光学るだめフォ
ーカシングレンズの移動方向を見つけることが困難にな
る場合がある。このような場合には焦点演出光学系の焦
点1屯離を適当に選べば常に第3図(b)のように受光
素子間の出力比較ができるためフォーカシングレンズの
移動方間を常に検知することができる。従って焦点検出
の第一段階は焦点検出光学系を短焦点側にし、ζ 方間検知後焦点検出光学系をズーミングし精密。
In the river fish detection device according to the present invention, it may be difficult to find the moving direction of the imaging optical system focusing lens. In such a case, if the distance of the focal point of the focus producing optical system is appropriately selected, it is possible to always compare the outputs of the light receiving elements as shown in Fig. 3(b), so the movement direction of the focusing lens can always be detected. I can do it. Therefore, the first stage of focus detection is to set the focus detection optical system to the short focus side, and after detecting the ζ direction, the focus detection optical system is zoomed for precision.

焦点検出を行うようにすることも可能である。It is also possible to perform focus detection.

上記実施例は撮影系がズームレンズの場合について説明
したが、交換レンズ方式のカメラにおける望遠レンズ、
広角レンズにおいても全く同様のことが考えられ本発明
は有効に適用できる。
In the above embodiment, the photographing system is a zoom lens, but a telephoto lens in an interchangeable lens type camera,
Exactly the same thing can be considered for wide-angle lenses, and the present invention can be effectively applied.

以上のように本発明によれば結像光学系の焦点距離が変
化しても常に良好なる焦点検出を行うことのできる焦点
検出装置が得られる。又被写体側の測距部の面積が結像
光学系の焦点距離が変化しても略同−となるような光学
系が得られるので、合焦検出に有利となるばかりがファ
インダー像として肉眼で測距する場合も有利になる。
As described above, according to the present invention, it is possible to obtain a focus detection device that can always perform excellent focus detection even if the focal length of the imaging optical system changes. Furthermore, since it is possible to obtain an optical system in which the area of the distance measuring section on the subject side remains approximately the same even when the focal length of the imaging optical system changes, this is not only advantageous for focus detection, but also allows the viewfinder image to be seen with the naked eye. It is also advantageous when measuring distance.

次に本発明の数値実施例を示す。数値実施例において旧
は物体側より順に第1fr目のレンズ面の曲率半径、D
iは物体側より順に第1査目のレンズ厚及び空気間隔、
Niとν1は夫々物体側より順に第1番目のレンズのガ
ラスの屈折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In the numerical examples, the radius of curvature of the 1st fr lens surface in order from the object side, D
i is the lens thickness and air gap at the first scan in order from the object side,
Ni and ν1 are the refractive index and Abbe number of the glass of the first lens, respectively, in order from the object side.

但し焦点検出用光学系に係るRi、 Di、 Ni、ν
1゜は光路分割手段よりIl1次各々’I(11+ D
Iol + N101 eν101より示しである。
However, Ri, Di, Ni, ν related to the focus detection optical system
1° is from the optical path splitting means to
Iol + N101 eν101.

