JPS59108937A - Fatigue life monitoring apparatus - Google Patents

Fatigue life monitoring apparatus

Info

Publication number
JPS59108937A
JPS59108937A JP21831882A JP21831882A JPS59108937A JP S59108937 A JPS59108937 A JP S59108937A JP 21831882 A JP21831882 A JP 21831882A JP 21831882 A JP21831882 A JP 21831882A JP S59108937 A JPS59108937 A JP S59108937A
Authority
JP
Japan
Prior art keywords
fatigue
fatigue life
curve
data
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21831882A
Other languages
Japanese (ja)
Inventor
Kazunari Fujiyama
一成 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21831882A priority Critical patent/JPS59108937A/en
Publication of JPS59108937A publication Critical patent/JPS59108937A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To obtain a fatigue life monitoring apparatus, wherein the material deterioration of the parts of a prime mover, which has been used for a long time, is considered, by correcting a fatigue curve by using hardness data of the parts of the prime mover which is used for a long time, and computing the fatigue life based on the stress and strain data and the corrected fatigue characteristics. CONSTITUTION:Data 3 with regard to material deterioration, which is obtained from a turbine rotor 2 as hardness, is inputted to a fatigue characteristic corrector 1. A fatigue curve 10 is divided into a curve 10a within an elastic strain range DELTAepsilone and a curve 10b within a plastic strain range DELTAepsilonp. Only the elastic strain range DELTAepsilone is evenly lowered to the elastic strain range, which is corrected by the hardness. A corrected fatigue curve 11 is synthesized by a fatigue life judging device 5. A thermal stress computer 6 computes the stress and strain corresponding to the shape and thermal transition state of the steam turbine rotor 2. Strain data 7 is inputted to the fatigue life judging device 5. The fatigue life judging device 5 outputs a fatigue damage value 8 as a ratio between start and stop times and fatigue life based on the operation data of the actual machine. The value is displayed on a display device 9.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービン等原動機の経年劣化による疲労寿
命消費の監視装置(二関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a monitoring device for fatigue life consumption due to aging deterioration of a prime mover such as a steam turbine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

高温で使用される原動機部品は、起動停止等の負荷変動
に伴い熱応力の繰返しを受は疲労寿命な消費する。疲労
寿命の消費程度を示す疲労損傷は、熱応力あるいはひず
みレベル(二対する疲労寿命と変動の繰返し数との比で
表わされる。従って疲労損傷を正確に計算するため(−
は、材料の疲労寿命特性を正確(−把握する必要がある
Motor parts that are used at high temperatures are subject to repeated thermal stress due to load fluctuations such as starting and stopping, which consumes their fatigue life. Fatigue damage, which indicates the degree of consumption of fatigue life, is expressed as the ratio of fatigue life to the number of repetitions of fluctuation to the thermal stress or strain level (2). Therefore, in order to accurately calculate fatigue damage,
It is necessary to accurately understand the fatigue life characteristics of the material.

材料が高温(二長時間さらされると材質の変化が生じ、
材料の強度的特性(二大きな影響を及ぼす。
If the material is exposed to high temperatures (for a long period of time, changes in the material will occur,
Strength properties of materials (two major influences).

しかしながら従来の疲労寿命監視法では実機の材質劣化
を反映しておらず、計測精度(二問題があった。
However, the conventional fatigue life monitoring method does not reflect the material deterioration of the actual machine, and there are two problems with measurement accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、経年使用原動機部品の材質劣化を考慮
した疲労寿命監視装置を提供すること(二ある。
It is an object of the present invention to provide a fatigue life monitoring device that takes into account the material deterioration of prime mover parts used over time.

〔発明の概賛〕[Overview of the invention]

上記目的を達成するため本発明は、経年使用した原動機
部材の硬さデータを入力し、これを疲労応力・ひずみ計
涯を行なってこの応力・ひずみデ−りを記憶する熱応力
計算器と、とのH(4憶された応力・ひずみデータと前
記疲労特性修正器にて修正された疲労特性とを入力して
疲労寿命を算出する疲労寿命判定器とよりなることを特
徴とするものである。
In order to achieve the above object, the present invention provides a thermal stress calculator that inputs hardness data of prime mover members that have been used over time, performs fatigue stress/strain calculations on the hardness data, and stores the stress/strain data; and a fatigue life determining device that calculates fatigue life by inputting the stored stress/strain data and the fatigue characteristics corrected by the fatigue characteristic corrector. .

