JPS59107728A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPS59107728A
JPS59107728A JP21579982A JP21579982A JPS59107728A JP S59107728 A JPS59107728 A JP S59107728A JP 21579982 A JP21579982 A JP 21579982A JP 21579982 A JP21579982 A JP 21579982A JP S59107728 A JPS59107728 A JP S59107728A
Authority
JP
Japan
Prior art keywords
inner member
cylindrical material
heating
cylindrical
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21579982A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Hiroyasu Nagasaka
長坂 浩安
Masashi Mizuno
正志 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP21579982A priority Critical patent/JPS59107728A/en
Publication of JPS59107728A publication Critical patent/JPS59107728A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods

Abstract

PURPOSE:To tighten and unite an internal material by a reduced metallic cylindrical blank material to one body by disposing the prescribed internal member extending in the axial direction of the metallic cylindrical blank material in said blank material, heating the blank material and pulling axially the same. CONSTITUTION:A prescribed internal member W2 which is a rod or pipe extending in the axial direction of a prescribed metallic cylindrical blank material W1 and is to be combined with said material is disposed in said blank material. The material W1 is then heated and axially pulled so that the member W2 is tightened by the reduced material W1, thereby forming the composite material united to one body. The material W1 may be preliminarily heated before insertion of the member W2. A material, such as Cu or Al, having good conductivity is preferred for the material W1 and a material, such as steel, having relatively high hardness is preferred for the member W2.

Description

【発明の詳細な説明】 本発明は、複合材料の製造方法に関し、特に、筒状や軸
状あるいは線状等をなす複合(クラッド)材料を一体性
よく且つ容易に製造し得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite material, and in particular to a method for easily manufacturing a composite (clad) material having a cylindrical, axial, or linear shape with good integrity. be.

一般に、かかるクラツド材は、材質等の異なる2種(場
合によってはそれ以上)の素材を接合。
Generally, such cladding materials are made by joining two (or more in some cases) different materials.

一体化して得られるものであシ、互いの物性の相互補完
や、面側な材料の節約等を図シ得る点て艷常に有用な材
料である。
Since they can be obtained by integrating them, they are always useful materials because they complement each other's physical properties and save on material.

ところで、王妃のような筒状や軸状等をなすクラッド4
1は外側素材と内側素材とを接合して製造するのである
が、その製造方法として、従来よシ焼ぎ嵌め、圧入、バ
ルジ法、爆発成形法あるいは放電爆発成形法など、様々
の手法が知られている。
By the way, the cladding 4 has a cylindrical shape or a shaft shape like a queen's.
1 is manufactured by joining the outer material and the inner material, and various methods have been known in the past, such as shrink-fitting, press-fitting, bulge method, explosion molding method, and discharge explosion molding method. It is being

しかしながら、焼き嵌めによる接合では、焼き嵌め温度
以上の高温環境下において使用される場合に、内側およ
び外側の画素材の膨張率の差などにより、画素材が分離
して接合面に隙間が生じ、一体性が失なわれる場合があ
シ、また圧入による接合においても、高温下の使用で同
様な問題を内在している。他方、バルジ法や爆発成形法
等のように、筒状をなす内側素椙を膨出・拡径させて外
側部材に圧着せしめる手法では、内側素材が延性の乏し
いもろい材質のものであると、拡径の際、割れやクラッ
クを生じ易いだめに実質的にクラツド化が困難となシ、
従って材料的に制約を受けることを避は得す、また細い
クラッドパイプの製造についても、流体圧等を作用させ
難いところから、困難性がつきまとい、その点について
も制約があることを否めなかった。
However, when joining by shrink-fitting is used in a high-temperature environment higher than the shrink-fitting temperature, the inner and outer image materials separate due to differences in expansion rates, creating gaps at the joint surface. Integrity may be lost, and press-fit bonding also has similar problems when used at high temperatures. On the other hand, in methods such as the bulge method and the explosion molding method, in which the cylindrical inner material is bulged and expanded in diameter and crimped onto the outer member, if the inner material is made of a brittle material with poor ductility, When expanding the diameter, cracks are likely to occur, making it virtually difficult to clad.
Therefore, it is unavoidable to be subject to material restrictions, and it is undeniable that manufacturing thin clad pipes is also difficult because it is difficult to apply fluid pressure, etc., and that there are restrictions in this respect as well. .