数値実施例 1 撮影光学系 f=8.711〜24.779 FN
o、 l : 113〜14而はハーフプリズム、 15面は絞り R1=   112.03  D  IJ、QQ   
N1=1.80518   ν1=25.4R2=  
  3726  D  2=7.52   N2=1.
58913   ν2= 61.0R3−〜76.41
  D  3−0.12R4=    25.08  
D  4=4.51   N5=1.62299   
ν3= 58.2R5=   67.9006−可変 R6=  −953,36D  6=0.90   N
4=1.58913   シ4=61.0R7=   
 11.47  D  7=3.24R8=   −1
9,41D  8=0.72   N5=1.5891
3   ν5= 61.0R9=    14.17 
 D  9=2.69   N6=1.80518  
 シロ= 25.4R10=   7:?77 DIO
=可変Rtt=    27.54  D11=2.6
8   N7二t、58913   シフ=61.0R
12= −10751D12−可変 R13=    0.0  D13=7.00  N8
=1.51633   シ8二64.lR14=   
  0.OD14=0.50R15=    0.0 
  D15=2.60R16=    33.89  
D16=2.24   N9=1.77250   ν
9 = 49.6R17=−8618,08D17=0
.l0R18=    21.22  D18=2.6
5   Nl0=1.77250   シlα=496
R19=  −317,31019=1.13R20=
   −17,76D20=5.03   N11=1
.80518   ν11=25.4R21=    
17.05  D21=3.86R22=    84
.74  D22=5.22   N12=1.772
50   シ12−49.6R23=   −15,3
6D23=0.07R24=    14.31  D
z4=46g   Nlよ=1.77250   シl
寥=496R25=   −21,14D25=0.6
0   N1本=L80518   シl仁254R2
6=    67.66 b、f =7.95 16〜26面までの焦点距離・・13942 焦点検出
光学系 f=14.03S−A9.982 FNo、1
 + 2〜2,5RIO1=  103.69  Dl
ol;1.OON101=1.80518   ν10
1=25.4R102=   36.80  D102
=3.0ON102−1.58913   シ102.
=61.0ato3=  −90,86oto3=o、
tz        lR104=   27.11 
 D104=2.50   N103−1.58913
   νlOよ〜61,0R105=  123.98
  D105=可変      lR106=−921
,15D106:(1,90NIO少=1.62299
   シ10卆=582R107=   11.49 
  D107冨338      1R108=  −
18,12D108−0.90   NIO泗1.51
633   ν10仁64.lR109=   15.
29  D109=2.63   NIO仁1.805
18   シ106=25.43110=  76.1
4  DIIO−可変      1゜R111=  
 34.96  D111=2.56   N107=
1.58913   シ107=61.0R112= 
 −69,15D112−0.20       1R
113=   55.75 0113=2.60   
N10B=L80610   ν101#40.9R1
14=  −53,54Dl14.、+1.26   
    1R115=  −13,83D115−1.
00   NIO拌1.62004   シ10拌36
3R116=   19.95   D116=3.4
6        1R117=   37.63  
D117=4.0ONilα=1.77250   シ
11ω=496R11B= −16,21Dl18二〇
10    1R119=   16.61  D11
9−=4.00   N111=1.61484   
ν111=51.2R120=  −13,17DI2
+’l=1.00   N112−1.71736  
 J/112−29.5R121=   23.70 (広角端)     (望遠端) b、f、=、21.80 3 撮影系前群士焦点検出光学系の合成焦点距離
Numerical Example 1 Photographing optical system f=8.711 to 24.779 FN
o, l: 113~14 are half prisms, 15th surface is aperture R1 = 112.03 DIJ, QQ
N1=1.80518 ν1=25.4R2=
3726 D2=7.52 N2=1.
58913 ν2= 61.0R3-~76.41
D3-0.12R4=25.08
D4=4.51 N5=1.62299
ν3=58.2R5=67.9006-variable R6=-953,36D 6=0.90 N
4=1.58913 C4=61.0R7=
11.47 D7=3.24R8=-1
9,41D 8=0.72 N5=1.5891
3 ν5= 61.0R9= 14.17
D9=2.69 N6=1.80518
Shiro = 25.4R10 = 7:? 77 DIO
=Variable Rtt=27.54 D11=2.6
8 N7 two t, 58913 shift = 61.0R
12=-10751D12-Variable R13=0.0 D13=7.00 N8
=1.51633 shi8264. lR14=
0. OD14=0.50R15=0.0
D15=2.60R16=33.89
D16=2.24 N9=1.77250 ν
9=49.6R17=-8618,08D17=0
.. l0R18=21.22 D18=2.6
5 Nl0=1.77250 Silα=496
R19=-317,31019=1.13R20=
-17,76D20=5.03 N11=1
.. 80518 ν11=25.4R21=
17.05 D21=3.86R22=84
.. 74 D22=5.22 N12=1.772
50 Shi12-49.6R23= -15,3
6D23=0.07R24=14.31D
z4 = 46g Nl = 1.77250 sill
Treasure=496R25=-21,14D25=0.6
0 N1 piece = L80518 Sil 254R2
6 = 67.66 b, f = 7.95 Focal length from 16th to 26th plane...13942 Focus detection optical system f = 14.03S-A9.982 FNo., 1
+ 2~2,5RIO1= 103.69 Dl
ol;1. OON101=1.80518 ν10
1=25.4R102=36.80D102
=3.0ON102-1.58913 C102.
=61.0ato3=-90,86oto3=o,
tz lR104= 27.11
D104=2.50 N103-1.58913
νlO~61,0R105= 123.98
D105=variable lR106=-921
, 15D106: (1,90 NIO small = 1.62299
10 volumes = 582R107 = 11.49
D107 338 1R108= -
18,12D108-0.90 NIO 1.51
633 ν10ren64. lR109=15.
29 D109=2.63 NIO Jin 1.805
18 Shi106=25.43110=76.1
4 DIIO-variable 1°R111=
34.96 D111=2.56 N107=
1.58913 Shi107=61.0R112=
-69,15D112-0.20 1R
113=55.75 0113=2.60
N10B=L80610 ν101#40.9R1
14=-53,54Dl14. , +1.26
1R115=-13,83D115-1.
00 NIO stirring 1.62004 Shi10 stirring 36
3R116=19.95 D116=3.4
6 1R117= 37.63
D117=4.0ONilα=1.77250 Shi11ω=496R11B= -16,21Dl182010 1R119= 16.61 D11
9-=4.00 N111=1.61484
ν111=51.2R120=-13,17DI2
+'l=1.00 N112-1.71736
J/112-29.5R121 = 23.70 (Wide-angle end) (Telephoto end) b, f, =, 21.80 3 Composite focal length of the front group focus detection optical system of the imaging system

