JP2011081062A - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP2011081062A
JP2011081062A JP2009231313A JP2009231313A JP2011081062A JP 2011081062 A JP2011081062 A JP 2011081062A JP 2009231313 A JP2009231313 A JP 2009231313A JP 2009231313 A JP2009231313 A JP 2009231313A JP 2011081062 A JP2011081062 A JP 2011081062A
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
zoom
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009231313A
Other languages
Japanese (ja)
Inventor
Keiko Taki
慶行 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009231313A priority Critical patent/JP2011081062A/en
Publication of JP2011081062A publication Critical patent/JP2011081062A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens having high optical performance over the whole zoom region and the entire object distance. <P>SOLUTION: In the zoom lens, a final lens group of positive refractive power is arranged in a side closest to an image, and a focus lens group of negative refractive power is arranged adjacent to the object side of the final lens group. The zoom lens includes at least five lens groups as a whole, and three or more lens groups move in zooming. The final lens group is constituted of a cemented lens where a positive lens GRP and a negative lens GRN are joined together, and the Abbe's number νRP and νRN of materials of the positive lens GRP and the negative lens GRN are appropriately set individually. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は固体撮像素子を用いたデジタルカメラやビデオカメラ等の撮影装置に好適なズームレンズに関するものである。   The present invention relates to a zoom lens suitable for a photographing apparatus such as a digital camera or a video camera using a solid-state image sensor.

固体撮像素子を用いたデジタルカメラ、ビデオカメラ用のズームレンズには高ズーム比で高い光学性能を有することが要求されている。高ズーム比で高い光学性能が得られるズームレンズとして、3以上のレンズ群を独立に移動させてズーミングを行う多群ズームレンズが知られている(特許文献1〜3)。特許文献1は、物体側より像側へ順に、負、正、負、正、正の屈折力の第1〜第5レンズ群より成る5群ズームレンズにおいて、物体側の4つのレンズ群を移動させてズーミングを行い、第2レンズ群でフォーカシングを行うズームレンズを開示している。特許文献2は物体側より像側へ順に、負、正、負、正、負、正の屈折力の第1〜第6レンズ群より成る6群ズームレンズにおいて物体側の5つのレンズ群を移動させてズーミングを行うズームレンズを開示している。更に小型軽量な第5レンズ群でフォーカシングを行うリヤーフォーカス型のズームレンズを開示している。特許文献3は物体側から像側へ順に、正、負、正、負、正、負、正の屈折力のレンズ群より成る7群ズームレンズにおいて物体側の6つのレンズ群を移動させてズーミング行うズームレンズを開示している。更に小型軽量な第6レンズ群でフォーカスを行うリヤーフォーカス型のズームレンズを開示している。   Zoom lenses for digital cameras and video cameras using solid-state image sensors are required to have high optical performance with a high zoom ratio. As a zoom lens that can obtain high optical performance with a high zoom ratio, multi-group zoom lenses that perform zooming by independently moving three or more lens groups are known (Patent Documents 1 to 3). In Patent Document 1, four lens groups on the object side are moved in a five-group zoom lens including first to fifth lens groups having negative, positive, negative, positive, and positive refractive power in order from the object side to the image side. A zoom lens that performs zooming and performs focusing with the second lens group is disclosed. In Patent Document 2, in order from the object side to the image side, five lens groups on the object side are moved in a six-group zoom lens including first to sixth lens groups having negative, positive, negative, positive, negative, and positive refractive powers. A zoom lens that performs zooming is disclosed. Furthermore, a rear focus type zoom lens that performs focusing with a small and lightweight fifth lens group is disclosed. In Patent Document 3, zooming is performed by moving six lens units on the object side in order from the object side to the image side in a seven-group zoom lens including lens units having positive, negative, positive, negative, positive, negative, and positive refractive power. A zoom lens to perform is disclosed. Further, a rear focus type zoom lens that performs focusing with a small and light sixth lens group is disclosed.

特開2007−093976 号広報Japanese Laid-Open Patent Publication No. 2007-093976 特開2004−198529 号公報JP 2004-198529 A 特開2004−317867 号公報JP 2004-317867 A

デジタルカメラやビデオカメラ等に用いる撮像光学系において、種々な撮影画角において高解像度の画像を得るには、白色光の下において色にじみ具合や像の解像感を左右する色収差を十分補正したズームレンズであることが必要である。色収差の補正には蛍石等の大きな異常分散特性を有する材料より成るレンズを用いることが有効である。しかしながらこれらの材料は一般に屈折率が低い。また、蛍石のようなアッベ数の大きい低分散ガラスを使ったズームレンズでは、レンズ面の屈折力を大きく変化させないと色収差が変化しない。このため、高ズーム比のズームレンズでは色収差の補正と、球面収差、コマ収差、非点収差などの諸収差を全ズーム範囲でバランス良く補正することができるレンズ構成とすることが重要である。   In imaging optical systems used in digital cameras and video cameras, in order to obtain high-resolution images at various shooting angles, chromatic aberration that affects the color blur and the resolution of images under white light is sufficiently corrected. It must be a zoom lens. For correcting chromatic aberration, it is effective to use a lens made of a material having a large anomalous dispersion characteristic such as fluorite. However, these materials generally have a low refractive index. Further, in a zoom lens using a low dispersion glass having a large Abbe number such as fluorite, the chromatic aberration does not change unless the refractive power of the lens surface is greatly changed. For this reason, it is important for a zoom lens with a high zoom ratio to have a lens configuration capable of correcting chromatic aberration and various aberrations such as spherical aberration, coma aberration, and astigmatism in a balanced manner over the entire zoom range.

特に高ズーム比化を図るために、5つ以上のレンズ群を有し、ズーミングのために3以上のレンズ群を 移動させる多群ズームレンズが良い。このとき最も像側に位置する最終レンズ群の屈折力や最終レンズ群内のレンズ構成及びレンズの材料等を適切に設定することが重要である。また、フォーカシングに伴う収差変動を少なくし、物体距離全般にわたり高い光学性能を得るには、フォーカスレンズ群の選定及びフォーカスレンズ群のレンズ構成等を適切に設定することが重要になってくる。例えば特許文献1は、倍率色収差のフォーカス変動が大きく、撮影距離至近において光学性能が悪化する傾向がある。これを補正しようとするとズーミングによる倍率色収差の変動が多くなってくる。このため全ズーム範囲及びフォーカス全域にわたり色収差を良好に補正するのが困難であった。さらに、第2レンズ群をフォーカスレンズ群として用いるため、球面収差並びに諸収差のフォーカス変動が大きく、至近距離物体での光学性能が悪化する傾向がある。   In particular, in order to increase the zoom ratio, a multi-group zoom lens having five or more lens groups and moving three or more lens groups for zooming is preferable. At this time, it is important to appropriately set the refractive power of the final lens group located closest to the image side, the lens configuration in the final lens group, the lens material, and the like. Further, in order to reduce aberration fluctuations due to focusing and to obtain high optical performance over the entire object distance, it is important to select a focus lens group and to set the lens configuration of the focus lens group appropriately. For example, Patent Document 1 has a large focus chromatic aberration variation, and tends to deteriorate optical performance near the shooting distance. If this is corrected, the variation in lateral chromatic aberration due to zooming increases. Therefore, it has been difficult to satisfactorily correct chromatic aberration over the entire zoom range and the entire focus range. Further, since the second lens group is used as the focus lens group, the spherical aberration and the focus fluctuations of various aberrations are large, and the optical performance at a close object tends to deteriorate.

本発明は、全ズーム領域及び物体距離全般にわたって高い光学性能を有するズームレンズ及びそれを有する撮像装置の提供を目的とする。   An object of the present invention is to provide a zoom lens having high optical performance over the entire zoom range and the entire object distance, and an image pickup apparatus having the zoom lens.