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図、第2図、第3図、およ
び第4図を参照して説明する。第1図は不発明による疲
労寿命監視装置の構成を示すもので、疲労特性16正器
(13に、疲労特性を弾性ひずみ範囲Δc6及び塑性ひ
ずみ範囲Δε、(二分けて記憶する機能な有している。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4. Figure 1 shows the configuration of a fatigue life monitoring device according to the invention. ing.

Δε。およびΔε、は次〕(A) 、 (B)式で表わ
される。
Δε. and Δε are expressed by the following formulas (A) and (B).

Δε。二〇INf−“1(A) Δε、 = 02 Nt−′2(B) CNt:破損繰返し数、C1+ C11+ ”I + 
C2は定数)疲労特性修正器(1)は、(A) 、 (
B)式の係数を修正する機能も有している。
Δε. 20INf-"1(A) Δε, = 02 Nt-'2(B) CNt: Number of damage repetitions, C1+ C11+ "I +
(C2 is a constant) Fatigue characteristic modifier (1) is (A), (
B) It also has a function to modify the coefficients of the equation.

タービンロータ(2)からは、非破壊的方法(ここでは
硬さンで得られた材質劣化(二関する情報(3)が前記
疲労特性修正器(1)に入力される。
From the turbine rotor (2), information (3) related to material deterioration obtained by a non-destructive method (here, hardness) is input to the fatigue property modifier (1).

修正された疲労特性(4)は、疲労寿命判定器(5)に
よシ全ひずみ範囲Δε、i二対する疲労NmFF価式に
合成される。即ち Δε、=Δε6+Δε2 = ClNl−” 十02N2−”    (C)熱応
力計算器(6)は、蒸気タービンロータ(2)の形状及
び熱過渡状態(二対する応力・ひずみ計算を行い、応力
・ひずみデータを記憶するもので、この記憶されたひず
みデータ(刀は、疲労寿命判定器(5)(二人力され疲
労寿命を算出する。この疲労寿命判定器(5)は、実機
運転データ(二よシ起動停止回数と疲労寿命の比として
疲労損傷値(8)を出方し表示器(9)(二表示する。
The corrected fatigue characteristic (4) is synthesized into a fatigue NmFF value equation for the entire strain range Δε, i2 by the fatigue life determination device (5). That is, Δε, = Δε6 + Δε2 = ClNl-"102N2-" (C) The thermal stress calculator (6) calculates the stress and strain for the shape and thermal transient state (2) of the steam turbine rotor (2), and calculates the stress and strain. The stored strain data (strain data) is used by a fatigue life determiner (5) (which is used by two people to calculate the fatigue life. The fatigue damage value (8) is displayed as the ratio of the number of times the engine starts and stops to the fatigue life and is displayed on the display (9).

次に上記のよう(二構成した本発明の疲労寿命監視装置
の作用を説明する。疲労特性修正器(1)に内蔵されて
いる材質劣化修正機能は、第2図(二示すような、例え
ば硬さと10’回寿命Cユおける弾性ひずみ範囲Δ6゜
の関係として与えられる。ただし、第2図は蒸気タービ
ンケーシング及び高中圧ロータ(二対して得られた関係
である。硬さはロータ外衣面やケーシング等では実測で
きるが、その他の測定法を用いることもできる。例えば
第3図(=示すようC二、Xm、回折手価幅は硬さと対
応しているので、X線回折法も有力な測定法である。
Next, the operation of the fatigue life monitoring device of the present invention configured as described above will be explained. It is given as the relationship between hardness and elastic strain range Δ6° at 10' cycle life C. However, Fig. 2 shows the relationship obtained for the steam turbine casing and high and intermediate pressure rotor (2). Although actual measurement can be performed on hardness, casing, etc., other measurement methods can also be used. For example, as shown in Figure 3, C2, Xm, and diffraction cost range correspond to hardness, so It is a measurement method.

