JPS59107917A - Apparatus for manufacturing polycrystalline silicon - Google Patents

Apparatus for manufacturing polycrystalline silicon

Info

Publication number
JPS59107917A
JPS59107917A JP21425082A JP21425082A JPS59107917A JP S59107917 A JPS59107917 A JP S59107917A JP 21425082 A JP21425082 A JP 21425082A JP 21425082 A JP21425082 A JP 21425082A JP S59107917 A JPS59107917 A JP S59107917A
Authority
JP
Japan
Prior art keywords
wall
reactor
fluidized bed
silicon
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21425082A
Other languages
Japanese (ja)
Inventor
Masaaki Obata
正明 小畑
Masaji Ishii
石井 正司
Mitsunori Yamada
山田 光矩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21425082A priority Critical patent/JPS59107917A/en
Publication of JPS59107917A publication Critical patent/JPS59107917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deposit efficiently polycrystalline Si on the surface of seed Si by feeding gaseous H2 as a reducing agent to a fluidized bed reactor from the porous inner wall when an inorg. silane compound and gaseous H2 are fed to the reactor to deposit polycrystalline Si on the surface of seed Si. CONSTITUTION:An inorg. silane compound such as silicon tetrachloride, trichlorosilane, dischlorosilane, monochlorosilane or monosilane is fed to a fluidized bed reactor 1 from an inlet 6 for introducing a gaseous starting material. Gaseous H2 as a reducing agent is fed to the space between the outer wall 9 of the reactor 1 and the porous inner wall 10 from inlets 8 for introducing H2, and it is spouted from many pores in the wall 10 and reacted with the silane compound. The silane compound is reduced and deposited as polycrystalline Si of high purity on the surface of polycrystalline seed Si charged into the reactor 1 from a charging inlet 3. Since the reaction is an endothermic reaction, polycrystalline Si is liable to deposit on the inner wall 10 adjacent to a heater 2. Gaseous H2 spouted from the pores in the wall 10 prevents deposition on the wall 10, so polycryltalline Si is deposited on the surface of seed Si in a high yield.

Description

【発明の詳細な説明】 本発明は、多結晶シリコンの製造装置、ざらに詳しくは
無機シラン化合物から多結晶シリコンを製造する流動床
反応器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing polycrystalline silicon, and more particularly to an improvement in a fluidized bed reactor for producing polycrystalline silicon from an inorganic silane compound.

従来から高純度の四塩化珪素、トリクロルシラン、ジク
ロルシラン、モノクロルシラン、モノシラン等の無機シ
ラン化合物と水素との混合ガス及び種となる粒子径50
〜1000μの高純度シリコンを流動床反応器に供給し
、温度400〜1200℃圧力1〜3 atmの条件操
作し、多結晶シリコンを高純度シリコンの種粒子表面に
析出、成長させる多結晶シリコンの製造法が知られてい
る。
Conventionally, a mixed gas of high purity silicon tetrachloride, inorganic silane compounds such as trichlorosilane, dichlorosilane, monochlorosilane, monosilane, etc. and hydrogen and a particle size of 50 as seeds are used.
~1000μ of high purity silicon is supplied to a fluidized bed reactor and operated at a temperature of 400~1200℃ and a pressure of 1~3 atm to precipitate and grow polycrystalline silicon on the surface of high purity silicon seed particles. The manufacturing method is known.

この場合の反応は次に示す(1) (2) (S) (
4)および(5)の反応式で進行すると言われている。
The reactions in this case are shown below (1) (2) (S) (
It is said that the reaction proceeds according to the reaction formulas 4) and (5).

