JPS59108315A - Diffusion treatment of semiconductor wafer - Google Patents

Diffusion treatment of semiconductor wafer

Info

Publication number
JPS59108315A
JPS59108315A JP21788082A JP21788082A JPS59108315A JP S59108315 A JPS59108315 A JP S59108315A JP 21788082 A JP21788082 A JP 21788082A JP 21788082 A JP21788082 A JP 21788082A JP S59108315 A JPS59108315 A JP S59108315A
Authority
JP
Japan
Prior art keywords
temperature
region
diffusion
low
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21788082A
Other languages
Japanese (ja)
Inventor
Kimio Nakada
中田 喜美男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21788082A priority Critical patent/JPS59108315A/en
Publication of JPS59108315A publication Critical patent/JPS59108315A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent the generation of a thermal strain, to keep the temperature of a semiconductor wafer in a high temperature region constant at all times and to obtain a junction in uniform depth and uniform resistivity extending over the whole surface of the wafer by preheating the wafer so that its temperature is elevated slowly in the low temperature region of the same oven, transferring its to the high temperature region and diffusing an impurity while heating it at a high temperature. CONSTITUTION:A heater 5A is controlled so that the temperature of the low temperature region 5 is kept at an initial temperature (such as 600 deg.C) at its maximum where the wafer is not thermally strained. The semiconductor wafers (W) are loaded on a boat (B), and charged into the low temperature region 5 from an oven inlet. Temperature distribution is stabilized, and the temperature of the low temperature region 5 is elevated step by step or in a rampy manner up to a first temperature (such as 1,000 deg.C) higher than the initial temperature by the heater 5A. The boat (B) is moved to the high temperature region 4, and the impurity is diffused according to a predetermined manner. Both the high temperature region 4 and the low temperature region 5 are kept at fixed temperature during the diffusion. Diffusion is completed, the boat (B) is moved into the low temperature region 5, the region 5 is cooled slowly, and the temperature of the region 5 is dropped step by step or the rampy manner up to the initial temperature by the heater 5A.

Description

【発明の詳細な説明】 [発明の技術分野1 この発明は半導体ウェハの拡散処理方法に関し、特に従
来の拡散処理方法よりも処理速度が速く、また、均一な
品質の半導体ウェハを得ることのできる、改良された拡
散処理方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention 1] The present invention relates to a diffusion processing method for semiconductor wafers, and in particular, a method that has a faster processing speed than conventional diffusion processing methods and can obtain semiconductor wafers of uniform quality. , relates to an improved diffusion processing method.

[発明の技術的背景I 半導体デバイスの製造において最近では高集積化どチッ
プ歩留り向上を目的として従来の3インチウェハに代っ
て4インチウェハが用いられるようになっているが、こ
のように使用する半導体ウェハが大型化すると、従来の
3インチウェハ用の製造方法ではウェハ全体を均一な品
質に加工1−ることが困難になり、その結果、チップ歩
留りが低下して初期の目的に反する事態を生じる恐れも
あった。 このような危険性は半導体ウェハの加工工程
全般にわたって存在するが、特にデバイスの品質に最も
影響を与える不純物拡散工程において大である。
[Technical Background of the Invention I Recently, in the manufacture of semiconductor devices, 4-inch wafers have been used instead of the conventional 3-inch wafers for the purpose of achieving high integration and improving chip yield. As semiconductor wafers become larger, it becomes difficult to process the entire wafer to uniform quality using conventional manufacturing methods for 3-inch wafers, resulting in a decline in chip yield and a situation that goes against the initial objective. There was also a risk that this would occur. Although such risks exist throughout the semiconductor wafer processing process, they are especially great in the impurity diffusion process that has the greatest impact on device quality.

従来、半導体ウェハの拡散処理方法として用いられてき
た方法には、以下のごとき方法があるが、これらの方法
には次のごとぎ問題点があり、従って大型ウェハの拡散
処理方法として好適なものではなかった。
Conventionally, the following methods have been used as diffusion processing methods for semiconductor wafers, but these methods have the following problems, and therefore are not suitable as diffusion processing methods for large wafers. It wasn't.