本発明は、このような事情を背景として、上述のような
筒状ないし軸状等のクラッド材料を一体性良く、かつ材
質等の制約を受けることなく容易に製造し得る方法を提
供することを目的として為されたものであシ、その要旨
とするところは、引張されるべき所定の金属筒状素材内
に、その軸方向に延びる、複合されるべき所定の内側部
材を配置せしめる一方、その金属筒状素材を加熱せしめ
て軸方向に引張することにより、縮径さ−れたその金属
筒状素材によって上記内側部材を締め付け、一体化せし
めるようにしたことにある。
Against this background, the present invention aims to provide a method for easily manufacturing the above-mentioned cylindrical or shaft-shaped cladding material with good integrity and without being subject to restrictions such as material quality. The gist of this was to place a predetermined inner member to be composited extending in the axial direction within a predetermined metal cylindrical material to be stretched, while By heating the metal cylindrical material and pulling it in the axial direction, the inner member is tightened and integrated by the reduced diameter metal cylindrical material.

このようにすれば、金属筒状素材を加熱後、引張・縮径
した段階で、内側部材が締付けられて両者の良好な密着
状態が得られ、しかも金属筒状素材の温度降下による縮
径をも伴なって内側部材にさらに締付力が作用するため
、圧縮応力が大きく一体性が非常に高いクラッド材料が
得られる。従って、製品として高温下で使用される場合
でも、金属製の筒状素材の引張時の加熱温度の範囲内で
あれば、両材料の熱膨張の差などによる熱応力が吸収さ
れ得、接合面に分離が生じるおそれなく、クラッド構造
の一体性が安定に保たれ得る。
In this way, when the metal cylindrical material is heated and then stretched and reduced in diameter, the inner member is tightened to achieve good adhesion between the two, and the diameter reduction due to temperature drop in the metal cylindrical material is prevented. As a result, a further tightening force acts on the inner member, resulting in a cladding material with high compressive stress and very high integrity. Therefore, even if the product is used at high temperatures, as long as it is within the heating temperature range when the metal cylindrical material is stretched, the thermal stress caused by the difference in thermal expansion between the two materials can be absorbed, and the joint surface The integrity of the cladding structure can be maintained stably without fear of separation occurring.

また、外側の金属筒状素材を引張・縮径させるところか
ら、内側部材が管体の場合に、バルジ法等のように拡径
による割れやクラックの生じる心配がなく、かつ、内側
部材には実質的に圧縮応力が生じるのみであるから、た
とえ内側部材が伸びに対してもろいものであっても、そ
の材質等にほとんど制約されることなく有効に金属筒状
素材と内側部材とを一体化することかでき、さらに、内
側部材の中空、中実の形態の如何に拘らず、また細いク
ラッドパイプであっても、本発明に従えば容易に製造す
ることができるのである。
In addition, since the outer metal cylindrical material is stretched and reduced in diameter, there is no risk of cracks or cracks due to diameter expansion when the inner member is a tube, unlike in the bulge method, and the inner member is Since only compressive stress is essentially generated, the metal cylindrical material and the inner member can be effectively integrated without being restricted by the material, even if the inner member is brittle against elongation. Furthermore, regardless of whether the inner member is hollow or solid, even a thin clad pipe can be easily manufactured according to the present invention.

ところで、このような本発明において使用される金属製
の筒状素材としては、例えば第1図乃至第4図の(a)
にそれぞれW+で示されるように、通常円筒状の形態を
為すものが好適であって、製造されるべきクラツド材の
用途・目的に応じて、鋼をはじめとする鉄系金属あるい
は非鉄金属若しくは合金類等の中から、適宜の材質のも
のが選択される。なお、例えばテーパ状筒部材等、筒径
が一様でない形態のものも用いることかでlる。
By the way, examples of metal cylindrical materials used in the present invention include those shown in FIGS. 1 to 4 (a), for example.
As indicated by W+ in each of the above, it is preferable to use a cylindrical shape, and depending on the use and purpose of the clad material to be manufactured, ferrous metals such as steel, non-ferrous metals, or alloys can be used. An appropriate material is selected from among the following types. Note that, for example, a tapered cylindrical member or the like having a shape in which the cylindrical diameter is not uniform may also be used.