本発明のズームレンズは、最も像側に正の屈折力の最終レンズ群、該最終レンズ群の物体側に隣接して配置された負の屈折力のフォーカスレンズ群を含み、全体として少なくとも5つのレンズ群を有し、ズーミングに際して3以上のレンズ群が移動するズームレンズであって、該最終レンズ群は正レンズGRPと負レンズGRNとを接合した接合レンズより構成され、該正レンズGRPと負レンズGRNの材料のアッベ数を各々νRP、νRNとするとき、
15<|νRP−νRN|<60
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes a final lens group having a positive refractive power closest to the image side, and a focus lens group having a negative refractive power disposed adjacent to the object side of the final lens group. The zoom lens has a lens group, and three or more lens groups move during zooming. The final lens group is composed of a cemented lens in which a positive lens GRP and a negative lens GRN are cemented. When the Abbe numbers of the materials of the lens GRN are νRP and νRN, respectively.
15 <| νRP−νRN | <60
It satisfies the following conditional expression.

本発明によれば、全ズーム領域及び物体距離全般にわたって高い光学性能を有するズームレンズが得られる。   According to the present invention, a zoom lens having high optical performance over the entire zoom area and the entire object distance can be obtained.

数値実施例1の広角端と望遠端のレンズ断面図Lens cross-sectional view at the wide-angle end and the telephoto end of Numerical Example 1 数値実施例1の広角端と望遠端における物体距離無限遠における収差図Aberration diagrams at the infinite object distance at the wide-angle end and the telephoto end in Numerical Example 1. 数値実施例1の広角端と望遠端における物体距離至近(0.38m)における収差図Aberration diagram at the object distance close to (0.38 m) at the wide-angle end and the telephoto end in Numerical Example 1. 数値実施例2の広角端と望遠端のレンズ断面図Cross-sectional view of the lens at the wide-angle end and the telephoto end in Numerical Example 2 数値実施例2の広角端と望遠端における物体距離無限遠における収差図Aberration diagram at the infinite object distance at the wide-angle end and the telephoto end in Numerical Example 2 数値実施例2の広角端と望遠端における物体距離至近(1.4m)における収差図Aberration diagrams at the object distance close (1.4 m) at the wide-angle end and the telephoto end in Numerical Example 2. 数値実施例3の広角端と望遠端のレンズ断面図Cross-sectional view of the lens at the wide-angle end and the telephoto end in Numerical Example 3 数値実施例3広角端と望遠端における物体距離無限遠における収差図Numerical Example 3 Aberration diagram at infinite object distance at the wide-angle end and the telephoto end 数値実施例3広角端と望遠端における物体距離至近(1.5m)における収差図Numerical Example 3 Aberration diagram at close object distance (1.5 m) at wide angle end and telephoto end 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下、本発明のズームレンズ及びそれを有する撮像装置について説明する。本発明のズームレンズは、最も像側に正レンズと負レンズとを接合した接合レンズを含む全体として正の屈折力の最終レンズ群を有する。更に最終レンズ群の物体側に隣接して正レンズと負レンズとを接合した接合レンズを含む全体として負の屈折力のフォーカスレンズ群を有する。そしてズームレンズ全体として少なくとも5つのレンズ群を有する。ズーミングに際しては各レンズ群間の空気間隔が変化するように3以上のレンズ群が移動する。   Hereinafter, the zoom lens of the present invention and an image pickup apparatus having the same will be described. The zoom lens of the present invention has a final lens group having a positive refractive power as a whole, including a cemented lens in which a positive lens and a negative lens are cemented on the most image side. In addition, the focus lens group having a negative refractive power as a whole includes a cemented lens in which a positive lens and a negative lens are cemented adjacent to the object side of the final lens group. The zoom lens as a whole has at least five lens groups. During zooming, three or more lens groups move so that the air spacing between the lens groups changes.

図1(A)、(B)は本発明の実施例1のズームレンズの広角端(短焦点距離端)、望遠端(長焦点距離端)におけるレンズ断面図である。図2(A)、(B)は本発明の実施例1の無限遠物体に合焦しているときの広角端、望遠端における縦収差図である。図3(A)、(B)は本発明の実施例1の物体距離0.38mの物体に合焦しているときの広角端、望遠端における縦収差図である。但し物体距離は後述する数値実施例をmm単位で表わしたときの像面からの距離である。これは以下全て同じである。図4(A)、(B)は本発明の実施例2のズームレンズの広角端、望遠端におけるレンズ断面図である。図5(A)、(B)は本発明の実施例2の無限遠物体に合焦しているときの広角端、望遠端における縦収差図である。図6(A)、(B)は本発明の実施例2の物体距離1.4mの物体に合焦しているときの広角端、望遠端における縦収差図である。図7(A)、(B)は本発明の実施例3のズームレンズの広角端、望遠端におけるレンズ断面図である。図8(A)、(B)は本発明の実施例3の無限遠物体に合焦しているときの広角端、望遠端における縦収差図である。図9(A)、(B)は本発明の実施例3の物体距離1.5mの物体に合焦しているときの広角端、望遠端における縦収差図である。図10は本発明のズームレンズを備える撮像装置の要部概略図である。   1A and 1B are lens cross-sectional views at the wide-angle end (short focal length end) and the telephoto end (long focal length end) of the zoom lens according to Embodiment 1 of the present invention. FIGS. 2A and 2B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when focusing on an object at infinity according to the first embodiment of the present invention. 3A and 3B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when focusing on an object with an object distance of 0.38 m according to the first embodiment of the present invention. However, the object distance is a distance from the image plane when a numerical example described later is expressed in mm. This is all the same below. 4A and 4B are lens cross-sectional views at the wide-angle end and the telephoto end of the zoom lens according to Embodiment 2 of the present invention. FIGS. 5A and 5B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when focusing on an object at infinity according to the second embodiment of the present invention. 6A and 6B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when focusing on an object with an object distance of 1.4 m according to the second embodiment of the present invention. 7A and 7B are lens cross-sectional views at the wide-angle end and the telephoto end of the zoom lens according to Embodiment 3 of the present invention. 8A and 8B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when focusing on an object at infinity according to Example 3 of the present invention. 9A and 9B are longitudinal aberration diagrams at the wide-angle end and the telephoto end when focusing on an object with an object distance of 1.5 m according to Example 3 of the present invention. FIG. 10 is a schematic diagram of a main part of an imaging apparatus including the zoom lens of the present invention.

各実施例のズームレンズはデジタルスチルカメラや銀塩フィルムカメラ等の撮像装置に用いられる撮影レンズ系である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。尚、各実施例のズームレンズをプロジェクター等の投射レンズとして用いるときは、左方がスクリーン、右方が被投射画像となる。レンズ断面図において、iは物体側からのレンズ群の順番を示し、Liは第iレンズ群である。SPは開口絞り(Fナンバー決定絞り)である。SP2は副絞りである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮像光学系として使用する際にはCCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面が置かれている。又、銀塩フィルム用のカメラの撮像光学系として使用する際には、フィルム面に相当する。矢印は広角端から望遠端へのズーミングにおける各レンズ群の移動軌跡を示している。収差図においてd(実線)、g(2点鎖線)、C(1点鎖線)、F(鎖線)は各々d、g、C、F線である。M、Sはメリディオナル像面、サジタル像面である。倍率色収差はg、C、F線によって表わしている。Yは像高、FnoはFナンバーである。尚、以下の各実施例において広角端と望遠端は変倍用レンズ群が機構上光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。   The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus such as a digital still camera or a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). When the zoom lens of each embodiment is used as a projection lens such as a projector, the left side is the screen and the right side is the projected image. In the lens cross-sectional view, i indicates the order of the lens groups from the object side, and Li is the i-th lens group. SP is an aperture stop (F-number determining stop). SP2 is a sub-aperture. IP is an image plane. When used as an imaging optical system of a video camera or a digital still camera, an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed. Further, when used as an imaging optical system of a silver salt film camera, it corresponds to a film surface. The arrows indicate the movement trajectory of each lens unit during zooming from the wide-angle end to the telephoto end. In the aberration diagrams, d (solid line), g (two-dot chain line), C (one-dot chain line), and F (dashed line) are d, g, C, and F lines, respectively. M and S are a meridional image plane and a sagittal image plane. Lateral chromatic aberration is represented by g, C, and F lines. Y is the image height and Fno is the F number. In the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit is positioned at both ends of a range in which the mechanism can move on the optical axis.