[背景技術の問題点] 従来、半導体ウェハの加エエ稈において不純物拡散方法
として用いられてぎた方法には、(I)4屏炉冷方式、
(狂) S TQ (Slow In &0ut)方式
の二つの方法があった。 このうち、(I)の4昇炉冷
方式とは、拡散炉内に唯一つの均熱領域を設【JてJ3
ぎ、該均熱領域に装入した半導体ウニ[八をまず 60
0℃に予熱した後、炉温を1200℃に昇温して該均熱
領域の温度を1200℃に保ち4rがら該半導体つJハ
内に不純物を拡散さゼ、最後に炉温すなわち該均熱領域
の温度を 600℃に降温して該半導体ウェハを徐冷し
てから炉外へ取り出す方法である。
[Problems with Background Art] Conventionally, methods used for impurity diffusion in processing semiconductor wafers include (I) four-fold furnace cooling method;
(Crazy) There were two methods: S TQ (Slow In & Out) method. Among these, (I) 4 rise furnace cooling method is a method in which only one soaking area is installed in the diffusion furnace.
Then, the semiconductor sea urchin charged into the soaking area [60
After preheating to 0°C, the furnace temperature is raised to 1200°C, and impurities are diffused into the semiconductor tube while maintaining the temperature of the soaking area at 1200°C. This is a method in which the temperature of the thermal region is lowered to 600° C., the semiconductor wafer is slowly cooled, and then the semiconductor wafer is taken out of the furnace.

前記のごとき4昇炉冷方式では、(a )昇温及び降温
に際して均熱領域の温度が安定するまでに非常に長い時
間を要するため、拡散工程全所要時間が非常に長く、従
って装置稼働率及び生産能率が低い、(b)短時間の拡
散では拡散層の深さが均一にならず、また、拡散層の抵
抗率も均一にならない、(0)低濃度の拡散では再現性
が悪く、同じ拡散条件で処理しても、常に同一の結果を
得ることができず、従って品質管理上適切な制御ができ
ない等の問題点がある−1−1(d )ウェハが大口径
化すると、昇温及び降温に要する時間は更に長くなり、
一層生産能率が低下するという基本的な欠点があった。
In the above-mentioned 4-furnace-cooling method, (a) It takes a very long time for the temperature in the soaking area to stabilize when the temperature is raised and lowered, so the total time required for the diffusion process is very long, and the equipment operating rate is therefore low. and low production efficiency; (b) short-time diffusion does not make the depth of the diffusion layer uniform, nor does the resistivity of the diffusion layer become uniform; (0) low-concentration diffusion has poor reproducibility; Even if the wafer is processed under the same diffusion conditions, it is not always possible to obtain the same results, and therefore there are problems such as the inability to perform appropriate quality control. The time required to warm up and cool down becomes even longer,
The basic drawback was that production efficiency was further reduced.

一方、(IT)のSIQ方式は、拡散炉の温度の昇降は
ぜずに均熱領域の温度を拡散処理温度<  1200℃
)に保ったまま、炉内へのウェハの装入速度及び該炉内
からのウェハの引出速度を制御することによってウェハ
の予熱及び徐冷を行う方式であり、現在量も広く使用さ
れている方式である。 このSIQ方式では炉温の昇降
を行わぬため4昇炉冷方式より生産能率及び装置稼働率
が高いが、(e)炉内温度が常時高温(1200℃)に
保たれているため、熱の逃げやすい炉口側寄りの均熱領
域における温度が不安定であり、また、ウェハ装入後に
該均熱領域の温度が装入前の温度まで回復するのに時間
がかかる、(f)ウェハ装入及び引出しに要する時間が
少しでも変化すると拡散層の不純物濃度及び抵抗率に大
きな影響が出やすく、従って、同一ロット内のウェハ間
でもそれぞれの拡散層の抵抗率にバラツキが生じやすい
、(g)急峻゛な温度勾配のある領域を通過させつつ予
熱を行うのでウェハにスリップ(熱歪み)を生じやすい
等の問題点があり、これらの問題点は処理すべきウェハ
が大型になれば更に増幅されることがわかっている。
On the other hand, the SIQ method of (IT) does not raise or lower the temperature of the diffusion furnace, but adjusts the temperature of the soaking area to the diffusion treatment temperature < 1200℃.
), the wafer is preheated and slowly cooled by controlling the speed at which the wafer is loaded into the furnace and the speed at which the wafer is pulled out from the furnace, and is currently widely used. It is a method. This SIQ method does not raise or lower the furnace temperature, so production efficiency and equipment availability are higher than the 4-furnace cooling method. (f) Wafer equipment in which the temperature in the soaking area near the furnace mouth where wafers tend to escape is unstable, and it takes time for the temperature in the soaking area to recover to the temperature before charging after loading the wafer. Even a slight change in the time required for loading and unloading tends to have a large effect on the impurity concentration and resistivity of the diffusion layer, and therefore, variations in the resistivity of each diffusion layer are likely to occur even between wafers in the same lot. ) Since the wafer is preheated while passing through an area with a steep temperature gradient, there are problems such as slippage (thermal distortion) in the wafer, and these problems are further amplified as the wafers to be processed become larger. I know it will happen.