Si (J4 +2H2→ st + 4aci   
   (1)SiH(J3 + H2→  Sl + 
ろH(J           (2)SiHCl2 
 → st + 2H(J      (S)SiH3
(J  → si+ ncz+H2(4)SiH,→ 
s1+ 2H2(5) このような流動床による多結晶シリコンの製法は、広い
反応表面積が得られるためにシリコンの析出生成速度が
速く、小さい反応器容量で高い生産性が期待でき、また
、連続運転も容易であるので好ましい方法である。
Si (J4 +2H2→ st + 4aci
(1) SiH(J3 + H2→ Sl +
RoH(J (2) SiHCl2
→ st + 2H(J (S)SiH3
(J → si+ ncz+H2(4)SiH, →
s1+ 2H2 (5) This method of manufacturing polycrystalline silicon using a fluidized bed provides a large reaction surface area, so the rate of silicon precipitation is fast, high productivity can be expected with a small reactor capacity, and continuous operation is possible. This is also a preferred method because it is easy.

この方法に用いる反応器は無機シラン化合物と水素の反
応は吸熱であるため、反応中は外部がら熱を加えなけれ
ばならないので、通常流動床反応器側部に加熱源を設け
て加熱するようになっている。そのため必然的に流動状
態にある種シリコンの粒子表面よりも反応器壁の温度の
方が高くなる。
Since the reaction between the inorganic silane compound and hydrogen is endothermic in the reactor used in this method, heat must be applied from the outside during the reaction, so a heating source is usually installed on the side of the fluidized bed reactor to heat it. It has become. Therefore, the temperature of the reactor wall is necessarily higher than that of the surface of the certain silicon particles in a fluidized state.

従ってその反応の進行に伴い、種シリコン粒子の表面に
シリコンが析出するのと同時に反応器の壁(以下外壁と
いう〕の内側にもシリコンの析出が起こり、そのシリコ
ンの単位面積当りの析出速度は種シリコン粒子の表面よ
りも反応器の外壁の方が大きくなる。その結果、反応の
進行と共に反応器外壁内側に析出付着したシリコン層の
厚みが増大し、流動床反応器の機能が低下するので、定
期的に流動床反応器の操業を停止し、外壁内側表面に析
出したシリコンを除去しなければならず、生産性の低下
をもたらすという欠点があった。
Therefore, as the reaction progresses, silicon is deposited on the surface of the seed silicon particles, and at the same time, silicon is also deposited on the inside of the wall of the reactor (hereinafter referred to as the outer wall), and the rate of silicon deposition per unit area is The outer wall of the reactor becomes larger than the surface of the seed silicon particles.As a result, as the reaction progresses, the thickness of the silicon layer deposited on the inside of the reactor outer wall increases, reducing the functionality of the fluidized bed reactor. However, the operation of the fluidized bed reactor must be periodically stopped to remove the silicon deposited on the inner surface of the outer wall, resulting in a decrease in productivity.

又、反応器材質として石英、炭化珪素、窒化珪素等を使
用した場合には、反応器材質の熱膨張係数と析出付着し
たシリコンの熱膨張係数の差が大きいために、反応器の
昇温時あるいは降温時に反応器が破損するという致命的
欠点があった。
In addition, when quartz, silicon carbide, silicon nitride, etc. are used as the reactor material, there is a large difference between the coefficient of thermal expansion of the reactor material and the thermal expansion coefficient of the precipitated silicon. Another fatal drawback was that the reactor was damaged when the temperature was lowered.

本発明は、これらの欠点を解決した無機シラン化合物か
ら多結晶シリコンを製造に用いる流動床反応器であって
、流動床反応器の側部外壁の内側に多孔質内壁を設け、
その外壁と内壁との間隙力)ら水素ガスを多孔質の内壁
の小孔から流動床内の反応部に供給するように構成する
ことにより、反応器の壁面に、多結晶シリコンの付着す
るのを防止することができ、定常的にかつ長期連続運転
が可能な高純度多結晶シリコンの製造装置を提供しよう
とするものである。
The present invention is a fluidized bed reactor used for producing polycrystalline silicon from an inorganic silane compound that solves these drawbacks, and includes a porous inner wall provided inside the side outer wall of the fluidized bed reactor.
By configuring hydrogen gas to be supplied from small holes in the porous inner wall to the reaction section in the fluidized bed from the gap force between the outer wall and the inner wall, polycrystalline silicon does not adhere to the wall surface of the reactor. It is an object of the present invention to provide a high-purity polycrystalline silicon manufacturing apparatus that can prevent the above problems and can operate steadily and continuously for a long period of time.

