JPS59108169A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS59108169A
JPS59108169A JP21684082A JP21684082A JPS59108169A JP S59108169 A JPS59108169 A JP S59108169A JP 21684082 A JP21684082 A JP 21684082A JP 21684082 A JP21684082 A JP 21684082A JP S59108169 A JPS59108169 A JP S59108169A
Authority
JP
Japan
Prior art keywords
resistor
semiconductor integrated
voltage
integrated circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21684082A
Other languages
Japanese (ja)
Inventor
Tadataka Yamamoto
山本 恭敬
Shuichi Torii
周一 鳥居
Yuzo Kida
喜田 祐三
Katsuaki Takagi
高木 克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21684082A priority Critical patent/JPS59108169A/en
Publication of JPS59108169A publication Critical patent/JPS59108169A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/18Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals
    • G06G7/184Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements
    • G06G7/186Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements using an operational amplifier comprising a capacitor or a resistor in the feedback loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce influence due to parasitic capacity by constituting a resistor by polysilicone forming a diffused resistor just under said resistor through an insulating film, and impressing voltage through a voltage follower circuit to one end of said diffused resistor and earthing the other end. CONSTITUTION:An integrating circuit is constituted of an operational amplifier OP1, a resistor R1 and a capacitor C1. The resistor R1 used for the integrating circuit is constituted by polysilicone and the diffused resistor R2 is formed just under the resistor R1 through the insulating film. Voltage through the voltage follower circuit receiving input voltage Ei from an input terminal IN is impressed to one end of the resistor R2 and the other end is earthed.

Description

【発明の詳細な説明】 この発明は、半導体集積回路装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor integrated circuit device.

従来より、半導体集積回路装置において用いられている
抵抗素子として、拡散抵抗及びポリシリコン抵抗が公知
である。これらの抵抗素子においては、半導体基板との
間に寄生(浮遊)容量が必然的に介在することになるた
め、例えば、高精度の積分回路を構成する場合、上記寄
生容量に対する充電、放電に要する電荷量が与える影響
が無視できないものとなってしまう。
BACKGROUND ART Diffusion resistors and polysilicon resistors are conventionally known as resistive elements used in semiconductor integrated circuit devices. In these resistance elements, parasitic (stray) capacitance is inevitably present between them and the semiconductor substrate. The influence of the amount of charge cannot be ignored.

この発明の目的は、実質的な寄生容量の低減を図った抵
抗素子を備えた半導体集積回路装置を提供することにあ
る。
An object of the present invention is to provide a semiconductor integrated circuit device equipped with a resistance element whose parasitic capacitance is substantially reduced.

この発明の他の目的は、高精度の積分回路を具備した半
導体集積回路装置を提供することにある。
Another object of the present invention is to provide a semiconductor integrated circuit device equipped with a highly accurate integrating circuit.

この発明の更に他の目的は、以下の説明及び図面から明
らかになるであろう。
Further objects of the invention will become apparent from the following description and drawings.

以下、この発明を実施例とともに詳細に説明する。Hereinafter, this invention will be explained in detail together with examples.

第1図には、この発明を積分回路に適用した場合の一実
施例の回路図が示されている。
FIG. 1 shows a circuit diagram of an embodiment in which the present invention is applied to an integrating circuit.

この実施例の積分回路は、演算増幅器OPIを用い、そ
の反転入力端子(−)と入力端子INとの間に抵抗R1
を接続し、その反転入力端子(−)と出力端子OUTと
の間にキャパシタC1を接続し、その非反転入力端子(
+)が接地されて構成される。この実施例では、特に制
限されないが、電圧依存性及び浮遊容量の点で優れてい
るポリ (多結晶)シリコンにより上記抵抗R1を構成
する。
The integrating circuit of this embodiment uses an operational amplifier OPI, and a resistor R1 is connected between its inverting input terminal (-) and input terminal IN.
is connected, a capacitor C1 is connected between its inverting input terminal (-) and the output terminal OUT, and its non-inverting input terminal (
+) is grounded. In this embodiment, the resistor R1 is made of polycrystalline silicon, which is excellent in terms of voltage dependence and stray capacitance, although it is not particularly limited.