従って、前記のごとき従来の拡散処理方法は大口径ウェ
ハの拡散処理方法としては不適なものであった。
Therefore, the conventional diffusion processing method as described above is not suitable as a diffusion processing method for large diameter wafers.

[発明の目的] この発明の目的は前記従来の拡散処理方法における問題
点を解決し、拡散層の深さ及び抵抗率のバラツキが少な
く、短時間の拡散処理においても常に一定の結果が1り
られ、また、人[1径の半導体つTハも均一に口つ能率
よく処理することのできる、改良された拡散処理方法を
提供することである。
[Objective of the Invention] The object of the present invention is to solve the problems in the conventional diffusion processing method, to reduce variations in the depth and resistivity of the diffusion layer, and to always provide constant results even in short-time diffusion processing. Another object of the present invention is to provide an improved diffusion processing method that can uniformly and efficiently process semiconductors of one diameter.

[発明の概要1 この発明により改良された拡散処理方法は、特5− 許請求の範囲に記載したように、[同一炉内に高温域と
少なくとも一つ以1の低温域とを設け、半導体ウェハを
該低温域におい゛C所定の予熱温度(例えば1000℃
)まで徐々に昇温するように予熱した後、該半導体ウェ
ハを該高温域に移動さけ ゛て該予熱温度よりも高い拡
散処理温度(1200℃)に加熱しつつ不純物拡散を行
い、不純物拡散を終了1ノだ該半導体ウェハを該低温域
に戻した後、該低温域で徐冷する」ことを特徴とする。
[Summary of the Invention 1] As described in the claims of Patent 5-1, the diffusion treatment method improved by the present invention provides a high-temperature region and at least one low-temperature region in the same furnace, The wafer is heated to a specified preheating temperature (e.g. 1000°C) in the low temperature range.
), then the semiconductor wafer is moved to the high temperature range and impurity diffusion is performed while heating it to a diffusion treatment temperature (1200°C) higher than the preheating temperature. In the end step 1, the semiconductor wafer is returned to the low temperature range, and then slowly cooled in the low temperature range.

 この発明の一実施例においては、予熱温度及び徐冷温
度は 600℃と1000℃の2段階に構成され、低温
域は唯一つのみであるが、もし低温域を二つ以上にする
場合には 600℃の低温域と1ooo℃の低温域とを
それぞれ別個に設けてもよい。 本発明の実施例のよう
に低温域を唯一つだけにする場合は、半導体ウェハを低
温域で予熱及び徐冷処理している間に低温域の温度を昇
温もしくは降温さけることにより同様の効果を得ること
ができる。
In one embodiment of this invention, the preheating temperature and slow cooling temperature are configured in two stages, 600°C and 1000°C, and there is only one low temperature range, but if there are two or more low temperature ranges, A low temperature region of 600° C. and a low temperature region of 100° C. may be provided separately. When there is only one low temperature region as in the embodiment of the present invention, the same effect can be obtained by increasing or decreasing the temperature of the low temperature region while preheating and slowly cooling the semiconductor wafer in the low temperature region. can be obtained.

また、一端側にのみ炉口を備えた拡散炉を使用する場合
、高温域は4奥に設け、炉口寄りには低温6− 域を設()るどよい。 さらに、高温域を中心に設(J
、炉口に連通ずる低温域を高温域の周囲に環状もしくは
改削状に配置しlこ炉型を採用してもよい。
In addition, when using a diffusion furnace with a furnace opening only on one end side, it is recommended to provide a high temperature zone at the back of the furnace and a low temperature zone near the furnace mouth. In addition, we have installed mainly in high temperature areas (J
Alternatively, a low-temperature region communicating with the furnace mouth may be arranged around a high-temperature region in a ring shape or a modified shape, and a one-sided furnace type may be adopted.