すなわち、本発明は、無機シラン化合物から多結晶シリ
コンを製造する流動床反応器において、その反応器の側
部外壁の内側に多孔質の内壁を設け、その内壁と外壁と
の間を水素ガスの通路とし、その通路から水素ガスを内
壁の小孔を介して流動床の反応部に供給するように構成
してなることを特徴とする。
That is, the present invention provides a fluidized bed reactor for producing polycrystalline silicon from an inorganic silane compound, in which a porous inner wall is provided inside the side outer wall of the reactor, and hydrogen gas is passed between the inner wall and the outer wall. It is characterized in that it is configured to have a passageway, and hydrogen gas is supplied from the passageway to the reaction section of the fluidized bed through small holes in the inner wall.

以下図面により本発明の詳細な説明する。図面は本発明
の実施例の装置の断面図である。反応器1は、その側部
にヒーター2、上部に種シリコン投入口3、ガス排出口
4、下部にシリコン排出口5、原料ガス導入口6、水素
ガス導入口8が設けられている。
The present invention will be explained in detail below with reference to the drawings. The drawing is a cross-sectional view of a device according to an embodiment of the invention. The reactor 1 is provided with a heater 2 on its side, a seed silicon inlet 3 and a gas outlet 4 in its upper part, and a silicon outlet 5, a raw material gas inlet 6, and a hydrogen gas inlet 8 in its lower part.

又原料ガスは原料ガス導入口6カ)ら目皿7を介して反
応部に導入されるようGこなっており、水素ガスは水素
ガス導入口8から反応器の外壁9と多孔質の内壁10と
の間の水素ガス通路力)ら多子し質の内壁10の小孔か
ら流動床の反応部60供給するようになっている。
In addition, the raw material gas is introduced into the reaction section through the raw material gas inlet 6 and the perforated plate 7, and the hydrogen gas is introduced from the hydrogen gas inlet 8 into the outer wall 9 and the porous inner wall of the reactor. Hydrogen gas is supplied to the reaction section 60 of the fluidized bed from small holes in the inner wall 10 of the porous material.

本発明の反応器は石英、窒化珪素、炭化珪素、炭素ステ
ンレス、インコネル、ノ1ステロイ等の材料から構成さ
れるが、多孔質の内壁材料もこれらと同じものを用いる
ことができる。又多孔質の内壁はファインメツシュの小
孔を具えた前記材料力)ら形成されたスクリーンが好ま
しいが、これら(こ限られるものではない。
The reactor of the present invention is made of materials such as quartz, silicon nitride, silicon carbide, carbon stainless steel, Inconel, and No. 1 steroid, and the porous inner wall material can also be made of the same materials. The porous inner wall is preferably a screen formed from the above-mentioned material having fine mesh pores, but is not limited thereto.

