JPS59108367A - Semiconductor radiation dosimeter - Google Patents

Semiconductor radiation dosimeter

Info

Publication number
JPS59108367A
JPS59108367A JP57218823A JP21882382A JPS59108367A JP S59108367 A JPS59108367 A JP S59108367A JP 57218823 A JP57218823 A JP 57218823A JP 21882382 A JP21882382 A JP 21882382A JP S59108367 A JPS59108367 A JP S59108367A
Authority
JP
Japan
Prior art keywords
electrode
main electrode
voltage
depletion layer
control electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57218823A
Other languages
Japanese (ja)
Inventor
Noritada Sato
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57218823A priority Critical patent/JPS59108367A/en
Publication of JPS59108367A publication Critical patent/JPS59108367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To magnify moreover the extent of linearity of a radiation dose rate by an SSD of one piece, and to contrive to enhance reliability of the semiconductor radiation dosimeter by a method wherein a loop type control electrode is provided in the shape to surround a main electrode, and a means to change a voltage to be applied to the main electrode and a means to control a voltage to be applied to the control electrode in relation to the respective voltages thereof are provided. CONSTITUTION:A main electrode 2 and a loop type control electrode 3 are formed on the surface on one side of a P type silicon element 1, and an electrode 4 to make ohmic contact is formed on the surface on another side. At this time, in the case when the bias voltage of the main electrode is 5V and 100V, for example, the loop type electrode is controlled respectively, and a depletion layer 5 or 6 is formed. When gamma-rays are entered in the depletion layer 5 or 6 having different volume according to the dose rate, pulses are separated to be counted by a count circuit 7.

Description

【発明の詳細な説明】 本発明は、半導体放射線検出器、特に線量率直線性が改
善された半導体放射線(γ線)線量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor radiation detector, and in particular to a semiconductor radiation (gamma ray) dosimeter with improved dose linearity.

この種の線量計は、一般に、照射するγ線線量率に対し
て計数率が直線性である範囲、即ち線量率直線性の範囲
が広いほど信頼性が高く、またポケット型線量計として
用いるためには小型、軽量、低価格であることが要求さ
れる。
In general, this type of dosimeter is more reliable as the range in which the count rate is linear with respect to the irradiation gamma ray dose rate, that is, the wider the range of dose direct linearity. is required to be small, lightweight, and low cost.

従来、この種の線量計としてはγ線を検出するためのエ
レメントにGM計数管を使用したものが一般に知られて
いる。しかし、この場合に線量率直線性が±15%に入
る領域は線量率が10 m R/h〜5FL/hの範囲
である0 また、この検出エレメントを半導体、例えば
シリコンγ線検出器(SAD)に置き換えた場合、その
直線性はかなυ改善され、線量率は1mR/h〜10 
R,/hの範囲まで拡大する。
Conventionally, as this type of dosimeter, one using a GM counter tube as an element for detecting gamma rays is generally known. However, in this case, the region where the dose linearity falls within ±15% is the dose rate range of 10 m R/h to 5 FL/h. When replaced with
Expand to the range R,/h.

この範囲をさらに拡大させるためには、低線量領域と高
線量領域とにそれぞれ専用のSSDを準備する必要があ
る。
In order to further expand this range, it is necessary to prepare dedicated SSDs for each of the low-dose region and the high-dose region.

したがって、本発明は、−個のSSDで上述の線量率直
線性の範囲をさらに拡大してより信頼性の高いγ線線量
計を提供することを目的とする。
Therefore, an object of the present invention is to further expand the range of the above-mentioned dose linearity with - SSDs and provide a more reliable gamma-ray dosimeter.