そして、かかる金属製の筒状素材内には、本発明に従っ
て、複合(クラッド)されるべき所定の内側部利を、該
金属製筒状素材の軸方向に延びるように配置せしめるこ
とになる。内側部材は、その筒状素材の内部空間断面に
ほぼ対応する横断面形状を有し、外径寸法が上記筒状素
材の内径寸法よシ一定量小さい部材であって、目的とす
るクラツド材に応じて種々の形態を採シ得る。例えば、
第1図乃至第4図の(a)にそれぞれW2 で示される
内側部材のように、中実材たるロッド、中空材たる単純
なパイプ、あるいは蛇腹状等の軸方向に凹凸状の断面形
状を有するパイプなどを代表例として挙げることができ
る。内側部材の材質は、材料的に要求される物性を備見
た材質等が目的に応じて種々選ばれることとなるため、
−概には言えないが、一般的には金属が採用される。た
だし7場合によっては、例えば、セラミックス等の非金
属からなる内側部材であっても差支えない。
Then, in accordance with the present invention, a predetermined inner part to be composited (clad) is arranged within the metal cylindrical material so as to extend in the axial direction of the metal cylindrical material. The inner member has a cross-sectional shape that approximately corresponds to the cross section of the internal space of the cylindrical material, and has an outer diameter smaller than the inner diameter of the cylindrical material by a certain amount, and is suitable for the intended cladding material. Depending on the situation, various forms can be adopted. for example,
As shown in the inner member indicated by W2 in FIGS. 1 to 4 (a), the cross-sectional shape is a solid rod, a simple hollow pipe, or a bellows-shaped cross-section with unevenness in the axial direction. Typical examples include pipes that have The material for the inner member is selected from a variety of materials that have the required physical properties depending on the purpose.
-Although it cannot be generalized, metal is generally used. However, in some cases, the inner member may be made of a non-metal such as ceramics.

一方、内側部材を金属製の筒状素材内に配置せしめる前
、あるいは配置せしめた後に、その筒状素材を所定の温
度に加熱する。この加熱を内側部材の配置の前・後いず
れの時期に行うかは、工程上の都合(例えば加熱手法)
などによシ選択されまだ加熱すべき温度は、金属製筒状
素材の材質や後に予定される引張工程での縮径率、引張
力等との関係で、適切々範囲に定められる。そして、筒
状素材に対する加熱態様としては、通常は、その素材全
体が均一な温度になるように加熱される。
On the other hand, before or after placing the inner member inside the metal cylindrical material, the cylindrical material is heated to a predetermined temperature. Whether this heating is performed before or after placing the inner member depends on the process (e.g. heating method).
The temperature at which the metal cylindrical material should be heated is determined in an appropriate range depending on the material of the metal cylindrical material, the diameter reduction rate in the tensile process to be performed later, the tensile force, etc. The heating mode for the cylindrical material is usually such that the entire material is heated to a uniform temperature.

ただし場合によっては、その素材の軸方向において温度
の低い部分を奔するように加熱する態様も採り得、例え
ば第5図のグラフに近似直線で概念的に示すように、筒
状素材の軸方向において温度の高い部分と低い部分とが
交互に生じるような温度分布を形成すれば、後の引張段
階で高温部分において主に伸び・縮径が生じるように々
す、例えば第3図(b)にW+’で示される如き形態が
得られる。
However, depending on the case, it may be possible to heat the lower temperature part in the axial direction of the material, for example, as conceptually shown by the approximate straight line in the graph of Fig. If a temperature distribution is formed in which high-temperature areas and low-temperature areas alternate, elongation and diameter contraction will occur mainly in the high-temperature areas during the subsequent tension stage, for example, as shown in Figure 3(b). A form as shown by W+' is obtained.