次に本発明の反応器を用いて無機シラン化合物から多結
晶シリコンを製造する方法について説明する。反応器1
に平均粒径50〜I DOOpの種シリコンを入れ、反
応器内の温度を400〜1200’Cに加熱し、水素ガ
スと四塩化珪素、トリクロルシラン、ジクロルシラン、
モノクロルシラン、モノシラン等から選ばれた少くとも
1種の無機シラン化合物との混合ガスを反応器1の下部
に設けた原料ガス導入口6より目皿7を通じて反応器1
内に導入する。又、水素ガス導入口8カ)ら導入される
水素ガスは反応器の外壁9と内壁10との間の水素ガス
通路を通り多孔質の内壁10の小孔を介して流動床に導
入する。水素ガスの通路から導入される水素は内壁の小
孔を目詰させなし1ような条件、例えば流動床の圧力よ
りやや高pz圧力で流動床中に多孔質の内壁の小孔から
全面的Gこ吹き出すようにすることが好ましい。
Next, a method for producing polycrystalline silicon from an inorganic silane compound using the reactor of the present invention will be described. Reactor 1
Seed silicon with an average particle size of 50 to 1 DOOp is added to the reactor, the temperature inside the reactor is heated to 400 to 1200'C, and hydrogen gas, silicon tetrachloride, trichlorosilane, dichlorosilane,
A mixed gas with at least one type of inorganic silane compound selected from monochlorosilane, monosilane, etc. is introduced into the reactor 1 through a perforated plate 7 from a raw material gas inlet 6 provided at the bottom of the reactor 1.
to be introduced within. Further, hydrogen gas introduced from the hydrogen gas inlet 8) passes through a hydrogen gas passage between the outer wall 9 and the inner wall 10 of the reactor, and is introduced into the fluidized bed through small holes in the porous inner wall 10. Hydrogen introduced from the hydrogen gas passage does not clog the small pores in the inner wall.1 Under such conditions, for example, under pz pressure slightly higher than the pressure of the fluidized bed, hydrogen is introduced from the small pores in the porous inner wall into the fluidized bed. It is preferable to make it blow out.

このようにして反応が進行し種シリコンの上Gこシリコ
ンが析出され成長すると重くなった91132粒子は流
動床中を下方に移動し、反応器下部に設けたシリコン取
り出し口5より連続的しこ回収される。
As the reaction progresses and silicon precipitates and grows on top of the seed silicon, the heavier 91132 particles move downward in the fluidized bed and are continuously drained from the silicon outlet 5 provided at the bottom of the reactor. It will be collected.

反応の結果生成した塩化水素、シリコン微粉末、未反応
ガスなどは反応器上部の排出口4より反応器外へ導かれ
、排ガス処理系へ送られる。
Hydrogen chloride, silicon fine powder, unreacted gas, etc. produced as a result of the reaction are led out of the reactor through the exhaust port 4 at the top of the reactor and sent to the exhaust gas treatment system.

以上説明したように本発明は無機シラン化合物から多結
晶シリコンを製造する流動床反応器において、その反応
器の側部外壁の内側に多孔質の内壁を設けその内壁と外
壁との間を水素ガスの通路とし、内壁の小孔を介して流
動床内の反応部に水素を供給するように構成してなるこ
とを特徴とする多結晶シリコンの製造装置であって、本
発明によれば従来の流動床反応器のように反応器の壁に
シリコンの付着することなく、長期連続運転が可能とな
り、生産性が向上するという効果がある。
As explained above, the present invention provides a fluidized bed reactor for producing polycrystalline silicon from an inorganic silane compound, in which a porous inner wall is provided inside the side outer wall of the reactor, and hydrogen gas is passed between the inner wall and the outer wall. According to the present invention, there is provided a polycrystalline silicon production apparatus characterized in that the polycrystalline silicon manufacturing apparatus is configured such that hydrogen is supplied to a reaction section in a fluidized bed through small holes in an inner wall. Unlike a fluidized bed reactor, silicon does not adhere to the walls of the reactor, making long-term continuous operation possible and improving productivity.

又反応器内の水素ガス通路から水素ガスを導入すること
ができるようになっているので水素供給量の調整も十分
性われるので急激′な反応の発生を防止することができ
る。
In addition, since hydrogen gas can be introduced from the hydrogen gas passage in the reactor, the amount of hydrogen supplied can be sufficiently adjusted, making it possible to prevent sudden reactions from occurring.

以下実施例をあげてさらに本発明を具体的に説明する。EXAMPLES The present invention will be explained in more detail below with reference to Examples.

実施例 図面に示すような内径11oI+++++1高さ1oo
O咽のステンレス製流動床反応器1内に7μの小孔を多
数設けた多孔質炭化珪素からなる内径1o。
Inner diameter 11oI +++++1 height 1oo as shown in the example drawings
The inside diameter of the stainless steel fluidized bed reactor 1 is made of porous silicon carbide with many small holes of 7 μm.