図1の実施例1のレンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は負の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。またL5は負の屈折力の第5レンズ群、L6は正の屈折力の第6レンズ群である。広角端から望遠端へのズーミングに際して第1レンズ群L1は像側へ移動する。第2、第4、第5レンズ群L2、L4、L5は物体側へ移動する。第3レンズ群L3は物体側に凸状の軌跡を描いて移動し、変倍に伴う像面変動を補正している。開口絞りSPと副絞りSP2は第3レンズ群L3と一体的に移動する。ズーミングのためには第6レンズ群L6は不動である。ここでズーミングのためには不動とは、ズーミングの目的のみで移動することはないが、例えばフォーカスのためには移動することがある場合をいう。第1〜第5レンズ群L1〜L5は広角端に比べ望遠端で第1レンズ群L1と第2レンズ群L2の間隔が小さく、第2レンズ群L2と第3レンズ群L3の間隔が大きく、第3レンズ群L3と第4レンズ群L4の間隔が小さくなるよう移動している。更に第4レンズ群L4と第5レンズ群L5の間隔が大きく、第5レンズ群L5と第6レンズ群L6の間隔が大きくなるように移動している。最終レンズ群L6の物体側に隣接して配置された第5レンズ群L5を光軸上移動させてフォーカスを行うリヤーフォーカス式を採用している。最終レンズ群である正の屈折力の第6レンズ群は正レンズと負レンズとを接合した接合レンズより成っている。   In the lens cross-sectional view of Example 1 in FIG. 1, L1 is a first lens unit having negative refractive power (optical power = reciprocal of focal length), L2 is a second lens unit having positive refractive power, and L3 is negative. A third lens unit having a refractive power, L4 is a fourth lens unit having a positive refractive power. L5 is a fifth lens group having a negative refractive power, and L6 is a sixth lens group having a positive refractive power. During zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves to the image side. The second, fourth, and fifth lens groups L2, L4, and L5 move to the object side. The third lens unit L3 moves along a locus that is convex toward the object side, and corrects image plane fluctuations associated with zooming. The aperture stop SP and the sub stop SP2 move integrally with the third lens unit L3. For zooming, the sixth lens unit L6 does not move. Here, immobility for zooming refers to a case where the object does not move only for the purpose of zooming but may move for focusing, for example. The first to fifth lens units L1 to L5 have a smaller distance between the first lens unit L1 and the second lens unit L2 at the telephoto end than the wide angle end, and a larger interval between the second lens unit L2 and the third lens unit L3. The third lens unit L3 and the fourth lens unit L4 are moved so that the distance between them is small. Further, the distance between the fourth lens group L4 and the fifth lens group L5 is large, and the distance between the fifth lens group L5 and the sixth lens group L6 is increased. A rear focus type is employed in which the fifth lens unit L5 arranged adjacent to the object side of the final lens unit L6 is moved on the optical axis to perform focusing. The sixth lens group having a positive refractive power, which is the final lens group, includes a cemented lens in which a positive lens and a negative lens are cemented.

図4の実施例2のレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群である。またL5は正の屈折力の第5レンズ群、L6は負の屈折力の第6レンズ群、L7は正の屈折力の第7レンズ群である。広角端から望遠端へのズーミングに際して、第1、第3、第6レンズ群L1、L3、L6は物体側へ移動する。第4レンズ群L4は像側へ移動する。開口絞りSPは第3レンズ群L3と一体的に移動する。第6レンズ群L6は変倍に伴う像点の変化を補正するように移動している。第2、第5、第7レンズ群L2、L5、L7はズーミングのためには不動である。第3、第4レンズ群L3、L4は広角端に比べて望遠端での第3レンズ群L3と第4レンズ群L4との間隔が大きくなるように移動している。最終レンズ群L7の物体側に隣接して配置された、正レンズと負レンズとを接合した接合レンズを含む第6レンズ群L6を光軸上移動させてフォーカスを行っている。最終レンズ群である正の屈折力の第7レンズ群L7は負レンズと正レンズとを接合した接合レンズより成っている。   In the lens cross-sectional view of Example 2 in FIG. 4, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is This is a fourth lens unit having a negative refractive power. L5 is a fifth lens group having a positive refractive power, L6 is a sixth lens group having a negative refractive power, and L7 is a seventh lens group having a positive refractive power. During zooming from the wide-angle end to the telephoto end, the first, third, and sixth lens units L1, L3, and L6 move to the object side. The fourth lens unit L4 moves to the image side. The aperture stop SP moves integrally with the third lens unit L3. The sixth lens unit L6 moves so as to correct a change in image point due to zooming. The second, fifth, and seventh lens groups L2, L5, and L7 do not move for zooming. The third and fourth lens units L3 and L4 are moved so that the distance between the third lens unit L3 and the fourth lens unit L4 at the telephoto end is larger than that at the wide-angle end. The sixth lens unit L6 including a cemented lens in which a positive lens and a negative lens are disposed adjacent to the object side of the final lens unit L7 is moved on the optical axis for focusing. The seventh lens unit L7 having positive refractive power, which is the final lens unit, includes a cemented lens in which a negative lens and a positive lens are cemented.

図7の実施例3のレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群、L5は正の屈折力の第5レンズ群である。広角端から望遠端へのズーミングに際して第1、第3、第4、第5レンズ群L1、L3、L4、L5は物体側へ移動する。第2レンズ群L2は像側へ凸状の軌跡で移動して変倍に伴う像面変動を補正している。又、各レンズ群は広角端に比べて望遠端で第1レンズ群L1と第2レンズ群L2の間隔が大きく、第2レンズ群L2と第3レンズ群L3の間隔が小さく、第3レンズ群L3と第4レンズ群L4の間隔が大きくなるように移動している。更に第4レンズ群L4と第5レンズ群L5の間隔が小さくなるように移動している。最終レンズ群L5の物体側に隣接して配置された正レンズと負レンズとを接合した接合レンズを含む第4レンズ群L4を光軸上移動させてフォーカスを行っている。最終レンズ群である正の屈折力の第5レンズ群L5は正レンズと負レンズとを接合した接合レンズより成っている。ズームレンズで発生する色収差の原因の解析には、収差係数の各レンズ群の分担値を解析することが有効である。ズームレンズ全体に対して、各レンズ群が色収差に与える影響、例えばズーミングやフォーカスによる色収差の変動も収差係数の分担値で解析することができる。   In the lens cross-sectional view of Example 3 in FIG. 7, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is A fourth lens unit having a negative refractive power, and L5 is a fifth lens unit having a positive refractive power. During zooming from the wide-angle end to the telephoto end, the first, third, fourth, and fifth lens units L1, L3, L4, and L5 move to the object side. The second lens unit L2 moves along a convex locus toward the image side to correct image plane fluctuations accompanying zooming. Further, each lens group has a larger distance between the first lens group L1 and the second lens group L2 at the telephoto end than at the wide-angle end, and a smaller distance between the second lens group L2 and the third lens group L3. It moves so that the space | interval of L3 and the 4th lens group L4 may become large. Furthermore, the fourth lens unit L4 and the fifth lens unit L5 are moved so that the distance between them is small. The fourth lens unit L4 including a cemented lens in which a positive lens and a negative lens arranged adjacent to the object side of the final lens unit L5 are cemented is moved on the optical axis for focusing. The fifth lens unit L5 having a positive refractive power as the final lens unit is composed of a cemented lens in which a positive lens and a negative lens are cemented. In analyzing the cause of chromatic aberration that occurs in a zoom lens, it is effective to analyze the share value of each lens group for the aberration coefficient. The influence of each lens group on the chromatic aberration, for example, the variation of chromatic aberration due to zooming or focusing, with respect to the entire zoom lens, can be analyzed using the sharing value of the aberration coefficient.