ここで、SSDの動作原理について説明する08SDの
構造には、PN接合形と表面障壁形とがあシ、いずれも
逆バイアス電圧を印加することにより空乏層を形成させ
て使用する。γ線がとの空乏層を通過するときに、光電
効果、コンプトン効果又は電子対生成のいずれかの過程
で二次電子が発生し、この二次電子がさらに格子原子と
作用して電子−正孔対が生成し、これが電流パルスとし
て検出される。
Here, the structure of the 08SD, which describes the operating principle of the SSD, includes a PN junction type and a surface barrier type, both of which are used by forming a depletion layer by applying a reverse bias voltage. When γ-rays pass through the depletion layer of γ-rays, secondary electrons are generated through the photoelectric effect, Compton effect, or electron pair generation, and these secondary electrons further interact with lattice atoms to become electron-positive. A hole pair is generated, which is detected as a current pulse.

線量率直線性とは、SSDに入射するγ線の線量率の大
きさに比例してSSDから発生する単位時間あたシのパ
ルス数(計数率)が増加することである。即ち、線量率
Rは R=に4 j; B μair ここでに1:定数 f:γ線の線束密度 E:γ線のエネルギー μaIr:全Ir:数係数 であるから、計数効率fを f = (1−e−μ5il−) ここでμsi:siの吸収係数 t:空乏層の厚さ とすると、計数率Cは C=fi8=に2R,S ここでS:空乏層の表面積 に2:定数 となり、したがってRに比例する。
Dose linearity means that the number of pulses per unit time (counting rate) generated from the SSD increases in proportion to the magnitude of the dose rate of γ-rays incident on the SSD. That is, the dose rate R is R = 4 j; B μair where 1: constant f: γ-ray flux density E: γ-ray energy μaIr: total Ir: number coefficient, so the counting efficiency f is f = (1-e-μ5il-) where μsi: the absorption coefficient of si, t: the thickness of the depletion layer, the counting rate C is C=fi8=, 2R, S, where S: the surface area of the depletion layer, 2: a constant. , therefore proportional to R.

線量率が高くなると、空乏層内で発生した電子と正孔が
電極に達する前に次に入って来るγ線によシミ子と正孔
が生じる場合並びにこの電子−正孔対によって生じたパ
ルスが計数回路で一個のパルスとして計数される前に次
のパルスが計数回路に入る場合のように、個々のγ線が
分離できなくなるというパイルアップ現象が生じる。そ
こで、高線量側で続いて入って来るγ線を分離して計数
するためには空乏層領域を小さくすればよい。しかし、
そのときは低線量側での計数効率が低下し、測定誤差が
大きくなるという問題が生じる。
When the dose rate increases, before the electrons and holes generated in the depletion layer reach the electrode, stains and holes are generated in the next incoming gamma ray, and pulses generated by these electron-hole pairs. A pile-up phenomenon occurs in which individual gamma rays cannot be separated, such as when the next pulse enters the counting circuit before it is counted as one pulse by the counting circuit. Therefore, in order to separate and count the gamma rays that successively enter on the high-dose side, the depletion layer region should be made smaller. but,
In that case, the problem arises that counting efficiency on the low dose side decreases and measurement errors increase.

この問題を解決し、しかも低価格、小型軽量化を図るた
めには高線量領域と低線量領域とで空乏層体積を変えれ
ばよい。そのためにバイアス電圧を変化させ、例えばバ
イアス電圧を5Vと100Vにして空乏層領域を変えて
線量率直線性の範囲を拡大する方法が考えられ、本出願
人により既に提案された(特願昭55−93737号)
。また、γ線に対して有感な空乏層を形成するだめの主
電極を備えたSSDにおいて、その主電極を包囲する形
で環状制御電極を設け、この制御電極に印加する電圧を
主電極の電圧に対して増減させると空乏層領域はその電
圧変化に応じて変動することが見出され、この構成によ
るSSDが本出願人による同日付けの特許出願に記載さ
れている。
In order to solve this problem and achieve a reduction in cost, size, and weight, it is sufficient to change the depletion layer volume between the high-dose region and the low-dose region. For this purpose, a method has been considered to expand the range of dose linearity by changing the bias voltage, for example, by changing the bias voltage to 5 V and 100 V to change the depletion layer region. No. 93737)
. In addition, in an SSD equipped with a main electrode that forms a depletion layer sensitive to γ-rays, a ring-shaped control electrode is provided to surround the main electrode, and the voltage applied to this control electrode is applied to the main electrode. It has been found that when the voltage is increased or decreased, the depletion layer region changes in accordance with the voltage change, and an SSD with this configuration is described in a patent application filed on the same date by the present applicant.