覇の内壁1oを設けた流動床反応器1を用いた。A fluidized bed reactor 1 provided with a thick inner wall 1o was used.

トリクロルシラン20モル%、水素80モル%の混合ガ
スを原料ガス導入口6から8・4 l/minの速度で
供給した。水素ガス導入口8から水素ガスを2−8 l
/minの速度で供給し、多孔質の内壁10の小孔から
流動床内に0.06 cmZSe cの速度で水素ガス
が導入されるように操作した。
A mixed gas containing 20 mol % of trichlorosilane and 80 mol % of hydrogen was supplied from the raw material gas inlet 6 at a rate of 8.4 l/min. Inject 2-8 liters of hydrogen gas from hydrogen gas inlet 8.
The hydrogen gas was supplied at a rate of 0.06 cmZSec to the fluidized bed through small holes in the porous inner wall 10 at a rate of 0.06 cmZSec.

又流動床反応器の上部種シリコン投入口4から粒子径2
00μの高純度多結晶シリコン2 jj /h rの速
度で供給した。反応器側部のヒーター2により流動床を
加熱し、その流動床内の反応温度を900℃とし300
時間連続運転した結果平均22.9 g/hrの速度で
多結晶シリコンが得られた。
Also, from the upper seed silicon inlet 4 of the fluidized bed reactor, particle size 2
00μ high purity polycrystalline silicon was supplied at a rate of 2 jj /hr. The fluidized bed was heated by the heater 2 on the side of the reactor, and the reaction temperature in the fluidized bed was set to 900°C and 300°C.
As a result of continuous operation for hours, polycrystalline silicon was obtained at an average rate of 22.9 g/hr.

運転終了後流動床反応器を解体したところ流動床反応器
の内壁及び外側には多結晶シリコンの付着は認められな
かった。
When the fluidized bed reactor was dismantled after the operation was completed, no polycrystalline silicon was found to be attached to the inner or outer walls of the fluidized bed reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例の装置の断面図である。 付量 1・・・流動床反応器、2・・ヒーター、3・・・種シ
リコン投入口、4・・・ガス排出口、5・・・シリコン
取出口、6・・・原料ガス導入ロア・・・目皿、   
  8・・・水素ガス導入口、9・・・反応器の外壁、
10・・・多孔質の内壁。
The drawing is a cross-sectional view of a device according to an embodiment of the invention. Attached amount 1... Fluidized bed reactor, 2... Heater, 3... Seed silicon inlet, 4... Gas outlet, 5... Silicon outlet, 6... Raw material gas introduction lower. ...eye plate,
8...Hydrogen gas inlet, 9...Outer wall of the reactor,
10... Porous inner wall.

Claims (1)

【特許請求の範囲】[Claims] 無機シラン化合物から多結晶シリコンを製造する流動床
反応器において、その反応器の側部外壁の内側に多孔質
の内壁を設け、その内壁と外壁との間を水素ガスの通路
とし内壁の小孔を介して流動床内の反応部に水素を供給
するように構成してなることを特徴とする多結晶シリコ
ンの製造装置
In a fluidized bed reactor for producing polycrystalline silicon from an inorganic silane compound, a porous inner wall is provided inside the side outer wall of the reactor, and small pores in the inner wall are used as hydrogen gas passages between the inner wall and the outer wall. An apparatus for producing polycrystalline silicon, characterized in that it is configured to supply hydrogen to a reaction part in a fluidized bed through
JP21425082A 1982-12-07 1982-12-07 Apparatus for manufacturing polycrystalline silicon Pending JPS59107917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21425082A JPS59107917A (en) 1982-12-07 1982-12-07 Apparatus for manufacturing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21425082A JPS59107917A (en) 1982-12-07 1982-12-07 Apparatus for manufacturing polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPS59107917A true JPS59107917A (en) 1984-06-22