本発明者は最も像側に正の屈折力の最終レンズ群と、最終レンズ群に隣り合う位置に負の屈折力のフォーカスレンズ群を有した5群以上のレンズ群より成るズームレンズにおいて、各レンズ群の分担する色収差係数L,Tを分析した。ここでLは軸上色収差係数、Tは倍率色収差係数である。参考のために特許文献2の数値実施例1における、色収差係数L、Tの各レンズ群の分担値を表2(A)に示す。分析の結果、最も像側の最終レンズ群とフォーカスレンズ群の倍率色収差係数Tの分担値が、全系の倍率色収差のフォーカスによる変動に大きく影響している事が分かった。色収差のフォーカス変動を低減するために、フォーカスレンズ群自体で色消しすることは一般的な手法である。本発明者は更に、最終レンズ群の倍率色収差係数を低減させることが、倍率色収差のフォーカス変動の低減に大きく影響する事を見出した。そこで、最終レンズ群を正レンズと負レンズとを接合した接合レンズで構成し、最終レンズ群とフォーカスレンズ群の倍率色収差係数Tの分担をそれぞれ低減させる事で、倍率色収差のフォーカス変動を低減できることを見出した。表2(B)に、本発明の後述する数値実施例1において、各レンズ群の持つ色収差係数LとTの分担値を示す。表2(A)と比較すると、倍率色収差係数Tにおいて、第5レンズ群、第6レンズ群の倍率色収差係数の分担が減少し、その結果、全系の倍率色収差係数のフォーカス変動が低減していることが分かる。   The present inventor is a zoom lens composed of five or more lens groups each having a final lens group having a positive refractive power closest to the image side and a focus lens group having a negative refractive power at a position adjacent to the final lens group. The chromatic aberration coefficients L and T shared by the lens group were analyzed. Here, L is an axial chromatic aberration coefficient, and T is a magnification chromatic aberration coefficient. For reference, Table 2 (A) shows the shared values of the lens groups of the chromatic aberration coefficients L and T in Numerical Example 1 of Patent Document 2. As a result of the analysis, it has been found that the shared value of the magnification chromatic aberration coefficient T of the final lens group and the focus lens group closest to the image side greatly influences the variation of the magnification chromatic aberration of the entire system due to the focus. In order to reduce the focus fluctuation of chromatic aberration, it is a general technique to achromatic the focus lens group itself. Further, the present inventor has found that reducing the magnification chromatic aberration coefficient of the final lens group greatly affects the reduction of the focus fluctuation of the magnification chromatic aberration. Therefore, the final lens group is composed of a cemented lens in which a positive lens and a negative lens are cemented, and by reducing the share of the chromatic aberration coefficient T of the final lens group and the focus lens group, the variation in the focus of the chromatic aberration of magnification can be reduced. I found. Table 2 (B) shows the shared values of the chromatic aberration coefficients L and T of each lens group in Numerical Example 1 to be described later of the present invention. Compared with Table 2 (A), in the lateral chromatic aberration coefficient T, the share of the lateral chromatic aberration coefficient of the fifth lens group and the sixth lens group is reduced, and as a result, the focus variation of the lateral chromatic aberration coefficient of the entire system is reduced. I understand that.

各実施例において、最終レンズ群は正レンズGRPと負レンズGRNとを接合した接合レンズより構成されている。そして正レンズGRPと負レンズGRNの材料のアッベ数を各々νRP、νRNとする。このとき、
15<|νRP−νRN|<60 ‥‥‥(1)
なる条件式を満足している。条件式(1)は、最終レンズ群の接合レンズを構成する正レンズGRPと負レンズGRNの材料のアッベ数の差に関し、フォーカスレンズ群と合わせて、色収差のフォーカス変動の補正を良好に行うための条件式である。条件式(1)の下限を超えるほど接合レンズを構成する2つのレンズの材料のアッベ数の差が小さくなると色消しの効果が不十分となる。また、上限を超えるほどアッベ数の差が大きくなると実在するガラスの配置上、正レンズGRPの材料の屈折率が低くなり、全系のペッツバール和を低く保つことが困難になる。更に好ましくは条件式(1)の数値範囲を次の如く設定するのが良い。
In each embodiment, the final lens group includes a cemented lens in which a positive lens GRP and a negative lens GRN are cemented. The Abbe numbers of the materials of the positive lens GRP and the negative lens GRN are νRP and νRN, respectively. At this time,
15 <| νRP−νRN | <60 (1)
The following conditional expression is satisfied. Conditional expression (1) relates to the difference between the Abbe numbers of the materials of the positive lens GRP and the negative lens GRN constituting the cemented lens of the final lens group, in order to satisfactorily correct the chromatic aberration focus fluctuation together with the focus lens group. This is a conditional expression. If the difference between the Abbe numbers of the materials of the two lenses constituting the cemented lens becomes smaller as the lower limit of conditional expression (1) is exceeded, the effect of achromaticity becomes insufficient. If the Abbe number difference increases as the upper limit is exceeded, the refractive index of the material of the positive lens GRP becomes low due to the actual glass arrangement, and it becomes difficult to keep the Petzval sum of the entire system low. More preferably, the numerical range of conditional expression (1) is set as follows.

20<|νRP−νRN|<50 ‥‥‥(1a)
本発明によれば、色収差を始めとする諸収差を全ズーム域にわたって良好に補正することができ、高い光学性能を有するズームレンズが得られる。又、本発明によれば、リヤーフォーカスタイプの多群ズームレンズで、無限遠物体から至近距離物体まで倍率色収差のフォーカス変動を低減することができる。以上で本発明の目的とするズームレンズは達成されるが、更にズームレンズ全体として色収差を良好に補正するためには、以下の条件式のうち少なくとも1つを満足するとよい。最終レンズ群とフォーカスレンズ群の焦点距離を各々fR、ffocusとする。フォーカスレンズ群は、正レンズGFPと負レンズGFNとを接合した接合レンズを有し、正レンズGFPと負レンズGFNの材料のアッベ数を各々νFP、νFNとする。最終レンズ群の正レンズGRPの材料の部分分散比をθRPとする。このとき、
0.2<|ffocus/fR|<2.0 ‥‥‥(2)
10<|νFP−νFN| ‥‥‥(3)
−0.01<(θRP)−(−0.016*νRP+0.642)<0.05‥(4)
なる条件式のうち1以上を満足するのが良い。ここで波長436nm(g線)、波長486nm(F線)、波長588nm(d線)、波長656nm(C線)のそれぞれに対する材料の屈折率をそれぞれ、ng、nF、nd、nCとするとき、アッベ数νdと部分分散比θは次のとおりである。
20 <| νRP−νRN | <50 (1a)
According to the present invention, various aberrations including chromatic aberration can be favorably corrected over the entire zoom range, and a zoom lens having high optical performance can be obtained. In addition, according to the present invention, the rear focus type multi-group zoom lens can reduce the focus fluctuation of the chromatic aberration of magnification from an object at infinity to an object at a close distance. Although the zoom lens according to the present invention has been achieved as described above, it is preferable that at least one of the following conditional expressions is satisfied in order to satisfactorily correct chromatic aberration as a whole zoom lens. Let the focal lengths of the final lens group and the focus lens group be fR and ffocus, respectively. The focus lens group includes a cemented lens in which a positive lens GFP and a negative lens GFN are cemented, and the Abbe numbers of materials of the positive lens GFP and the negative lens GFN are νFP and νFN, respectively. Let θRP be the partial dispersion ratio of the material of the positive lens GRP in the final lens group. At this time,
0.2 <| ffocus / fR | <2.0 (2)
10 <| νFP-νFN | (3)
−0.01 <(θRP) − (− 0.016 * νRP + 0.642) <0.05 (4)
It is preferable to satisfy one or more of the following conditional expressions. Here, when the refractive indexes of the materials for the wavelength 436 nm (g line), the wavelength 486 nm (F line), the wavelength 588 nm (d line), and the wavelength 656 nm (C line) are ng, nF, nd, and nC, respectively. The Abbe number νd and the partial dispersion ratio θ are as follows.