上記のような温度分布を得るためには、筒状素材の全体
を一様に加熱した後、部分的に冷却してもよいし、最初
から加熱部位を選定して部分的に加熱するようにしても
よい。
In order to obtain the above temperature distribution, you can heat the entire cylindrical material uniformly and then cool it partially, or you can select the heating area from the beginning and heat it partially. You can.

そして、金属製筒状素材の加熱手法としては、直接通電
加熱法、高周波誘導加熱法、ガス加熱法の他、赤外線加
熱法、電気炉等を使用する傍熱加熱法などの公知のあら
ゆる加熱手法が採用され得それらの中から適当々加熱手
段が適宜に選択されることとなる。均一な加熱には、例
えば直接通電法が便利である。ただし、筒状素材内へ内
側部材を配置した後に加熱を実施する場合に、内側部材
が部分的に筒状素材に接触して温度ムラが生じるおそれ
のある場合には、高周波誘導加熱法などの採用がよシ好
ましい。
In addition to heating methods for metal cylindrical materials, all known heating methods include direct current heating, high-frequency induction heating, gas heating, infrared heating, indirect heating using an electric furnace, etc. may be adopted, and a suitable heating means is selected from among them. For example, direct energization is convenient for uniform heating. However, when heating is performed after placing the inner member inside the cylindrical material, if there is a risk that the inner member may partially contact the cylindrical material and cause temperature unevenness, high-frequency induction heating method etc. Hiring is highly recommended.

なお、外側の金属製筒状素材のみならず、内側部材につ
いても加熱することが可能であるが、双方を加熱する場
合、内側部材の配置後に同時に行なうと両者の近接面に
酸化膜が生じ易い状況の場合には、別々に加熱しておい
て組み込むか、あるいは内側部材は加熱しないで筒状素
材のみを加熱するに留めることが望ましい。
Note that it is possible to heat not only the outer metal cylindrical material but also the inner member, but if you heat both at the same time after placing the inner member, an oxide film is likely to form on the adjacent surfaces of both. In certain circumstances, it may be desirable to heat them separately and then assemble them, or to heat only the cylindrical material without heating the inner member.

そして、筒状素材が加熱され且つ内側部材が筒状素F’
!内に配置された状態、つまり、筒状素材の加州)が内
側部材の配置前であればその配置が完了した後、配置後
であれば加熱が完了した後の状態で、外側の筒状素材を
軸方向に引張する。この引張によって、加熱された状態
の外側筒状素材が引き伸ばされて縮径し、内側部材との
隙間が消滅して内側部材を締め付ける状態と々る。かか
る引張手法としては、チャック等適宜の把持手段によシ
筒状素材の両端を把持して引張するか、あるーは一端を
固定して他端を引張するなど、適切な手法を採シ得る。
Then, the cylindrical material is heated and the inner member becomes the cylindrical element F'.
! If the state placed inside (that is, the shape of the cylindrical material) is before the placement of the inner member, after the placement is completed, and if after the placement, the outer cylindrical material is placed in the state after heating is completed. is pulled in the axial direction. Due to this tension, the heated outer cylindrical material is stretched and reduced in diameter, and the gap with the inner member disappears, so that the inner member is tightened. As such a tensioning method, an appropriate method can be adopted, such as gripping both ends of the cylindrical material using an appropriate gripping means such as a chuck and pulling it, or fixing one end and pulling the other end. .

また、引張速度や引張力、引張パターン等の引張条件に
ついては、筒状素材の材質や縮径率などとの関係で適宜
に定められるが、伸びに対する筒状素材の抵抗が比較的
強い場合とか、予定された縮径量がある程度大きい場合
等には、一段の引張に限らず、二段あるいはそれ以上の
多段階の引張を実施することも可能である。また、引張
速度を一様とする以外に、その速度を一定の率で増加あ
るいは減少させる等して変化させることもでき、例えば
筒状素材の内側周囲と内側部材の外側周囲とが最初に接
するまでは大きな速度で引張し、接した後は相対的に速
度を低くして引張する等、具体的場合に応じて好ましい
引張方式が採用され得る。
In addition, the tensile conditions such as the tensile speed, tensile force, and tensile pattern are determined as appropriate in relation to the material of the cylindrical material and the diameter reduction ratio. If the planned amount of diameter reduction is large to some extent, it is also possible to carry out not only one stage of tension but also two or more stages of tension. In addition to making the tension speed uniform, it is also possible to change the speed by increasing or decreasing it at a constant rate. For example, the inner circumference of the cylindrical material and the outer circumference of the inner member first touch each other. Depending on the specific case, a preferable tensile method may be adopted, such as pulling at a high speed until contact is made and then pulling at a relatively low speed after contact.