ことに、上記の構成による8SDにおいて、主電極に印
加する電圧を例えば5Vと100vに変え、その各電圧
に対して環状制御電極の電圧を調整するように構成する
ならば、線量率直線性の範囲がさらに拡大することが見
出された。
In particular, in the 8SD with the above configuration, if the voltage applied to the main electrode is changed to, for example, 5V and 100V, and the voltage of the annular control electrode is adjusted for each voltage, the range of dose direct linearity can be changed. was found to further expand.

しかして、本発明によれば、放射線に対しで有感な空乏
層を形成するだめの主電極を備えた半導体放射線線量計
において、その主電極を包囲する形で環状制御電極を設
け、主電極に印加する電圧を変えるだめの手段及びその
各電圧に対して制御電極に印加する電圧を調整するだめ
の手段を設け、これによυ線量率直線性の範囲を拡大す
るように構成したことを特徴とする半導体放射線線量計
(SSD)が提供される。
According to the present invention, in a semiconductor radiation dosimeter equipped with a secondary main electrode that forms a depletion layer sensitive to radiation, an annular control electrode is provided to surround the main electrode, and the main electrode and means for adjusting the voltage applied to the control electrode for each of the voltages, thereby expanding the range of υ dose linearity. A semiconductor radiation dosimeter (SSD) is provided.

本発明に従うSADにおいて、環状制御電極は、半導体
素子上の主電極の周囲に所定の距離で電気向 的に離間して形成される。回電極の形成は、半導体技術
において慣用されている方法、例えば真空蒸着法、スパ
ッタリング法などによって行なうことができる。ここで
、環状とは、円形である必要はなく、主電極の形状に依
存して変化する形状をも含む。したがって、主電極が方
形であれば、制御電極も方形環状体として形成される。
In the SAD according to the present invention, the annular control electrodes are formed around the main electrode on the semiconductor element and spaced apart electrically at a predetermined distance. The rotation electrode can be formed by a method commonly used in semiconductor technology, such as a vacuum evaporation method or a sputtering method. Here, the annular shape does not necessarily have to be circular, but also includes a shape that changes depending on the shape of the main electrode. Therefore, if the main electrode is square, the control electrode is also formed as a square ring.

制御電極は、−個の環状体よシなっていてもよく、或い
は複数個の円弧状電極部片からなっていてよい。後者の
場合には各電極部片の電圧を増減するように構成するこ
とができる。
The control electrode may be in the form of a ring-shaped body or may consist of a plurality of arc-shaped electrode sections. In the latter case, the voltage of each electrode piece can be increased or decreased.

本発明のSSDの半導体素子としては、PN接合構造と
表面障壁形構造の双方が有効である。特に好ましいもの
は、P形又はN形シリコンである。
Both a PN junction structure and a surface barrier type structure are effective as the semiconductor element of the SSD of the present invention. Particularly preferred is P-type or N-type silicon.

主電極に印加するバイアス電圧を変えることは異なる電
圧の逆バイアス電源と切換スイッチとによシ行なうこと
ができ、また制御電極に印加する電圧の増減は慣用の手
段によって達することができる。
Varying the bias voltage applied to the main electrode can be accomplished by reverse bias power supplies of different voltages and transfer switches, and increasing or decreasing the voltage applied to the control electrode can be accomplished by conventional means.