νd=(nd−1)/(nF−nC)
θ=(ng−nF)/(nF−nC)
条件式(2)は、最終レンズ群とフォーカスレンズ群の屈折力の比を示したものであり、主に色収差のズーミング及びフォーカスによる変動を低減するための条件式である。条件式(2)の上限を超えるほどフォーカスレンズ群の屈折力が弱いと、フォーカスの際のフォーカスレンズ群の移動量が多くなり、色収差をはじめ諸収差のフォーカスによる変化を補正することが困難になる。また、条件式(2)の下限を超えるほどフォーカスレンズ群の屈折力が強いと、最終レンズ群との色収差の補正バランスが崩れ、ズーミングによる色収差の変化を補正することが困難となる。条件式(3)は、フォーカスレンズ群の色消しに関する条件式である。フォーカスによる色収差の変動を低減するには、フォーカスレンズ群内での色消しが十分になされている必要がある。条件式(3)の下限を超えるほどフォーカスレンズ群を構成する正レンズGfPと負レンズGfNの材料のアッベ数の差が小さいと、フォーカスによる色収差の変動を十分に補正するのが困難になる。条件式(4)は、最終レンズ群の正レンズGRPに用いる材料の異常分散性とアッベ数と各波長における屈折率の関係を示したものである。倍率色収差の補正については、軸外光線が光軸から高い位置で通過する最終レンズ群の正レンズGRPに異常分散ガラスを使うことで、更なる改善を容易にしている。本発明の各数値実施例では、正レンズGRPに条件式(4)を満足する材料を用いて、望遠端において倍率色収差のフォーカス変動を良好に補正している。各実施例において、更に好ましくは条件式(2)〜(4)の数値範囲を次の如く設定するのが良い。
νd = (nd−1) / (nF−nC)
θ = (ng−nF) / (nF−nC)
Conditional expression (2) shows the ratio of refractive powers of the final lens group and the focus lens group, and is a conditional expression mainly for reducing chromatic aberration due to zooming and focusing. If the refractive power of the focus lens group is so weak that the upper limit of conditional expression (2) is exceeded, the amount of movement of the focus lens group during focusing increases, making it difficult to correct changes due to focusing of various aberrations including chromatic aberration. Become. If the refractive power of the focus lens group is so strong that the lower limit of conditional expression (2) is exceeded, the correction balance of chromatic aberration with the final lens group is lost, and it becomes difficult to correct changes in chromatic aberration due to zooming. Conditional expression (3) is a conditional expression related to the achromaticity of the focus lens group. In order to reduce the variation in chromatic aberration due to focusing, it is necessary that the achromatic lens is sufficiently achromatic. If the lower limit of conditional expression (3) is exceeded, the difference in the Abbe number of the materials of the positive lens GfP and the negative lens GfN constituting the focus lens group is small, and it becomes difficult to sufficiently correct the variation in chromatic aberration due to focus. Conditional expression (4) shows the relationship between the anomalous dispersion of the material used for the positive lens GRP of the final lens group, the Abbe number, and the refractive index at each wavelength. Regarding the correction of lateral chromatic aberration, further improvement is facilitated by using anomalous dispersion glass for the positive lens GRP of the final lens group through which off-axis rays pass at a high position from the optical axis. In each numerical example of the present invention, a material satisfying conditional expression (4) is used for the positive lens GRP, and the focus variation of the lateral chromatic aberration is corrected well at the telephoto end. In each embodiment, it is more preferable to set the numerical ranges of the conditional expressions (2) to (4) as follows.

0.21<|ffocus/fR|<1.80 ‥‥‥(2a)
12.0<|νFP−νFN|<25.0 ‥‥‥(3a)
−0.005<(θRP)−(−0.016*νRP+0.642)<0.040
‥‥‥(4a)
各実施例によれば以上のように、各構成要件を特定することによって、リヤーフォーカスタイプの多群ズームレンズにおいて、ズーミング及びフォーカシングの際の倍率色収差の変動を低減し、全ズーム範囲及び物体距離全域で良好な光学性能が得られる。
0.21 <| ffocus / fR | <1.80 (2a)
12.0 <| νFP-νFN | <25.0 (3a)
−0.005 <(θRP) − (− 0.016 * νRP + 0.642) <0.040
(4a)
According to each embodiment, as described above, by specifying each component, in the rear focus type multi-group zoom lens, the variation in lateral chromatic aberration during zooming and focusing is reduced, and the entire zoom range and object distance are reduced. Good optical performance can be obtained over the entire area.

以下に、実施例1〜3に各々対応する数値実施例1〜3を示す。各数値実施例において、iは物体側からの面の順番を示し、riはレンズ面の曲率半径である。diは第i面と第i+1面との間のレンズ肉厚および空気間隔である。ndi、νdiはそれぞれd線に対する屈折率、アッベ数である。またA4、A6、A8、A10、A12は非球面係数である。非球面形状は光軸からの高さHの位置での光軸方向の変位を面頂点を基準にしてxとするとき   The numerical examples 1 to 3 corresponding to the examples 1 to 3 are shown below. In each numerical example, i indicates the order of the surfaces from the object side, and ri is the radius of curvature of the lens surface. di is a lens thickness and an air space between the i-th surface and the (i + 1) -th surface. ndi and νdi are the refractive index and Abbe number for the d-line, respectively. A4, A6, A8, A10, and A12 are aspheric coefficients. The aspherical shape is when the displacement in the optical axis direction at the position of the height H from the optical axis is x with respect to the surface vertex.

で表わされる。但しRは曲率半径、Kは円錐定数である。また、例えば「E−Z」の表示は「10−Z」を意味する。前述の各条件式と数値実施例における諸数値との関係を表1に示す。
It is represented by However, R is a curvature radius and K is a conic constant. Further, for example, the display of “E-Z” means “10 −Z ”. Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

[数値実施例1]
単位 mm

面データ
面番号 r d nd νd 有効径
1* 165.291 2.50 1.77250 49.6 57.87
2 33.766 12.13 47.40
3 -125.556 2.30 1.77250 49.6 47.27
4 46.987 0.15 44.98
5 47.542 7.00 1.80518 25.4 45.02
6 376.338 (可変) 44.56
7 1090.096 1.90 1.80518 25.4 34.60
8 40.660 6.25 1.77250 49.6 35.53
9 -107.558 0.15 35.79
10 79.306 3.85 1.83481 42.7 37.46
11 357.070 0.15 37.46
12 47.571 5.00 1.69680 55.5 37.79
13 699.103 (可変) 37.39
14 ∞ 2.20 27.44
15 -112.573 1.30 1.88300 40.8 26.78
16 51.208 2.54 26.29
17 -86.242 1.30 1.72000 42.0 26.25
18 30.468 4.95 1.80518 25.4 27.72
19 -75.202 0.70 27.78
20(絞り) ∞ (可変) 27.89
21 176.513 1.30 1.84666 23.9 28.00
22 27.809 6.45 1.49700 81.5 27.80
23 -63.922 0.15 28.07
24 37.247 4.55 1.65160 58.5 28.58
25 -145.983 (可変) 28.32
26 131.007 5.00 1.84666 23.9 24.12
27 -25.730 1.20 1.83400 37.2 24.01
28 27.214 (可変) 23.46
29 91.878 9.00 1.56907 71.3 33.68
30 -33.064 2.58 1.80518 25.4 34.48
31* -58.203 (可変) 36.31
像面 ∞

非球面 データ
第1面
K = 0.0000000E+00 A 4= 1.5043800E-06 A 6= 9.5171900E-10
A 8= -2.4758500E-12 A10 2.4492100E-15 A12 -8.8851100E-19
第31面
K = 0.0000000E+00 A 4= -7.1699300E-07 A 6= -1.1157900E-08
A 8= 6.4683800E-11 A10 -1.8928100E-13 A12 2.0773300E-16

各種データ
ズーム比 2.73
広角 望遠
焦点距離 24.74 67.50
Fナンバー 2.92 2.91
画角 41.17 17.77
像高 21.64 21.64
レンズ全長 206.42 177.53
BF 38.43 38.43

d 6 55.77 3.56
d13 2.90 21.30
d20 18.68 1.43
d25 1.19 13.66
d28 4.84 14.55
d31 38.43 38.43
[Numerical Example 1]
Unit mm