いずれにしても、外側の筒状素材の引張、縮径によって
、その素材が内側部材を締め付けだ状態で両者が一体化
されるのであわ、例えば第1図の場合には、(a)の状
態から山)の状態となって、引張後の筒状素材W、/の
内周面全体が、ロッド状内側部材W2の外周面全体に隙
間なく圧着させられ、また第2図の場合にも、同様に筒
状素材W 1’がパイプ状内側部材W2に内周面全体に
わたって圧着させられる。第3図における図例の場合に
は、引張前に、筒状素材W1 の軸方向に温度の高低を
連続的に付与したパターンで、素材W+を加熱しておく
ことにより、(1〕)に示されるように、引張によって
高温度の部分が主に引き伸ばされて縮径し、引張後の素
材W+’が波形状断面を有する筒(コルゲートパイプ)
形態となり、主に縮径された部分(谷の部分)の各々に
おいて、パイプ状内側部材W2を締め付け、圧着する状
態となる。さらに第4図の場合には、引張、縮径された
筒状素材W+’が、蛇腹筒とコルゲートパイプ)状の内
側部材W2の大径山部/′にそれぞれ圧着し、その部位
においてとして挙げた形態から明らかなように、筒状素
材の引張完了時には、素材の内側面の全体あるいは部分
の相違はあっても、その締付けによって効果的に内側部
材と筒状素材とが圧着せしめられる。
In any case, by tensioning and reducing the diameter of the outer cylindrical material, the material tightens the inner member and the two are integrated.For example, in the case of Fig. 1, the state shown in (a) is The entire inner circumferential surface of the cylindrical material W, / after being stretched is crimped to the entire outer circumferential surface of the rod-shaped inner member W2 without any gaps, and also in the case of FIG. Similarly, the cylindrical material W 1' is crimped to the pipe-shaped inner member W2 over the entire inner circumferential surface. In the case of the example shown in Fig. 3, (1) is achieved by heating the material W+ in a pattern in which the temperature is continuously varied in the axial direction of the cylindrical material W1 before tensioning. As shown, the high-temperature part is mainly stretched and reduced in diameter by tension, and the material W+' after tension becomes a tube (corrugated pipe) with a wave-shaped cross section.
The pipe-shaped inner member W2 is tightened and crimped mainly in each of the diameter-reduced portions (trough portions). Furthermore, in the case of FIG. 4, the cylindrical material W+', which has been stretched and reduced in diameter, is crimped onto the large diameter ridges /' of the inner member W2 in the form of a bellows tube and a corrugated pipe. As is clear from the above configuration, when the tensioning of the cylindrical material is completed, the inner member and the cylindrical material are effectively crimped together by the tightening, even if there is a difference in the whole or part of the inner surface of the material.

しかも、引張後には、筒状素材の温度降下によって、筒
状素材がさらに収縮、縮径する方向に圧縮応力が生じる
ため、内側部材に対する筒状素材の締付力が一層大きく
なり、従って、引張時さらにの(13)に示されるよう
な中実や中空のものが得られるのである。なお、内側部
材が比較的薄肉の円筒状パイプの賜金、その真円度に多
少の誤差が存在していても、外側からの筒状素材による
締付けによってそれが矯正され、円筒状内側部材の真円
度が高められるという副次的な効果も生じることが確認
されている。
Furthermore, after tensioning, compressive stress is generated in the direction in which the cylindrical material further contracts and its diameter decreases due to the temperature drop in the cylindrical material, so the tightening force of the cylindrical material against the inner member becomes even greater, and therefore the tensile In some cases, solid or hollow products as shown in (13) can be obtained. Furthermore, since the inner member is a relatively thin-walled cylindrical pipe, even if there is some error in its roundness, this can be corrected by tightening the cylindrical material from the outside, and the trueness of the cylindrical inner member will be corrected. It has been confirmed that the secondary effect of increasing roundness also occurs.