そして、その実質的な浮遊容量を低減させるため、第2
図のレイアウト図に実線で示した抵抗R1を構成するポ
リシリコンの直下に絶縁膜を介して同図に破線で示すよ
うな拡散抵抗R2を形成する。
In order to reduce the actual stray capacitance, the second
A diffused resistor R2 as shown by a broken line in the figure is formed directly under the polysilicon forming the resistor R1 shown by a solid line in the layout diagram of the figure, with an insulating film interposed therebetween.

この抵抗R2の一端には、第1図に示すように、上記入
力端子INからの入力電圧Eiを受けるボルテージフォ
ロワ回路を介した電圧が印加され、その他端を接地する
ものである。上記ボルテージフォロワ回路は、公知のよ
うに演算増幅器PO2を用いて構成される。したがって
、この実施例では、上記抵抗R1と抵抗R2とは、容量
的に結合されることになる。
As shown in FIG. 1, one end of this resistor R2 is applied with a voltage via a voltage follower circuit that receives the input voltage Ei from the input terminal IN, and the other end is grounded. The voltage follower circuit is configured using an operational amplifier PO2 as is well known. Therefore, in this embodiment, the resistor R1 and the resistor R2 are capacitively coupled.

しかし、上記入力端子INから供給される入力電圧Ei
が上記抵抗R1を通して伝えられるとき、同様な電圧が
抵抗R2を通して伝えられるので、抵抗R1とR2と間
での電位差かは一同電位に保つことができる。したがっ
て、その浮遊容量C81には、充放電電流が流れるのが
防止ないし大幅に低減できるので、高精度の積分動作を
実現することができる。
However, the input voltage Ei supplied from the input terminal IN
When is transmitted through the resistor R1, a similar voltage is transmitted through the resistor R2, so that the potential difference between the resistors R1 and R2 can be maintained at the same potential. Therefore, since charging and discharging current can be prevented or significantly reduced from flowing through the stray capacitance C81, highly accurate integration operation can be realized.

なお、上記抵抗R2と回路の接地電位である半導体基板
との間の浮遊容量C32に対しては、ポルデージフォロ
ワ回路を構成する演算増幅器OP2により充放電動作を
行・うので、上記積分動作には何等影響を及ぼさない。
Note that since the stray capacitance C32 between the resistor R2 and the semiconductor substrate, which is the ground potential of the circuit, is charged and discharged by the operational amplifier OP2 constituting the Poldage follower circuit, has no effect.

第3図には、この発明の他の一実施例の回路図が示され
ている。
FIG. 3 shows a circuit diagram of another embodiment of the invention.

この実施例では、上記同様な抵抗R1,キャパシタC1
及び演算増幅器OPIからなる積分回路において、抵抗
R1を次のように構成する。
In this embodiment, a resistor R1 and a capacitor C1 similar to those described above are used.
In the integrating circuit consisting of the and operational amplifier OPI, the resistor R1 is configured as follows.

すなわち、第4図のレイアウト図に点線で示すようなウ
ェル領域WELLを形成し、その上に絶縁膜を介して同
図に実線で示すようなポリシリコン抵抗R1を形成する
ものである。そして、第3図に示すように、このウェル
領域WELLには、上記積分回路の入力端子INから供
給される入力電圧Eiを受ける上記同様なボルテージフ
ォロワ回路と、その出力電圧を分圧する分圧抵抗R3゜
R4を設りて、特に制限されないが、E i / 2の
電圧をイバ給する。
That is, a well region WELL as shown by the dotted line in the layout diagram of FIG. 4 is formed, and a polysilicon resistor R1 as shown by the solid line in the same figure is formed thereon via an insulating film. As shown in FIG. 3, this well region WELL includes a voltage follower circuit similar to the above that receives the input voltage Ei supplied from the input terminal IN of the integrating circuit, and a voltage dividing resistor that divides the output voltage. R3°R4 are provided to feed a voltage of E i /2, although not particularly limited.