第4図talに示す様(二、実機の硬さを測定すると、
前記硬さと弾性ひずみ範囲の関係から、経年使用した部
品の弾性ひずみ成分が分る。次(二第4図(bl(二示
すように、疲労曲線μ0)を疲労特性修正器(1)り二
より、弾性ひずみ範囲Δδ6の曲線(10a)と塑性ひ
ずみ範囲Δ〜の曲線(10b)とに分け、弾性ひずみ範
囲Δε6のみを、硬さより修正した弾性ひずみ範囲(二
まで一律(−低下させる。その後、疲労寿命判定器(5
)によυ修正疲労曲線圓を合成する。
As shown in Figure 4 tal (2. When measuring the hardness of the actual machine,
From the relationship between the hardness and the elastic strain range, the elastic strain component of a part that has been used for many years can be determined. Next (2) Figure 4 (bl (as shown in 2), the fatigue curve μ0) is converted to the fatigue characteristic modifier (1) by the 2 curve (10a) in the elastic strain range Δδ6 and the curve (10b) in the plastic strain range Δ~. Then, only the elastic strain range Δε6 is lowered uniformly (-) to the elastic strain range (2) corrected from the hardness.
) to synthesize the υ modified fatigue curve circle.

この様にして得られた修正疲労曲線Uυは、加熱劣化(
二より軟化した材料の基準疲労曲線として用いることが
できる。このことは第2図(二示すよう(二、人工加熱
劣化(−よって得られた未使用材の疲労データが、前記
修正疲労曲線αυと同等の特性を示す事実によって明ら
かである。
The modified fatigue curve Uυ obtained in this way is based on heating deterioration (
It can be used as a reference fatigue curve for materials that are softer than the second. This is clear from the fact that the fatigue data of the unused material obtained by artificial heating deterioration (2) shows characteristics equivalent to the modified fatigue curve αυ as shown in FIG.

なお本発明はロータ(二限らずケーシング(二対しても
適用できることは勿論で必る。
It goes without saying that the present invention is applicable not only to the rotor but also to the casing.

〔発明の効果〕〔Effect of the invention〕

前記修正疲労曲線uJを用いた寿命評価は、経年劣化し
たプラントの余寿命を従来よシ高精度で評価することが
できる。特(二軟化度が大きくなるほど、従来法は本発
明よシ非安全側評価(疲労寿命を長い目(二推定する)
(二なるため、不発明(二よる寿命推定が機器の安全運
用(二とって必須のものとなる。
Life evaluation using the modified fatigue curve uJ allows the remaining life of a plant that has deteriorated over time to be evaluated with higher precision than in the past. Particularly (2) The greater the degree of softening, the less safe the conventional method is compared to the present invention (the longer the fatigue life is (estimated))
(2) Therefore, non-invention (2) life estimation is essential for the safe operation of equipment (2).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の疲労特性修正器で用いる硬さ一弾性正手順を示す曲
線図である。 1・・・疲労特性修正器、  2・・・蒸気タービンロ
ータ、5・・・疲労寿命判定器、  6・・・熱応力計
算器、9・・・表示器、     IO・・・修正前疲
労曲線、11・・・修正疲労曲線。 (7317)  代理人 弁理士 則 近 意 佑(ほ
か1名)第1図 第2図 15θ      20(12503θ070史さ C
Hr) 第3図 半価幅2θ擦ジ 第4図 凸(/−) f
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a curve diagram showing a hardness-elasticity positive procedure used in the fatigue characteristic modifier of the present invention. DESCRIPTION OF SYMBOLS 1...Fatigue characteristic corrector, 2...Steam turbine rotor, 5...Fatigue life determination device, 6...Thermal stress calculator, 9...Display device, IO...Fatigue curve before correction , 11... Modified fatigue curve. (7317) Agent Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 15θ 20 (12503θ070 History C
Hr) Fig. 3 Half width 2θ friction Fig. 4 Convex (/-) f

Claims (1)