以上のようにして得られたクラッド材料は、はとんどそ
の捷まの形態で、あるいは2次加工等を経た後、種々広
範囲の用途に使用されることとなるが、内・外画材料の
一体性に優れるため構造上の信頼性が高く、特に、高温
下の使用においても筒状素材の引張時の加熱温度内では
筒状素材の締付作用が維持され得、メt;i’is、a
−i一体性が良好に保たれる。ここで、数ある用途の中
のいくつかの具体例を紹介する。
The cladding material obtained in the above manner is used for a wide variety of purposes, either in its rolled form or after undergoing secondary processing. Because of its excellent integrity, it has high structural reliability, and in particular, even when used at high temperatures, the tightening action of the cylindrical material can be maintained within the heating temperature when the cylindrical material is stretched. is, a
-i Integrity is maintained well. Here, we will introduce some specific examples of its many uses.

例えば第1図(b)に示すようなりラッド形態のものに
おいて、外側の筒状素材W1′(以下、外側部材W+’
とも称する)、を銅(Cu )ないしアルミニウム(A
p、 )等の導電性のよい材料とし、内側部材W2を鋼
々どの比較的強度の高い材料とすれば、導電材として好
適であシ、また芯材として上記鋼などに代えて、ニッケ
ルーチタン(Ni  −Ti ) 合金あるいはニオブ
(Nb)などの熱に対して伸び難い;F71料、つまり
線膨張率が極めて低いものを採用することによシ、架空
送電線として好適に使用し得る。すなわち、大電流を流
しても熱によるタルシミが効果的に抑制されるから、市
街地等において既存の鉄塔をそのまま使用しながら、送
電能力の増大を図シ得るのである。また、第1図(b)
のような形態のものは、溶接ワイヤ等にも有効に使用し
得例えば複合組成(成分)を含む単一構造のワイヤとし
たのでは、溶融などによっても馴染み性が悪くて製造し
難い場合等において、複合成分をそれぞれ単一成分に分
けて、各々内側部材W2.外側部利’W+’としてクラ
ッドするのである。1だ、第2図−(b)のような形態
のものは、例えば構造用等のに適し、例えば内側部材W
2をSUSパイプ等の耐食性のあるものとする一方、外
側部材W+’を軟鋼等とすれば、流体輸送パイプに好適
に用いることができる。さらに第3図(b)に示すよう
な形態であれば、外側部材W 1’の表面積が大ぎいか
ら、材質を選ぶことに、よって熱交換用チューブなどに
効果的に使用し得る。また第4図(b)のような形態の
ものについては、内側部材W2の表面積が大きいところ
から、その特長を生かした用途に供され得る。
For example, in the rad-shaped one shown in FIG. 1(b), the outer cylindrical material W1' (hereinafter referred to as outer member W+'
), copper (Cu) or aluminum (A
If the inner member W2 is made of a material with good conductivity such as steel, etc., and the inner member W2 is made of a relatively strong material such as steel, it is suitable as a conductive material. By using titanium (Ni-Ti) alloy or niobium (Nb), which is difficult to stretch against heat; F71 material, that is, a material with an extremely low coefficient of linear expansion, can be suitably used as an overhead power transmission line. In other words, even when large currents are passed through, sagging due to heat is effectively suppressed, making it possible to increase power transmission capacity while using existing steel towers in urban areas. Also, Fig. 1(b)
For example, wires with a single structure containing a composite composition (components) have poor compatibility with melting and are difficult to manufacture. , each of the composite components is divided into single components, and each inner member W2. It is clad with an outer edge of 'W+'. 1. The type shown in Fig. 2-(b) is suitable for structural purposes, for example, for the inner member W.
If 2 is made of a corrosion-resistant material such as a SUS pipe, and the outer member W+' is made of mild steel or the like, it can be suitably used as a fluid transport pipe. Furthermore, in the form shown in FIG. 3(b), since the surface area of the outer member W1' is large, it can be effectively used for heat exchange tubes, etc., depending on the material selected. Furthermore, the structure shown in FIG. 4(b) can be used for applications that take advantage of the large surface area of the inner member W2.