Surface data
Surface number rd nd νd Effective diameter
1 * 165.291 2.50 1.77250 49.6 57.87
2 33.766 12.13 47.40
3 -125.556 2.30 1.77250 49.6 47.27
4 46.987 0.15 44.98
5 47.542 7.00 1.80518 25.4 45.02
6 376.338 (variable) 44.56
7 1090.096 1.90 1.80518 25.4 34.60
8 40.660 6.25 1.77250 49.6 35.53
9 -107.558 0.15 35.79
10 79.306 3.85 1.83481 42.7 37.46
11 357.070 0.15 37.46
12 47.571 5.00 1.69680 55.5 37.79
13 699.103 (variable) 37.39
14 ∞ 2.20 27.44
15 -112.573 1.30 1.88300 40.8 26.78
16 51.208 2.54 26.29
17 -86.242 1.30 1.72000 42.0 26.25
18 30.468 4.95 1.80518 25.4 27.72
19 -75.202 0.70 27.78
20 (Aperture) ∞ (Variable) 27.89
21 176.513 1.30 1.84666 23.9 28.00
22 27.809 6.45 1.49700 81.5 27.80
23 -63.922 0.15 28.07
24 37.247 4.55 1.65 160 58.5 28.58
25 -145.983 (variable) 28.32
26 131.007 5.00 1.84666 23.9 24.12
27 -25.730 1.20 1.83400 37.2 24.01
28 27.214 (variable) 23.46
29 91.878 9.00 1.56907 71.3 33.68
30 -33.064 2.58 1.80518 25.4 34.48
31 * -58.203 (variable) 36.31
Image plane ∞

Aspheric data
First side
K = 0.0000000E + 00 A 4 = 1.5043800E-06 A 6 = 9.5171900E-10
A 8 = -2.4758500E-12 A10 2.4492100E-15 A12 -8.8851100E-19
No. 31
K = 0.0000000E + 00 A 4 = -7.1699300E-07 A 6 = -1.1157900E-08
A 8 = 6.4683800E-11 A10 -1.8928100E-13 A12 2.0773300E-16

Various data
Zoom ratio 2.73
Wide-angle telephoto focal length 24.74 67.50
F number 2.92 2.91
Angle of View 41.17 17.77
Statue height 21.64 21.64
Total lens length 206.42 177.53
BF 38.43 38.43

d 6 55.77 3.56
d13 2.90 21.30
d20 18.68 1.43
d25 1.19 13.66
d28 4.84 14.55
d31 38.43 38.43

[数値実施例2]

単位 mm

面データ
面番号 r d nd νd 有効径
1 86.245 3.77 1.56384 60.7 51.88
2 213.447 0.15 51.46
3 73.512 2.20 1.74950 35.3 50.39
4 42.912 0.05 1.52421 51.4 48.05
5(回折) 42.912 0.10 1.52421 51.4 48.04
6 42.912 10.44 1.51633 64.1 48.01
7 3764.994 (可変) 47.05
8 1628.138 1.10 1.85026 32.3 18.77
9 43.511 2.02 18.27
10 -49.728 0.90 1.80400 46.6 18.25
11 30.101 3.19 1.84666 23.9 18.61
12 -496.462 (可変) 18.77
13 30.650 1.20 1.80518 25.4 19.19
14 19.763 5.97 1.58313 59.4 18.75
15* -67.531 1.00 18.47
16(絞り) ∞ (可変) 17.96
17 -23.174 1.90 1.58913 61.1 17.37
18 28.242 2.56 1.80518 25.4 19.38
19 130.888 (可変) 19.66
20 -268.640 3.83 1.58313 59.4 20.58
21 -26.294 0.15 20.99
22 80.742 5.16 1.48749 70.2 21.30
23 -22.509 1.00 1.84666 23.9 21.27
24 -59.948 0.15 21.78
25 36.621 3.64 1.56384 60.7 21.91
26 -595.535 (可変) 21.54
27 -535.424 1.10 1.83481 42.7 21.81
28 30.188 1.43 21.30
29 82.263 4.38 1.80518 25.4 21.37
30 -25.995 1.10 1.83481 42.7 21.47
31 44.812 (可変) 21.88
32 44.475 2.00 1.61340 44.3 34.58
33 39.063 3.93 1.49700 81.5 34.65
34 255.394 (可変) 34.70
像面 ∞

非球面データ
第5面(回折面)
A 2=-5.25072e-005 A 4=-3.36273e-009 A 6=-7.92126e-012

第15面
K = 0.00000e+000 A 4= 1.51296e-006 A 6=-1.72749e-009 A 8=-1.67373e-011

各種データ
ズーム比 4.15
広角 望遠
焦点距離 72.21 299.52
Fナンバー 4.65 5.85
画角 16.68 4.13
像高 21.64 21.64
レンズ全長 142.64 201.84
BF 37.77 37.77

d 7 2.80 62.00
d12 8.04 1.28
d16 3.62 17.47
d19 8.71 1.62
d26 14.34 -0.78
d31 2.94 18.06
d34 37.77 37.77
[Numerical Example 2]

Unit mm

Surface data
Surface number rd nd νd Effective diameter
1 86.245 3.77 1.56384 60.7 51.88
2 213.447 0.15 51.46
3 73.512 2.20 1.74950 35.3 50.39
4 42.912 0.05 1.52421 51.4 48.05
5 (Diffraction) 42.912 0.10 1.52421 51.4 48.04
6 42.912 10.44 1.51633 64.1 48.01
7 3764.994 (variable) 47.05
8 1628.138 1.10 1.85026 32.3 18.77
9 43.511 2.02 18.27
10 -49.728 0.90 1.80400 46.6 18.25
11 30.101 3.19 1.84666 23.9 18.61
12 -496.462 (variable) 18.77
13 30.650 1.20 1.80518 25.4 19.19
14 19.763 5.97 1.58313 59.4 18.75
15 * -67.531 1.00 18.47
16 (Aperture) ∞ (Variable) 17.96
17 -23.174 1.90 1.58913 61.1 17.37
18 28.242 2.56 1.80518 25.4 19.38
19 130.888 (variable) 19.66
20 -268.640 3.83 1.58313 59.4 20.58
21 -26.294 0.15 20.99
22 80.742 5.16 1.48749 70.2 21.30
23 -22.509 1.00 1.84666 23.9 21.27
24 -59.948 0.15 21.78
25 36.621 3.64 1.56384 60.7 21.91
26 -595.535 (variable) 21.54
27 -535.424 1.10 1.83481 42.7 21.81
28 30.188 1.43 21.30
29 82.263 4.38 1.80518 25.4 21.37
30 -25.995 1.10 1.83481 42.7 21.47
31 44.812 (variable) 21.88
32 44.475 2.00 1.61340 44.3 34.58
33 39.063 3.93 1.49700 81.5 34.65
34 255.394 (variable) 34.70
Image plane ∞

Aspheric data
5th surface (diffractive surface)
A 2 = -5.25072e-005 A 4 = -3.36273e-009 A 6 = -7.92126e-012

15th page
K = 0.00000e + 000 A 4 = 1.51296e-006 A 6 = -1.72749e-009 A 8 = -1.67373e-011

Various data
Zoom ratio 4.15
Wide angle telephoto
Focal length 72.21 299.52
F number 4.65 5.85
Angle of View 16.68 4.13
Statue height 21.64 21.64
Total lens length 142.64 201.84
BF 37.77 37.77

d 7 2.80 62.00
d12 8.04 1.28
d16 3.62 17.47
d19 8.71 1.62
d26 14.34 -0.78
d31 2.94 18.06
d34 37.77 37.77

[数値実施例3]