本発明の拡散処理方法にA5いては、ウェハが比較的低
温から拡散処理温度まで順次臂渇されるため、ウコーハ
に熱歪みが生ずる恐れがなく、また、高温域の温度が常
に一定で1]つ炉口の開閉に影響されないので短時間の
拡散及び低濃度の拡散でも再現1イ1がよく、ウェハ全
面にわたつ−C均一な深さの接合及び抵抗率が1qられ
る。
In the diffusion treatment method A5 of the present invention, since the wafer is sequentially exhausted from a relatively low temperature to the diffusion treatment temperature, there is no risk of thermal distortion occurring in the wafer, and the temperature in the high temperature range is always constant. Since it is not affected by the opening and closing of the furnace opening, it is possible to easily reproduce short-time diffusion and low-concentration diffusion, and it is possible to achieve junctions with a uniform depth and resistivity of -C over the entire surface of the wafer.

「発明の実施例」 以下に図面を参照して本発明の一実施例について説明す
る。
"Embodiment of the Invention" An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施り−るために従来の拡散炉
を改良した構成の横型拡散炉の一実施例である。 図に
(13いて1は炉体、2は炉体1のR奥部に設(プられ
たガス供給口、3は炉口である。
FIG. 1 shows an embodiment of a horizontal diffusion furnace, which is an improved version of a conventional diffusion furnace for carrying out the method of the present invention. In the figure (13, 1 is the furnace body, 2 is the gas supply port installed in the R inner part of the furnace body 1, and 3 is the furnace mouth.

この拡散炉においては従来の拡Fik炉と異なり、炉体
1内に高温域4(ずなわち拡散温度帯)と低温1我5(
すなわち予熱温度帯)とが設けられ、高温域4は炉体1
の奥部に、また、低温域5は炉口側に配置されている。
This diffusion furnace differs from conventional Fik furnaces in that it has a high-temperature zone 4 (that is, a diffusion temperature zone) and a low-temperature zone 1 and 5 (
In other words, a preheating temperature zone) is provided, and the high temperature zone 4 is the furnace body 1.
The low temperature region 5 is located at the back of the furnace, and the low temperature region 5 is located at the furnace mouth side.

 炉体1の外側には高温域4を形成するためのヒータ4
Aと低温域5を形成1゛るためのヒータ5Aどが配置さ
れ、ヒータ4Aの作用により高温域4では同図下側に符
号aで示した温度分布が実現され、また、ヒータ5Aの
作用により低温#i5では符号すで示した温度分布が実
現されるように各ヒータが構成されている。 本発明の
方法においては高温域4の温度は常に拡散処理温度(例
えば1200℃)に保持されるが、半導体ウェハの予熱
及び徐冷に使用される低温域5の温度tよ半導体ウェハ
に熱歪みを生じさせぬように可変に設定されており、こ
の実施例では低温域5の温度が 600°Cから100
0℃までの間でステップ状もしくはランプ状に昇降しう
るようにヒータ5Aが制御されている。
A heater 4 for forming a high temperature region 4 is provided on the outside of the furnace body 1.
Heaters 5A and the like are arranged to form a low temperature region 5 with A, and the action of the heater 4A realizes the temperature distribution shown by the symbol a at the bottom of the figure in the high temperature region 4, and the action of the heater 5A Therefore, at low temperature #i5, each heater is configured so that the temperature distribution already indicated by the reference numeral is realized. In the method of the present invention, the temperature in the high temperature region 4 is always maintained at the diffusion treatment temperature (for example, 1200°C), but the temperature t in the low temperature region 5 used for preheating and slow cooling of the semiconductor wafer causes thermal stress on the semiconductor wafer. In this embodiment, the temperature of the low temperature range 5 is set to be variable from 600°C to 100°C.
The heater 5A is controlled so that it can be raised and lowered in a stepwise or rampwise manner up to 0°C.

なお、第1図の下側に示した温度分布グラフにおいて、
横座標軸×は炉体1の最奥部の一点を原点として炉口側
にとった距離を示し、縦座標軸は温度℃を表している。
In addition, in the temperature distribution graph shown at the bottom of Fig. 1,
The abscissa axis x indicates the distance taken from the origin to the innermost point of the furnace body 1 toward the furnace mouth, and the ordinate axis represents the temperature °C.