本発明によれば、このよう々有益なりラッド材料を上述
のようにして容易に且つ一体性良く製造できるのであり
、その意義は非常に大きいと言える。
According to the present invention, such a useful rad material can be manufactured easily and with good integrity as described above, and its significance can be said to be very great.

なお、上述の説明においては省略したが、筒状素材の引
張工程を経て得られたクラッド材料を次に内側部材とし
て使用し、さらにその外側に、上ヒ 拒渦様に金属製筒状体を圧着せしめることも可能であり
、順次そのような工程を繰シ返せば、三重管などの多層
構造のクラッド材料を得ることができる。
Although omitted in the above explanation, the cladding material obtained through the tensile process of the cylindrical material is then used as the inner member, and a metal cylindrical body is further placed on the outside in the shape of an upper vortex. Pressure bonding is also possible, and by sequentially repeating such steps, a cladding material with a multilayer structure such as a triple pipe can be obtained.

捷た、筒状素材内に内側部材を配置せしめる際に、両者
の間に、接合強度を一層高め得る機能等を有する第三の
金属薄膜々とを介在せしめ、それを介して内側および外
側の各材料を一体化す、ることも可能であシ、要するに
広い意味では、筒状素材内に挿入・配置されるもの全体
が内側部材として把握されるのである。
When the inner member is placed inside the twisted cylindrical material, a third metal thin film having the function of further increasing the bonding strength is interposed between the two, and the inner and outer parts are connected through it. It is also possible to integrate each material, and in a broad sense, the entire thing inserted and arranged inside the cylindrical material can be understood as an inner member.

さらに、金属製筒状素材としては、必ずしも円形断面の
ものだけに限られるわけではなく、例えば隋円状断面の
筒体や、角形状断面の筒体等を用いることも可能であシ
、その場合には内側部材もほぼその断面形状に対応する
ものが用いられることになる。
Furthermore, the metal cylindrical material is not necessarily limited to those with a circular cross section; for example, it is also possible to use a cylinder with a circular cross section, a cylinder with a square cross section, etc. In this case, the inner member will also be of a shape that substantially corresponds to the cross-sectional shape of the inner member.

最後に、種々試みられた本発明の実施例の中から代表的
なものを以下に示し、本発明をさらに具体的に明らかに
するが、本発明がこれら実施例の記載′、てよって何等
の制約をも受けるものではないことは言うまでもない。
Finally, representative examples of various tried embodiments of the present invention are shown below to clarify the present invention more specifically. Needless to say, it is not subject to any restrictions.

実施例 1 外径13.8mm、肉厚2.0Hの5US316製パイ
プを長さ2000ff711に切断し、それを筒状素材
W】として用い、その両端部をそれぞれ50tttyr
tの範囲長さで通電チャックによシ把持し、直接通電加
熱法により室温から800℃まで20秒間で加熱した。
Example 1 A 5US316 pipe with an outer diameter of 13.8 mm and a wall thickness of 2.0 mm was cut into a length of 2000 ff711, which was used as a cylindrical material W, and each end was 50 ttty.
It was gripped with an energized chuck over a length range of t, and heated from room temperature to 800° C. in 20 seconds by direct energization heating method.

ついで、外径9.Qmyn、肉厚0.5 mm、長さ2
00(C++〃のブ ニオj(Nb)製パイグを内側部材W2  として、こ
のパイプを上記加熱パイプに装入した。そしてパイプを
20011[/Secの引張速度で軸方向に250問伸
長せしめることによシ、引張操作を施した。
Next, the outer diameter is 9. Qmyn, wall thickness 0.5 mm, length 2
A Bunio J (Nb) pipe of 00 (C++) was used as the inner member W2, and this pipe was inserted into the heating pipe.Then, the pipe was stretched 250 times in the axial direction at a tensile rate of 20011 [/Sec]. A tensile operation was performed.