単位 mm

面データ
面番号 r d nd νd 有効径
1 85.885 4.70 1.62299 58.2 44.13
2 -1165.796 0.15 43.47
3 71.088 2.60 1.80100 35.0 41.07
4 41.838 5.00 1.49700 81.5 38.28
5 112.936 (可変) 37.15
6 -87.907 1.40 1.72916 54.7 20.17
7 23.340 3.35 1.80518 25.4 18.48
8 58.756 2.00 17.54
9 -51.620 1.10 1.80400 46.6 17.18
10 -327.041 (可変) 17.15
11 518.897 2.00 1.66672 48.3 19.83
12 -60.251 0.15 19.97
13 27.672 3.30 1.60311 60.6 19.96
14 -127.036 1.58 19.66
15(絞り) ∞ 0.59 18.53
16 28.414 2.50 1.51742 52.4 17.40
17 45.865 0.73 16.28
18 -102.062 4.00 1.84666 23.8 16.53
19 28.624 (可変) 14.95
20 -83.115 2.00 1.84666 23.8 13.93
21 -17.617 1.20 1.83481 42.7 13.95
22 95.940 (可変) 14.02
23 57.898 5.00 1.63854 55.4 16.75
24 -14.202 1.20 1.85026 32.3 17.14
25 -26.598 (可変) 18.10
像面 ∞

各種データ
ズーム比 3.65
広角 望遠
焦点距離 55.60 203.11
Fナンバー 4.16 5.88
画角 13.80 3.85
像高 13.66 13.66
レンズ全長 162.05 202.41
BF 58.79 82.03

d 5 11.02 52.13
d10 34.39 2.03
d19 12.19 21.32
d22 1.12 0.35
d25 58.79 82.03
[Numerical Example 3]

Unit mm

Surface data
Surface number rd nd νd Effective diameter
1 85.885 4.70 1.62299 58.2 44.13
2 -1165.796 0.15 43.47
3 71.088 2.60 1.80 100 35.0 41.07
4 41.838 5.00 1.49700 81.5 38.28
5 112.936 (variable) 37.15
6 -87.907 1.40 1.72916 54.7 20.17
7 23.340 3.35 1.80518 25.4 18.48
8 58.756 2.00 17.54
9 -51.620 1.10 1.80400 46.6 17.18
10 -327.041 (variable) 17.15
11 518.897 2.00 1.66672 48.3 19.83
12 -60.251 0.15 19.97
13 27.672 3.30 1.60311 60.6 19.96
14 -127.036 1.58 19.66
15 (Aperture) ∞ 0.59 18.53
16 28.414 2.50 1.51742 52.4 17.40
17 45.865 0.73 16.28
18 -102.062 4.00 1.84666 23.8 16.53
19 28.624 (variable) 14.95
20 -83.115 2.00 1.84666 23.8 13.93
21 -17.617 1.20 1.83481 42.7 13.95
22 95.940 (variable) 14.02
23 57.898 5.00 1.63854 55.4 16.75
24 -14.202 1.20 1.85026 32.3 17.14
25 -26.598 (variable) 18.10
Image plane ∞

Various data
Zoom ratio 3.65
Wide angle telephoto
Focal length 55.60 203.11
F number 4.16 5.88
Angle of view 13.80 3.85
Image height 13.66 13.66
Total lens length 162.05 202.41
BF 58.79 82.03

d 5 11.02 52.13
d10 34.39 2.03
d19 12.19 21.32
d22 1.12 0.35
d25 58.79 82.03

次に実施例1〜3に示したズームレンズを有する撮像装置を説明する。図10は一眼レフカメラの要部概略図である。図10において10は実施例1〜3のズームレンズ1を有する撮影レンズである。ズームレンズ1は保持部材である鏡筒2に保持されている。20はカメラ本体であり、撮影レンズ10からの光束を上方に反射するクイックリターンミラー3、撮影レンズ10の像形成位置に配置された焦点板4を有する。更に焦点板4に形成された逆像を正立像に変換するペンタダハプリズム5、その正立像を観察するための接眼レンズ6等によって構成されている。7は感光面であり、像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)や銀塩フィルムが配置される。撮影時には、クイックリターンミラー3が光路から退避して、感光面7上に撮影レンズ10によって像が形成される。実施例1〜3にて説明した利益は本実施例に開示したような撮像装置において効果的に享受される。   Next, an image pickup apparatus having the zoom lens shown in Examples 1 to 3 will be described. FIG. 10 is a schematic view of the main part of a single-lens reflex camera. In FIG. 10, reference numeral 10 denotes a photographing lens having the zoom lens 1 according to the first to third embodiments. The zoom lens 1 is held by a lens barrel 2 that is a holding member. Reference numeral 20 denotes a camera body, which includes a quick return mirror 3 that reflects the light beam from the photographing lens 10 upward, and a focusing screen 4 that is disposed at an image forming position of the photographing lens 10. Further, it is constituted by a penta roof prism 5 for converting an inverted image formed on the focusing screen 4 into an erect image, an eyepiece 6 for observing the erect image, and the like. Reference numeral 7 denotes a photosensitive surface, on which a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives an image, or a silver salt film is disposed. At the time of shooting, the quick return mirror 3 is retracted from the optical path, and an image is formed on the photosensitive surface 7 by the shooting lens 10. The benefits described in the first to third embodiments are effectively enjoyed in the imaging apparatus as disclosed in the present embodiment.

L1は第1レンズ群、L2は第2レンズ群、L3は第3レンズ群、L4は第4レンズ群、L5は第5レンズ群、L6は第6レンズ群、L7は第7レンズ群、SPは絞り、SP2は副絞り、IPは像面、Yは像高、dはd線、gはg線、CはC線、FはF線、Mはメリディオナル像面、Sはサジタル像面 L1 is the first lens group, L2 is the second lens group, L3 is the third lens group, L4 is the fourth lens group, L5 is the fifth lens group, L6 is the sixth lens group, L7 is the seventh lens group, SP Is the aperture, SP2 is the sub-aperture, IP is the image plane, Y is the image height, d is the d line, g is the g line, C is the C line, F is the F line, M is the meridional image plane, and S is the sagittal image plane.

Claims (9)