前記構成において半導体ウェハWを拡散処理する接合、
ウェハ装入に先立って低tfiAIli5の温度はウェ
ハに熱歪みを与えない最大限度の初期温度(例えば 6
00℃)に保持されるJ:うにヒータ5Δが制御される
。 半導体ウェハWは公知のボー l−Bに搭載され、
ボートBはまず低温域5に炉[1から装入される。 低
温域5の温度分布が安定し、もしくは所要のりカバリ一
時間を経た後にヒータ5Δによって低温域5の温度は初
期温度よりも高い第一温度(例えば1000℃)までス
テップ状もしくはランプ状に上昇される。 そして、該
第一温度において低温域5の高度分布が図示の点線のご
とく安定した後、ボートBはボー1〜〇−ダ(図示せず
)等により高温域4に移動され、高温域4において所定
時間放置される間に半導体ウェハWに対して所定の不純
物拡散が行われる。 拡散処理を行っている間、高温域
4及び低温域5とも定温に保持される(低温域5は10
00℃)ので、高温域4の温度分布は安定に保たれ、従
って拡散むら等が生じる恐れはない。
Bonding in which the semiconductor wafer W is subjected to a diffusion process in the above configuration;
Prior to wafer loading, the temperature of the low tfiAIli5 is set to the maximum initial temperature (e.g. 6
00° C.) J: Sea urchin heater 5Δ is controlled. The semiconductor wafer W is mounted on a known bow l-B,
Boat B is first charged into the low temperature area 5 from the furnace [1]. After the temperature distribution in the low-temperature area 5 has stabilized or the required glue has recovered for one hour, the temperature in the low-temperature area 5 is increased in a step or ramp-like manner to a first temperature (for example, 1000° C.) higher than the initial temperature by the heater 5Δ. Ru. After the altitude distribution of the low temperature area 5 becomes stable at the first temperature as shown by the dotted line in the figure, the boat B is moved to the high temperature area 4 by borders 1 to 0 (not shown), etc. A predetermined impurity diffusion is performed on the semiconductor wafer W while the semiconductor wafer W is left standing for a predetermined time. While performing the diffusion process, both the high temperature area 4 and the low temperature area 5 are kept at a constant temperature (the low temperature area 5 is
00° C.), the temperature distribution in the high-temperature region 4 is kept stable, and therefore there is no possibility of uneven diffusion or the like occurring.

9− 拡散終了後、ポー1〜Bは低温1g 5に移され、低温
域で 1000℃で所定時間徐冷された後、ヒータ5A
により該低温域5の温度は初期温度までステップ状もし
くはランプ状に降温される。 そしてR後に初期温度(
600℃)に所定時間保たれた後、炉外ヘボートBが取
り出される。
9- After the diffusion is completed, Po 1 to B are transferred to a low temperature 1g 5, and after being slowly cooled in the low temperature range at 1000°C for a predetermined time, they are transferred to a heater 5A.
As a result, the temperature of the low-temperature region 5 is lowered stepwise or ramp-wise to the initial temperature. And after R, the initial temperature (
600° C.) for a predetermined period of time, the boat B is taken out of the furnace.

[発明の効果コ 前記のごとき本発明方法によれば、不純物拡散に使用す
る高温域に半導体ウェハを供給する前及び後に低温域で
半導体ウェハに熱歪みが生じないように予熱及び徐冷が
行われるので、大型の半導体ウェハも熱歪みを生じるこ
となく不純物拡散を行わせることができる。 また、高
温域の温度を一定に保ち、且つ、温度分布を安定に保つ
ことができるため、短時間拡散もしくは低濃度拡散にお
いてもウェハ全面にわたって均一な接合深さが得られる
とともに拡散層の抵抗率を一定な値にすることができる
。 更に本発明の方法によれば、従来の炉昇炉冷法より
も短時間で処理することができ、生産能率及び装置稼働
率を向上さぜることが一1〇− できる。
[Effects of the Invention] According to the method of the present invention as described above, preheating and slow cooling are performed before and after supplying the semiconductor wafer to the high temperature region used for impurity diffusion so as to prevent thermal distortion from occurring in the semiconductor wafer in the low temperature region. Therefore, impurity diffusion can be performed even in large semiconductor wafers without causing thermal distortion. In addition, since the temperature in the high temperature range can be kept constant and the temperature distribution can be kept stable, even in short-time diffusion or low concentration diffusion, a uniform bonding depth can be obtained over the entire wafer surface, and the resistivity of the diffusion layer can be reduced. can be set to a constant value. Further, according to the method of the present invention, processing can be carried out in a shorter time than the conventional furnace raising/cooling method, and production efficiency and equipment utilization rate can be improved.