以下、図面を参照して本発明の詳細な説明する。第1図
(a)及び第1図(b)に示したSSDにおいては、P
形シリコン素子1の一方の面に主電極2及び環状制御電
極3が形成され、そして他方の面にはオーム接触する電
極4が形成されている。ここで、主電極のバイアス電圧
が例えば5vと100Vの場合には、それぞれ環状制御
電極を調整して空乏層5又は6が形成される。第1図(
a)は、主電極電圧vB1が低い場合の環状制御電極電
圧VB2の調整による空乏層の変化を示す。第i−b図
は、主電極電圧V旧が高い場合の環状制御電極電圧VB
2の調整による空乏層の変化を示す。線量率に応じて体
積が異なる空乏層5又は6にγ線が入射するとパルスが
分離され、計数回路7によシ計数される0 本発明に従うSSDによる線量率直線性の測定結果を第
2図に示す。線源は137C3である。各電極の電圧は
次の通シである。
Hereinafter, the present invention will be described in detail with reference to the drawings. In the SSD shown in FIGS. 1(a) and 1(b), P
A main electrode 2 and an annular control electrode 3 are formed on one side of the shaped silicon element 1, and an electrode 4 in ohmic contact is formed on the other side. Here, when the bias voltage of the main electrode is, for example, 5V and 100V, the depletion layer 5 or 6 is formed by adjusting the annular control electrode, respectively. Figure 1 (
a) shows the change in the depletion layer due to adjustment of the annular control electrode voltage VB2 when the main electrode voltage vB1 is low. Figures ib show the annular control electrode voltage VB when the main electrode voltage Vold is high.
2 shows the change in the depletion layer due to adjustment of 2. When γ-rays enter the depletion layer 5 or 6, which has a different volume depending on the dose rate, the pulses are separated and counted by the counting circuit 7. show. The radiation source is 137C3. The voltage of each electrode is as follows.

曲線8− a : VB1=100V VB2 = 10 V 8  b : VBI =]00 V VB2 =200V 9− a : VBI = 5 V VB2 = OV 9− b : VBI = 5 V vB2−20V 第2図に示す測定結果から、本発明のSSDの構成によ
シ線量率直線性の範囲が一層拡大されることがわかる。
Curve 8-a: VB1=100V VB2=10V 8b: VBI=]00V VB2=200V 9-a: VBI=5V VB2=OV 9-b: VBI=5V vB2-20V Shown in Figure 2 The measurement results show that the range of dose linearity is further expanded by the configuration of the SSD of the present invention.

特に、SSDが一個でこの効果が得られるので、従来の
SSDを複数個並列に接続し、線量率に応じてその並列
個数を増減させる方法と比較して、小型、軽量、低価格
化が期待できる。
In particular, since this effect can be obtained with a single SSD, it is expected to be smaller, lighter, and cheaper than the conventional method of connecting multiple SSDs in parallel and increasing or decreasing the number of parallel SSDs depending on the dose rate. can.

なお、本発明は、主としてγ線線量計について説明した
が、β線線量計にも応用することができる0
Although the present invention has been mainly described with respect to a γ-ray dosimeter, it can also be applied to a β-ray dosimeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び第1図(b)は、本発明に従うSSD
の一具体例における電圧調整による空乏層の変化を示す
ものである。 第2図は、異なる電圧での線量率直線性の測定結果を示
すグラフである。 1・・・P形シリコン素子、2・・・主電極、3・・・
環状制御電極、4・・・電極、5,6・・・空乏層、7
・・・計数回路 特許出願人  株式会社富士電機総合研究所同   富
士電機製造株式会社 簾1関Cα) 算l謂f) E′口升b
FIG. 1(a) and FIG. 1(b) show an SSD according to the present invention.
3 shows changes in the depletion layer due to voltage adjustment in one specific example. FIG. 2 is a graph showing the measurement results of dose linearity at different voltages. 1... P-type silicon element, 2... Main electrode, 3...
Annular control electrode, 4... electrode, 5, 6... depletion layer, 7
... Counting circuit patent applicant Fuji Electric Research Institute Co., Ltd. Fuji Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 1)放射線に対して有感な空乏層を形成するだめの主電
極を備えた半導体放射線線量計において、その主電極を
包囲する形で環状制御電極を設け、主電極に印加する電
圧を変えるための手段及びその各電圧に対して制御電極
に印加する電圧を調整するだめの手段を設け、これによ
シ線量率直線性の範囲を拡大するように構成したことを
特徴とする半導体放射線線量計。 2、特許請求の範囲第1項記載の線量計において、放射
線がγ線であることを特徴とする線量計。
[Claims] 1) In a semiconductor radiation dosimeter equipped with a main electrode that forms a depletion layer sensitive to radiation, an annular control electrode is provided to surround the main electrode, and the main electrode is provided with an annular control electrode. It is characterized by being configured to include means for changing the applied voltage and means for adjusting the voltage applied to the control electrode for each of the voltages, thereby expanding the range of dose linearity. Semiconductor radiation dosimeter. 2. The dosimeter according to claim 1, wherein the radiation is gamma rays.
JP57218823A 1982-12-13 1982-12-13 Semiconductor radiation dosimeter Pending JPS59108367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218823A JPS59108367A (en) 1982-12-13 1982-12-13 Semiconductor radiation dosimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218823A JPS59108367A (en) 1982-12-13 1982-12-13 Semiconductor radiation dosimeter