この実施例では、上記ウェル領域W L’、 L 1.
には入力電圧Eiの半分の重圧が印加されているので、
抵抗R1に関連する浮遊容量C3Iに印加される電圧を
低減させることにより、その充放電電流を削減できるの
で、実質的な浮遊容量を削減することができる。そして
、例えば、入力電圧Eiが正極性と負極性に対称的に変
化するものであれば〜正極性の入力電圧’、−E +に
より浮遊容量C3Iに充電された電荷が、負極性の入力
電圧−Eiの時に放電するので互いに相殺させることが
でき、fk分分動への影響を防止することができる。
In this embodiment, the well regions W L', L 1 .
Since a pressure of half the input voltage Ei is applied to
By reducing the voltage applied to the stray capacitance C3I associated with the resistor R1, its charging and discharging current can be reduced, so that the stray capacitance can be substantially reduced. For example, if the input voltage Ei changes symmetrically between positive polarity and negative polarity, the charge charged in the stray capacitance C3I by the positive polarity input voltage ', -E + will be the negative polarity input voltage. Since they are discharged at the time of -Ei, they can cancel each other out, and the influence on the fk component can be prevented.

したがって、この積分回路は、例えば積分回路を必要と
する計測器あるいはアナログ−ディジクル変換回路を構
成する半導体集積回路装置に適したものとなる。
Therefore, this integrating circuit is suitable for, for example, a measuring instrument requiring an integrating circuit or a semiconductor integrated circuit device constituting an analog-to-digital conversion circuit.

また、第4図から明らかなように、抵抗R1を高集積度
のもとに形成することができる。すなわち、ウェル領域
上に抵抗R1を形成する場合には、そのパターンが抵抗
R1のパターンにより一義的に決定できるからである。
Furthermore, as is clear from FIG. 4, the resistor R1 can be formed with a high degree of integration. That is, when forming the resistor R1 on the well region, its pattern can be uniquely determined by the pattern of the resistor R1.

ちなみに、第2図の実施例のように、抵抗R2の直下同
様なパターンの抵抗R2を形成する場合には、より大き
く形成する必要のある抵抗R2のパターンにより、その
大きさが決定されるものとなる。
By the way, when forming a resistor R2 with a similar pattern directly below the resistor R2, as in the embodiment shown in Fig. 2, the size of the resistor R2 is determined by the pattern of the resistor R2, which needs to be formed larger. becomes.

この発明は、前記実施例に限定されない。The invention is not limited to the above embodiments.

上記信号を通す抵抗R1を構成する抵抗手段は、他の抵
抗手段であってもよい。また、その半導体基板に対する
シールドを施すための抵抗ないし導体手段は、何であっ
てもよい。
The resistance means constituting the resistor R1 through which the signal passes may be other resistance means. Furthermore, any resistor or conductor means may be used to shield the semiconductor substrate.

この発明に係る抵抗手段は、上記浮遊容量への信号電圧
による充放電を低減させたものとして、種々の半導体集
積回路に広く利用できるものである。
The resistance means according to the present invention can be widely used in various semiconductor integrated circuits as it reduces the charging and discharging of the stray capacitance due to the signal voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す積分回路の回路図
、 第2図は、その抵抗R1,R2の一実施例を示すレイア
ウト図、 第3図は、この発明の他の一実施例を示す積分回路の回
路図、 第4図は、その抵抗R1の一実施例を示すレイアウト図
である。 OPI、OF2・・演算増幅器、C1・・キャパシタ、
R1,R2,R3,R4・・抵抗、WELL・・ウェル
領域 第1図 Cノ □−−−〇 第  2  図 一〇乙 t17 It/T
FIG. 1 is a circuit diagram of an integrating circuit showing one embodiment of the present invention, FIG. 2 is a layout diagram showing one embodiment of the resistors R1 and R2, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a circuit diagram of an example integrating circuit. FIG. 4 is a layout diagram showing an embodiment of the resistor R1. OPI, OF2... operational amplifier, C1... capacitor,
R1, R2, R3, R4...Resistance, WELL...Well area Figure 1 C----〇 2nd Figure 10 t17 It/T

Claims (1)