【図面の簡単な説明】[Brief explanation of the drawing]

紀1図は本発明の実施例をボす光学配置の概略図である
。 第2図は本発明の焦点検出方法の原理の説明図である。 第3図は本発明に係る焦点検出装置の各々の受光素子か
らの出力値の変化をボす説明図である。 第4図は本発明における撮影範囲と測距視野範囲との関
係を示す説明図である。 第5図は本発明の一実施例の光学系の断面図1ある。 図中1はフォー力シングレ′ンズ、2と3は変倍系、4
は光路公開手段、6は結像レンズ、8と9は変倍系、1
1 k、t 分割プリズム、12a、12b。 12eは受光素子である。 特許出願人  キャノン株式会社 悶に− 篤 / 2 第2図
FIG. 1 is a schematic diagram of an optical arrangement embodying an embodiment of the present invention. FIG. 2 is an explanatory diagram of the principle of the focus detection method of the present invention. FIG. 3 is an explanatory diagram showing changes in output values from each light receiving element of the focus detection device according to the present invention. FIG. 4 is an explanatory diagram showing the relationship between the photographing range and the distance measurement visual field range in the present invention. FIG. 5 is a sectional view 1 of an optical system according to an embodiment of the present invention. In the figure, 1 is a four force single lens, 2 and 3 are variable power systems, and 4
1 is an optical path exposing means, 6 is an imaging lens, 8 and 9 are variable magnification systems, 1
1 k, t split prism, 12a, 12b. 12e is a light receiving element. Patent applicant: Canon Co., Ltd. Atsushi / 2 Figure 2

Claims (1)