Publications (1)

Publication Number Publication Date
JPS59108367A true JPS59108367A (en) 1984-06-22

Family

ID=16725903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218823A Pending JPS59108367A (en) 1982-12-13 1982-12-13 Semiconductor radiation dosimeter

Country Status (1)

Country Link
JP (1) JPS59108367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879466A (en) * 1987-02-06 1989-11-07 Hitachi, Ltd. Semiconductor radiation detector
EP0937266A4 (en) * 1995-10-13 2002-10-16 Digirad Inc Semiconductor radiation detector with enhanced charge collection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837235A (en) * 1971-09-13 1973-06-01
JPS57193073A (en) * 1981-05-22 1982-11-27 Fuji Electric Co Ltd Semiconductor radioactive ray detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837235A (en) * 1971-09-13 1973-06-01
JPS57193073A (en) * 1981-05-22 1982-11-27 Fuji Electric Co Ltd Semiconductor radioactive ray detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879466A (en) * 1987-02-06 1989-11-07 Hitachi, Ltd. Semiconductor radiation detector
EP0937266A4 (en) * 1995-10-13 2002-10-16 Digirad Inc Semiconductor radiation detector with enhanced charge collection

Similar Documents

Publication Publication Date Title
JP3093799B2 (en) Semiconductor radiation detector with enhanced charge collection ability
US6333504B1 (en) Semiconductor radiation detector with enhanced charge collection
US8263940B2 (en) Neutron detector with neutron converter, method for manufacturing the neutron detector and neutron imaging apparatus
US8022369B2 (en) Ultra thin neutron detector, method for manufacturing the neutron detector and neutron imaging apparatus
JPS63193088A (en) Semiconductor detector of radiation
US10074685B1 (en) X-ray sensor, x-ray detector system and x-ray imaging system
Takahashi et al. High-resolution CdTe detectors and application to gamma-ray imaging
Mainprize et al. Direct conversion detectors: The effect of incomplete charge collection on detective quantum efficiency
Akimov Silicon radiation detectors
US11888015B2 (en) X-ray sensor having a field limiting ring configuration
US7060523B2 (en) Lithium-drifted silicon detector with segmented contacts
JPS59108367A (en) Semiconductor radiation dosimeter
US4689649A (en) Semiconductor radiation detector
JPH03273687A (en) Radiation absorbent material and radiation detector
US4835587A (en) Semiconductor device for detecting radiation
JPS59114875A (en) Semiconductor radiation detector
EP3400616B1 (en) Selenium photomultiplier
Park et al. Study of Si PIN Photodiode Coupled with a CsI (Tl) Scintillator for Radiation Detection
JPH01138486A (en) Multichannel type semiconductor radiation detector
JP2592058B2 (en) Semiconductor radiation detector
WO1999003155A1 (en) High-resolution ionization detector and array of such detectors
JPS6258670B2 (en)
JPS5833877A (en) Semiconductor radiation detector
Iwanczyk Advances in room-temperature solid-state gamma-ray spectrometry
nosuke Takeda 14 High-Resolution CdTe