【特許請求の範囲】 1、抵抗素子を構成する第1の抵抗手段と、この抵抗手
段と半導体基板との間に電気的に分離されて構成された
第2の抵抗手段又は導体手段と、上記第1の抵抗手段の
一端から供給される信月を受けてその出力又はその分圧
出力を上記第2の抵抗手段又は上記導体手段に伝える高
入力インピーダンスのポルデージフォロワ回路とを含む
ことを特徴とする半導体集積回路装置。 2、上記第1の抵抗手段は、ポリシリコンにより形成さ
れるものであることを特徴とする特許請求の範囲第1項
記載の半導体集積回路装置。 3、上記抵抗手段又は導体手段は、ウェル領域により構
成されるものであることを特徴とする特許請求の範囲第
1又は第2項記載の半導体集積回路装置。 4、上記第1の抵抗手段は、積分回路を構成するもので
あることを特徴とする特許請求の範囲第1、第2又は第
3項記載の半導体集積回路装置。
[Claims] 1. A first resistance means constituting a resistance element, a second resistance means or conductor means configured to be electrically isolated between the resistance means and the semiconductor substrate, and the above-mentioned It is characterized by comprising a high input impedance Poldage follower circuit which receives the Shingetsu supplied from one end of the first resistor means and transmits its output or its divided voltage output to the second resistor means or the conductor means. Semiconductor integrated circuit device. 2. The semiconductor integrated circuit device according to claim 1, wherein the first resistance means is formed of polysilicon. 3. The semiconductor integrated circuit device according to claim 1 or 2, wherein the resistor means or the conductor means is constituted by a well region. 4. The semiconductor integrated circuit device according to claim 1, 2 or 3, wherein the first resistance means constitutes an integrating circuit.
JP21684082A 1982-12-13 1982-12-13 Semiconductor integrated circuit device Pending JPS59108169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21684082A JPS59108169A (en) 1982-12-13 1982-12-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21684082A JPS59108169A (en) 1982-12-13 1982-12-13 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS59108169A true JPS59108169A (en) 1984-06-22

Family

ID=16694719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21684082A Pending JPS59108169A (en) 1982-12-13 1982-12-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59108169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268050A (en) * 1988-04-19 1989-10-25 Sony Corp Diffused resistor element
JPH07106606A (en) * 1993-10-08 1995-04-21 Nec Corp Semiconductor capacitive element
JP2019176372A (en) * 2018-03-29 2019-10-10 ラピスセミコンダクタ株式会社 Voltage amplifier circuit device and voltage application circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268050A (en) * 1988-04-19 1989-10-25 Sony Corp Diffused resistor element
JPH07106606A (en) * 1993-10-08 1995-04-21 Nec Corp Semiconductor capacitive element
JP2019176372A (en) * 2018-03-29 2019-10-10 ラピスセミコンダクタ株式会社 Voltage amplifier circuit device and voltage application circuit

Similar Documents

Publication Publication Date Title
US7663379B2 (en) Capacitance-to-voltage conversion method and apparatus
US5451940A (en) Capacitive sensor signal processing arrangement using switch capacitor structures
JPS5593252A (en) Substrate potential generating apparatus
JPH0798335A (en) High-voltage difference sensor with capacitive attenuator
US4398099A (en) Switched-capacitance amplifier, a switched-capacitance filter and a charge-transfer filter comprising an amplifier of this type
US6501283B2 (en) Circuit configuration for measuring the capacitance of structures in an integrated circuit
US4965711A (en) Switched capacitor network
JPS59108169A (en) Semiconductor integrated circuit device
US5517140A (en) Sample and hold circuit
JPH07335828A (en) Semiconductor device
US6373118B1 (en) High-value integrated circuit resistor
JPH03212898A (en) Integrated sample hold circuit with feedback circuit increasing holding time
JP2994069B2 (en) Electronic volume circuit
JPS6134951A (en) Monitor section for evaluating semiconductor device capacity
JPH0465988B2 (en)
JPH0257730B2 (en)
GB2220092A (en) Integrating circuit
JP2671343B2 (en) Capacity measuring device
JPH0316804B2 (en)
JPS6154708A (en) Differential input circuit
JPS58121831A (en) Integrated circuit device
JPS61295701A (en) Differential amplifier circuit type detector
JPH0254688B2 (en)
JPH07146196A (en) Capacitance type pressure sensor
JPS55111154A (en) Integrated insulated coupler