Family

ID=16652651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21425082A Pending JPS59107917A (en) 1982-12-07 1982-12-07 Apparatus for manufacturing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPS59107917A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855678A (en) * 1997-04-30 1999-01-05 Sri International Fluidized bed reactor to deposit a material on a surface by chemical vapor deposition, and methods of forming a coated substrate therewith
WO2012087628A3 (en) * 2010-12-23 2012-08-09 Memc Electronic Materials, Inc. Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
US8404206B2 (en) 2008-06-30 2013-03-26 Memc Electronic Materials, Inc. Methods for producing polycrystalline silicon that reduce the deposition of silicon on reactor walls
US8828324B2 (en) 2009-12-29 2014-09-09 Sunedison, Inc. Fluidized bed reactor systems and distributors for use in same
CN106517211A (en) * 2016-11-29 2017-03-22 陈生辉 Polycrystalline silicon production device and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855678A (en) * 1997-04-30 1999-01-05 Sri International Fluidized bed reactor to deposit a material on a surface by chemical vapor deposition, and methods of forming a coated substrate therewith
US8404206B2 (en) 2008-06-30 2013-03-26 Memc Electronic Materials, Inc. Methods for producing polycrystalline silicon that reduce the deposition of silicon on reactor walls
US8728574B2 (en) 2008-06-30 2014-05-20 Memc Electronic Materials, Inc. Methods for introducing a first gas and a second gas into a reaction chamber
US8906313B2 (en) 2008-06-30 2014-12-09 Sunedison, Inc. Fluidized bed reactor systems
US8828324B2 (en) 2009-12-29 2014-09-09 Sunedison, Inc. Fluidized bed reactor systems and distributors for use in same
WO2012087628A3 (en) * 2010-12-23 2012-08-09 Memc Electronic Materials, Inc. Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
US9156705B2 (en) 2010-12-23 2015-10-13 Sunedison, Inc. Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
CN106517211A (en) * 2016-11-29 2017-03-22 陈生辉 Polycrystalline silicon production device and application thereof

Similar Documents

Publication Publication Date Title
US3012862A (en) Silicon production
EP1924349B1 (en) Silicon spout-fluidized bed
US8828324B2 (en) Fluidized bed reactor systems and distributors for use in same
CA2729980C (en) Silicon production with a fluidized bed reactor utilizing tetrachlorosilane to reduce wall deposition
CN107438479B (en) Gas distribution unit for fluidized bed reactor system, fluidized bed reactor system having the same, and method for preparing granular polycrystalline silicon using the fluidized bed reactor system
JP6246905B2 (en) Reactor for producing polycrystalline silicon and a method for removing a silicon-containing layer on components of such a reactor
JP2015120160A (en) Fluidized bed reactor systems and methods for reducing deposition of silicon on reactor walls
JPS6228083B2 (en)
US20120148728A1 (en) Methods and apparatus for the production of high purity silicon
JPH05139891A (en) Method and device for producing semiconductor grade multi-crystal silicon
JPH0649569B2 (en) Method and apparatus for producing trichlorosilane
JPS59107917A (en) Apparatus for manufacturing polycrystalline silicon
JPH0317768B2 (en)
KR20040025590A (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
JP2003054933A (en) Reaction apparatus for producing silicon
US10322938B2 (en) Poly-silicon manufacturing apparatus and method using high-efficiency hybrid horizontal reactor
JP2003002628A (en) Apparatus and method for manufacturing silicon
JPH02279513A (en) Production of high-purity polycrystal silicon
JPH01239014A (en) Production of polycrystalline silicon and unit therefor
JPH06127924A (en) Production of polycrystalline silicon
JPH0694367B2 (en) Method for producing polycrystalline silicon
JPS605013A (en) Preparation of silicon powder and its device
JPS5945916A (en) Continuous preparation of high-purity silicon
JPH0230611A (en) Method and device for producing polycrystalline silicon
JPH02279512A (en) Production of high-purity polycrystal silicon