最も像側に正の屈折力の最終レンズ群、該最終レンズ群の物体側に隣接して配置された負の屈折力のフォーカスレンズ群を含み、全体として少なくとも5つのレンズ群を有し、ズーミングに際して3以上のレンズ群が移動するズームレンズであって、
該最終レンズ群は正レンズGRPと負レンズGRNとを接合した接合レンズより構成され、該正レンズGRPと負レンズGRNの材料のアッベ数を各々νRP、νRNとするとき、
15<|νRP−νRN|<60
なる条件式を満足することを特徴とするズームレンズ。
The zoom lens includes a final lens unit having a positive refractive power closest to the image side and a focus lens group having a negative refractive power disposed adjacent to the object side of the final lens unit, and has at least five lens units as a whole. A zoom lens in which three or more lens groups move,
The final lens group is composed of a cemented lens in which a positive lens GRP and a negative lens GRN are cemented, and when the Abbe numbers of materials of the positive lens GRP and the negative lens GRN are νRP and νRN, respectively.
15 <| νRP−νRN | <60
A zoom lens satisfying the following conditional expression:
前記最終レンズ群と前記フォーカスレンズ群の焦点距離を各々fR、ffocusとするとき、
0.2<|ffocus/fR|<2.0
なる条件を満足することを特徴とする請求項1に記載のズームレンズ。
When the focal lengths of the final lens group and the focus lens group are fR and ffocus, respectively.
0.2 <| ffocus / fR | <2.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記フォーカスレンズ群は、正レンズGFPと負レンズGFNとを接合した接合レンズを有し、該正レンズGFPと負レンズGFNの材料のアッベ数を各々νFP、νFNとするとき、
10<|νFP−νFN|
なる条件を満足することを特徴とする請求項1又は2に記載のズームレンズ。
The focus lens group includes a cemented lens in which a positive lens GFP and a negative lens GFN are cemented, and the Abbe numbers of the materials of the positive lens GFP and the negative lens GFN are νFP and νFN, respectively.
10 <| νFP-νFN |
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記正レンズGRPの材料の部分分散比をθRPとするとき、
−0.01<(θRP)−(−0.016*νRP+0.642)<0.05
なる条件を満足することを特徴とする請求項1乃至3のいずれか1項のズームレンズ。
When the partial dispersion ratio of the material of the positive lens GRP is θRP,
−0.01 <(θRP) − (− 0.016 * νRP + 0.642) <0.05
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記フォーカスレンズ群の物体側に、物体側より像側へ順に、正の屈折力のレンズ群、負の屈折力のレンズ群、正の屈折力のレンズ群を有することを特徴とする請求項1乃至4のいずれか1項のズームレンズ。   2. A lens unit having a positive refractive power, a lens group having a negative refractive power, and a lens group having a positive refractive power in order from the object side to the image side on the object side of the focus lens group. 5. The zoom lens according to any one of items 4 to 4. 前記ズームレンズは、物体側より像側へ順に負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群より構成され、ズーミングのためには第6レンズ群は不動であり、ズーミングに際して該第1〜第5レンズ群が移動することを特徴とする請求項1乃至4のいずれか1項のズームレンズ。   The zoom lens includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power in order from the object side to the image side. Group, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power. For zooming, the sixth lens group does not move, and during zooming, the first to fifth lens groups 5. The zoom lens according to claim 1, wherein the zoom lens moves. 前記ズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群、負の屈折力の第6レンズ群、正の屈折力の第7レンズ群より構成され、ズーミングのためには該第2、第5、第7レンズ群は不動であり、ズーミングに際して該第1、第3、第4、第6レンズ群が移動することを特徴とする請求項1乃至4のいずれか1項のズームレンズ。   In the zoom lens, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. The zoom lens includes a lens group, a fifth lens group having a positive refractive power, a sixth lens group having a negative refractive power, and a seventh lens group having a positive refractive power. The second, fifth, and seventh lenses are used for zooming. The zoom lens according to any one of claims 1 to 4, wherein the lens group is stationary and the first, third, fourth, and sixth lens groups move during zooming. 前記ズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、ズーミングに際し、各レンズ群間の空気間隔が変化するように、各レンズ群が移動することを特徴とする請求項1乃至4のいずれか1項のズームレンズ。   In the zoom lens, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. 5. The lens group according to claim 1, further comprising a fifth lens group having a positive refractive power, wherein each lens group moves so that an air space between the lens groups changes during zooming. 1 zoom lens. 請求項1から8のいずれか1項のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子を有していることを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2009231313A 2009-10-05 2009-10-05 Zoom lens and imaging apparatus having the same Pending JP2011081062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231313A JP2011081062A (en) 2009-10-05 2009-10-05 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231313A JP2011081062A (en) 2009-10-05 2009-10-05 Zoom lens and imaging apparatus having the same

Publications (1)

Publication Number Publication Date
JP2011081062A true JP2011081062A (en) 2011-04-21

Family

ID=44075205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231313A Pending JP2011081062A (en) 2009-10-05 2009-10-05 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP2011081062A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115424A (en) * 2012-12-07 2014-06-26 Samsung Electronics Co Ltd Zoom lens
WO2014132864A1 (en) * 2013-02-26 2014-09-04 リコーイメージング株式会社 Zoom lens system
JP2017078771A (en) * 2015-10-20 2017-04-27 キヤノン株式会社 Zoom lens and imaging device having the same
WO2017094661A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
WO2017094665A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
EP3159726A3 (en) * 2015-10-20 2017-07-05 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US9904043B2 (en) 2015-10-20 2018-02-27 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
WO2019049370A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2022060547A (en) * 2020-06-15 2022-04-14 株式会社ニコン Zoom optical system and optical device using the same
US11592651B2 (en) 2017-06-21 2023-02-28 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
US11754820B2 (en) 2016-11-21 2023-09-12 Nikon Corporation Zoom optical system, optical apparatus and imaging apparatus using the zoom optical system, and method for manufacturing the zoom optical system
WO2023181667A1 (en) * 2022-03-23 2023-09-28 ソニーグループ株式会社 Zoom lens and imaging device
JP7375970B2 (en) 2022-02-25 2023-11-08 株式会社ニコン Variable magnification optical system and optical equipment using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115424A (en) * 2012-12-07 2014-06-26 Samsung Electronics Co Ltd Zoom lens
WO2014132864A1 (en) * 2013-02-26 2014-09-04 リコーイメージング株式会社 Zoom lens system
JP5679092B1 (en) * 2013-02-26 2015-03-04 リコーイメージング株式会社 Zoom lens system
US9904043B2 (en) 2015-10-20 2018-02-27 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2017078771A (en) * 2015-10-20 2017-04-27 キヤノン株式会社 Zoom lens and imaging device having the same
US10295806B2 (en) 2015-10-20 2019-05-21 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
EP3159726A3 (en) * 2015-10-20 2017-07-05 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
CN108292030B (en) * 2015-11-30 2020-12-01 株式会社尼康 Variable magnification optical system and optical apparatus
CN108292029A (en) * 2015-11-30 2018-07-17 株式会社尼康 The manufacturing method of variable-power optical system, optical device and variable-power optical system
JPWO2017094661A1 (en) * 2015-11-30 2018-09-06 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JPWO2017094665A1 (en) * 2015-11-30 2018-09-20 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN108292030A (en) * 2015-11-30 2018-07-17 株式会社尼康 The manufacturing method of variable-power optical system, optical device and variable-power optical system
WO2017094665A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
US10678030B2 (en) 2015-11-30 2020-06-09 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
CN108292029B (en) * 2015-11-30 2020-11-06 株式会社尼康 Variable magnification optical system and optical apparatus
US10831004B2 (en) 2015-11-30 2020-11-10 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2017094661A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
US11754820B2 (en) 2016-11-21 2023-09-12 Nikon Corporation Zoom optical system, optical apparatus and imaging apparatus using the zoom optical system, and method for manufacturing the zoom optical system
US11592651B2 (en) 2017-06-21 2023-02-28 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2019049370A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
US11106023B2 (en) 2017-09-11 2021-08-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
JPWO2019049370A1 (en) * 2017-09-11 2020-10-01 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
US11933951B2 (en) 2017-09-11 2024-03-19 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
JP2022060547A (en) * 2020-06-15 2022-04-14 株式会社ニコン Zoom optical system and optical device using the same
JP7243884B2 (en) 2020-06-15 2023-03-22 株式会社ニコン Variable magnification optical system, optical equipment and imaging equipment using the same
JP7375970B2 (en) 2022-02-25 2023-11-08 株式会社ニコン Variable magnification optical system and optical equipment using the same
WO2023181667A1 (en) * 2022-03-23 2023-09-28 ソニーグループ株式会社 Zoom lens and imaging device

Similar Documents

Publication Publication Date Title
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
JP2011081062A (en) Zoom lens and imaging apparatus having the same
JP4817699B2 (en) Zoom lens and imaging apparatus having the same
JP5743810B2 (en) Zoom lens and imaging apparatus having the same
JP6173279B2 (en) Zoom lens and imaging apparatus having the same
JP5414205B2 (en) Zoom lens and imaging apparatus having the same
JP4695912B2 (en) Zoom lens and imaging apparatus having the same
JP2010060612A (en) Zoom lens and image pickup device including the same
US11668899B2 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
JP6226611B2 (en) Zoom lens and imaging apparatus having the same
JP4898399B2 (en) Optical system and imaging apparatus having the same
JP2015028530A5 (en)
JP6418888B2 (en) Zoom lens and optical apparatus having the same
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP2018180363A (en) Zoom lens and image capturing device having the same
JP2014029375A (en) Zoom lens and imaging apparatus including the same
JP2010160243A (en) Zoom lens, and imaging device having the same
JP2009210691A (en) Zoom lens and imaging device having it
JP6628240B2 (en) Zoom lens and imaging device having the same
JP5656684B2 (en) Zoom lens and imaging apparatus having the same
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP5858761B2 (en) Zoom lens and imaging apparatus having the same
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP2010237453A (en) Zoom lens and imaging apparatus having the same
JP2009098546A (en) Zoom lens and imaging apparatus equipped with the same