【特許請求の範囲】[Claims] 経年使用した原動機部材の硬さデータを入力し、これを
疲労曲線の弾性ひずみ範囲の低下量に変換する疲労特性
修正器と、前記部材の形状と熱過渡状態(二対する応力
・ひずみ計算を行なってこの応力・ひずみデータを記憶
する熱応力計算器と、この記憶された応力・ひずみデー
タと前記疲労特性修正器(二で修正された疲労特性とを
入力して疲労寿命を算出する疲労寿命判定器とよりなる
疲労寿命監視装置。
A fatigue characteristic modifier that inputs hardness data of prime mover components that have been used over time and converts this into the amount of decrease in the elastic strain range of the fatigue curve, and a stress/strain calculation for the shape and thermal transient state of the component. A thermal stress calculator that stores the stress/strain data of the lever, and a fatigue life judgment that calculates the fatigue life by inputting the stored stress/strain data and the fatigue characteristics corrected in step 2. Fatigue life monitoring device consisting of a device.
JP21831882A 1982-12-15 1982-12-15 Fatigue life monitoring apparatus Pending JPS59108937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21831882A JPS59108937A (en) 1982-12-15 1982-12-15 Fatigue life monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21831882A JPS59108937A (en) 1982-12-15 1982-12-15 Fatigue life monitoring apparatus

Publications (1)

Publication Number Publication Date
JPS59108937A true JPS59108937A (en) 1984-06-23

Family

ID=16717965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21831882A Pending JPS59108937A (en) 1982-12-15 1982-12-15 Fatigue life monitoring apparatus

Country Status (1)

Country Link
JP (1) JPS59108937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205052A2 (en) * 1985-06-14 1986-12-17 Mitsubishi Jukogyo Kabushiki Kaisha A method of evaluating the residual life of a turbine rotor by a non destructive procedure
EP0308888A2 (en) * 1987-09-21 1989-03-29 Hitachi, Ltd. Method and apparatus for detecting embrittlement of a measuring object
CN102798568A (en) * 2012-07-27 2012-11-28 中国航空工业集团公司北京航空材料研究院 Method for processing material fatigue life test data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205052A2 (en) * 1985-06-14 1986-12-17 Mitsubishi Jukogyo Kabushiki Kaisha A method of evaluating the residual life of a turbine rotor by a non destructive procedure
EP0308888A2 (en) * 1987-09-21 1989-03-29 Hitachi, Ltd. Method and apparatus for detecting embrittlement of a measuring object
CN102798568A (en) * 2012-07-27 2012-11-28 中国航空工业集团公司北京航空材料研究院 Method for processing material fatigue life test data

Similar Documents

Publication Publication Date Title
CN110598990B (en) Industrial process voltage sag interruption probability assessment method based on analytic hierarchy process
CN111881603B (en) Mechanical structure fatigue reliability assessment method considering failure correlation
CN111428361A (en) Service life prediction method suitable for various cyclic loads
CN104685337A (en) Fissure progress estimation method and information processing device
CN104155092B (en) Wind turbine blade static analysis method
CN111090957A (en) High-temperature structure dangerous point stress-strain calculation method
CN111881564B (en) Method for predicting amplitude-variable fatigue life of mechanical structure
CN103726888A (en) Method for monitoring low cycle fatigue of steam turbine rotor on line
KR101737968B1 (en) Predictive Method of the Generator Output Based on the Learning of Performance Data in Power Plant
He et al. Nonlinear creep-damage constitutive model of surrounding rock in salt cavern reservoir
US11460818B2 (en) Evaluation apparatus, evaluation system, and evaluation method
CN102253240A (en) Method for determining safety use boundary of quartz flexible accelerometer
JPS59108937A (en) Fatigue life monitoring apparatus
CN114297887A (en) Construction method of high-temperature fretting fatigue life prediction model considering surface hardness
RU2431176C1 (en) Method for determining service life of component of power plant
CN114528743B (en) Method for calculating dynamic stress monitoring limit value of rotor blade in wide rotating speed range
Blieske et al. Centrifugal Compressors During Fast Transients
CN115017449A (en) Frequency deviation calculation method and system suitable for different damping ratios of second-order system
Banaszkiewicz et al. Advanced lifetime assessment of steam turbine components based on long-term operating data
CN108153258B (en) A kind of method and apparatus of thermal power unit operation stability quantization judgement
CN117521528B (en) Turbine equipment simulation model evolution method, device, medium and computing equipment
CN111680418A (en) Acceleration factor calculation method based on temperature change in thermal cycle
Wan et al. Tooth root stress prediction of helical gear pair with misalignment errors based on PSO-BP neural network
JPH0326341B2 (en)
CN112421650B (en) Method and system for evaluating power grid inertia