【特許請求の範囲】 (1)結像光学系の光路中に光路分割手段を設は前記光
路分割手段により分割された光束の方向に前記結像光学
系と異なる焦点検出用光学系を設け、前記焦点検出用光
学系中に前記結像光学系の焦点距離の変化に伴い焦点距
離を変化させる焦点距離変化手段を設け、前記焦点検出
用光学系の光軸−Fであって、l締結像光学系の予定結
像面とその光軸上の位置の少なくとも2つの位置と共中
厄な位置に各々受光素子を配置し、前記各々の受光素子
からの出力を用いて合焦検出を行うことをL+!f徴と
する焦点検出装置。 (21+3?前記結像光学系と前記焦点距離変化手段を
ズームレンズで構成したことを特徴とする特許請求の範
囲第1項記載の焦点検出装置。 (3)  +】ill締結像光学系ズーミングによる変
倍作用と前記焦点距離変化手段のズーミングによる変倍
作用とが逆変倍となっていることを特徴とする特許請求
の範囲第2項記載の焦点検出装置逸。
Scope of Claims: (1) An optical path dividing means is provided in the optical path of the imaging optical system, and a focus detection optical system different from the imaging optical system is provided in the direction of the light beam divided by the optical path dividing means; The focus detection optical system is provided with a focal length changing means for changing the focal length in accordance with the change in the focal length of the imaging optical system, and the optical axis -F of the focus detection optical system is an optical axis -F of the focus detection optical system. A light-receiving element is arranged at a position that is coincident with at least two positions of a planned image-forming plane of the optical system and a position on its optical axis, and focus detection is performed using the output from each of the light-receiving elements. L+! A focus detection device that detects f-character. (21+3? The focus detection device according to claim 1, characterized in that the imaging optical system and the focal length changing means are constituted by a zoom lens. (3) +] By ill-consolidated imaging optical system zooming 3. The focus detection device according to claim 2, wherein the zooming action and the zooming action by the zooming of the focal length changing means are inverse zooming actions.
JP12031082A 1982-07-09 1982-07-09 Focus detector Pending JPS5910913A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12031082A JPS5910913A (en) 1982-07-09 1982-07-09 Focus detector
US06/505,073 US4506970A (en) 1982-07-09 1983-06-16 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12031082A JPS5910913A (en) 1982-07-09 1982-07-09 Focus detector

Publications (1)

Publication Number Publication Date
JPS5910913A true JPS5910913A (en) 1984-01-20

Family

ID=14783067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12031082A Pending JPS5910913A (en) 1982-07-09 1982-07-09 Focus detector

Country Status (1)

Country Link
JP (1) JPS5910913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128129A (en) * 1998-01-06 2000-10-03 Olympus Optical Co., Ltd. Automatic focusing apparatus for microscope
CN106679938A (en) * 2015-11-06 2017-05-17 福建福光股份有限公司 Electrical zoom lens focusing curve detection system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128129A (en) * 1998-01-06 2000-10-03 Olympus Optical Co., Ltd. Automatic focusing apparatus for microscope
CN106679938A (en) * 2015-11-06 2017-05-17 福建福光股份有限公司 Electrical zoom lens focusing curve detection system and method
CN106679938B (en) * 2015-11-06 2018-11-16 福建福光股份有限公司 A kind of motorized zoom lens focusing curve detection system and method

Similar Documents

Publication Publication Date Title
JPH05127074A (en) Focus detection device
JP6226611B2 (en) Zoom lens and imaging apparatus having the same
JP2011081062A (en) Zoom lens and imaging apparatus having the same
JP2015028530A5 (en)
JPWO2018185867A1 (en) Magnification optical system, optical device, and method of manufacturing magnification optical system
US4707103A (en) Optical system of variable magnification
JPH03236009A (en) Real-image finder
US4437734A (en) Lenses capable of close-up photography
US4730199A (en) Photographic apparatus
JP2016161643A (en) Imaging lens, optical apparatus having the imaging lens, and method for manufacturing the imaging lens
JP5455998B2 (en) Zoom lens and imaging apparatus having the same
JPS5979212A (en) Zoom lens using synthetic resin material
US4506970A (en) Focus detection device
JPS5910913A (en) Focus detector
US4544250A (en) Optical system for camera with a viewfinder
JPH08307904A (en) Optical system for solid photographing
US4573781A (en) Viewfinder having two image planes
JPH05127073A (en) Focus detection device
US4066340A (en) Basic lens assembly for series of zoom objectives of different varifocal ratios
JPH07174626A (en) Real image type finder optical system having photometric function
JP2605372B2 (en) Zoom lens for finite distance
JPH01284811A (en) Camera system
JP6525613B2 (en) Zoom lens and imaging device having the same
JP2015075689A (en) Zoom lens and image capturing device having the same
JP6529641B2 (en) Zoom lens and imaging device having the same