なお、前記実施例では横型拡散炉を用いる例のみを示し
たが、縦型拡散炉に関しても本発明を適用することがで
きることは勿論である。
In the above embodiment, only an example using a horizontal diffusion furnace was shown, but it goes without saying that the present invention can also be applied to a vertical diffusion furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施づるに適した横型拡散炉の
概略縦断面図及び該拡散炉内の温度分布図である。 1・・・炉体、2・・・ガス供給口、3・・・炉口、4
・・・高温域、5・・・低温域、4A、5A・・・ヒー
タ。 −11〜 第1図 0−一→χ
FIG. 1 is a schematic vertical sectional view of a horizontal diffusion furnace suitable for carrying out the method of the present invention and a temperature distribution diagram within the diffusion furnace. 1... Furnace body, 2... Gas supply port, 3... Furnace mouth, 4
...High temperature range, 5...Low temperature range, 4A, 5A...Heater. -11~ Figure 1 0-1 → χ

Claims (1)

【特許請求の範囲】[Claims] 1 同一炉内に高温域と少なくとも一つ以上の低温域と
を設け、半導体ウェハを該低温域において所定の第一温
度まで順次昇温するように予熱した後、該半導体ウェハ
を該高温域に移動させて該第一温度よりも高い第二温度
に加熱しつつ該半導体ウェハ内に不純物拡散を行わせ、
不純物拡散を終了した該半導体ウェハを該低温域に戻す
とともに該低温域で順次徐冷させることを特徴とする、
半導体ウェハの拡散処理方法。
1. A high-temperature zone and at least one low-temperature zone are provided in the same furnace, and after preheating the semiconductor wafer in the low-temperature zone to sequentially raise the temperature to a predetermined first temperature, the semiconductor wafer is placed in the high-temperature zone. diffusing impurities into the semiconductor wafer while moving and heating it to a second temperature higher than the first temperature;
The semiconductor wafer after the impurity diffusion is returned to the low temperature range and is gradually cooled in the low temperature range,
Diffusion processing method for semiconductor wafers.
JP21788082A 1982-12-14 1982-12-14 Diffusion treatment of semiconductor wafer Pending JPS59108315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21788082A JPS59108315A (en) 1982-12-14 1982-12-14 Diffusion treatment of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21788082A JPS59108315A (en) 1982-12-14 1982-12-14 Diffusion treatment of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS59108315A true JPS59108315A (en) 1984-06-22

Family

ID=16711211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21788082A Pending JPS59108315A (en) 1982-12-14 1982-12-14 Diffusion treatment of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS59108315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444549B2 (en) * 1997-09-12 2002-09-03 Nec Corporation Thermal processing of semiconductor devices
CN110137307A (en) * 2019-05-13 2019-08-16 浙江贝盛光伏股份有限公司 A kind of high uniformity shallow junction diffusion technique under environment under low pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444549B2 (en) * 1997-09-12 2002-09-03 Nec Corporation Thermal processing of semiconductor devices
CN110137307A (en) * 2019-05-13 2019-08-16 浙江贝盛光伏股份有限公司 A kind of high uniformity shallow junction diffusion technique under environment under low pressure

Similar Documents

Publication Publication Date Title
JP3711199B2 (en) Heat treatment method for silicon substrate
JP2000323487A (en) Sheet-by-sheet type heat treatment device
JPS59190300A (en) Method and apparatus for production of semiconductor
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JPH06295915A (en) Manufacturing device for semiconductor device and manufacture of semiconductor device
JPS58501927A (en) Method for reducing oxygen precipitation in silicon wafers
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
JPS59108315A (en) Diffusion treatment of semiconductor wafer
JPS59211221A (en) Heat treatment of ion implanted semiconductor
JP4609029B2 (en) Annealed wafer manufacturing method
JPH06260438A (en) Boat for heat treatment
JPH05275433A (en) Manufacture of semiconductor device
JP4453257B2 (en) Wafer heat treatment method, heat treatment apparatus, and heat treatment boat
JP2004228462A (en) Method and device for thermally treating wafer
JPH0534821B2 (en)
JPH025295B2 (en)
JPS622616A (en) Heat treatment method of semiconductor wafer
JPS6319817A (en) Semiconductor manufacture equipment
JPS6244847B2 (en)
JPS63128623A (en) Heat treatment control substrate and its application
KR101628209B1 (en) Method and apparatus for heat-treating low grade natural sapphire for improving quality
JPH02196081A (en) Method for growing gallium arsenide single crystal
JPS6180818A (en) Heat treatment furnace
JP2001203209A (en) Method for manufacturing semiconductor wafer having epitaxial layer
JPH0240480Y2 (en)