その結果、第6図に示されるような断面のクラッドパイ
プが得られ、最終的な断面寸法d1  乃至d3  は
、d1= 12.5m*、 (12= 8.8mm%d
a =78朋であった。また、両パイプW1′およびW
2の接合部には顕微鏡で見ても隙間が存在せず、物理的
に良好に接合していることが認められた。
As a result, a clad pipe with a cross section as shown in FIG.
a = 78 friends. Also, both pipes W1' and W
Even when viewed under a microscope, there was no gap in the bonded portion of No. 2, and it was confirmed that the bonded portion was physically well bonded.

実施例 2 外径:d4.Omtn、肉厚4.0*71.長さ450
Qi*の熱間仕上継目無炭素鋼鋼管を、筒状素材W1 
として採用し、その両端部の各々9QIrMを通電チャ
ックにて把持し、直接通電加熱法によシ室温から760
℃まで80秒間で昇温せしめた。他方、外径230騎、
肉厚2.4 ytnn 、長さ−4500mynの継目
無ニッケル・クロム・鉄合金(NCFI TB)Wを内
側部材W2として用い。それを1記加熱された鋼管内に
装入した。そして、通電チャックを引張チャックに置換
え、把持し直した後、 100FIi/seeの引張速
度で外側の炭素鋼鋼管を軸方向如750喘伸長せしめた
Example 2 Outer diameter: d4. Omtn, wall thickness 4.0*71. length 450
Qi*'s hot finished seamless carbon steel pipe is made into cylindrical material W1.
Each of the 9QIrM ends was gripped with an energizing chuck, and heated from room temperature to 760°C by direct energization heating.
The temperature was raised to ℃ in 80 seconds. On the other hand, the outer diameter is 230 horses,
A seamless nickel-chromium-iron alloy (NCFI TB) W having a wall thickness of 2.4 ytnn and a length of -4500 myn is used as the inner member W2. It was charged into a heated steel pipe. After replacing the current-carrying chuck with a tension chuck and gripping it again, the outer carbon steel pipe was axially elongated by 750 mm at a tensile rate of 100 FIi/see.

その結果、第7図に示されるような断面のクラッドパイ
プが得られ、最終的な断面寸法di 乃至d8 は、そ
れぞれd+ = 29.4ffi、 d2 = 22.
4騎、d3 =17.8門であった。また接合部の状態
は前記実施例1とほぼ同様に良好であった。
As a result, a clad pipe with a cross section as shown in FIG. 7 was obtained, and the final cross-sectional dimensions di to d8 were d+ = 29.4ffi, d2 = 22.
4 horsemen, d3 = 17.8 guns. Further, the condition of the joint was almost as good as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明方法のいくつかの具体例を
それぞれ説明する工程図であシ、第5図は、金属製筒状
素材に対する加熱パターンの一例を示すグラフである。 第6図および第7図は、本発明の各実施例で得られたそ
れぞれのクラッドパイプを示す断面図である。 W】:金属製筒状素材(引張前) W1′二  同  上  (引張後) W2 :内側部材 出願人  大同特殊鋼株式会社 第5図 第6図 第7図
1 to 4 are process diagrams illustrating several specific examples of the method of the present invention, and FIG. 5 is a graph showing an example of a heating pattern for a metal cylindrical material. FIG. 6 and FIG. 7 are cross-sectional views showing respective clad pipes obtained in each example of the present invention. W]: Metal cylindrical material (before tension) W1'2 Same as above (after tension) W2: Inner member applicant Daido Steel Co., Ltd. Figure 5 Figure 6 Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)引張されるべき所定の金属筒状素材内に、その軸
方向に延びる、複合されるべき所定の内側部材を配置せ
しめる一方、該金属筒状素材を加熱せしめて軸方向に引
張することにより、縮径された該金属筒状素材によって
前記内側部材を締め付け、一体化せしめるようにしたこ
とを特徴とする複合材料の製造方法。
(1) Placing a predetermined inner member to be combined and extending in the axial direction within a predetermined metal cylindrical material to be stretched, while heating the metal cylindrical material and pulling it in the axial direction. A method for manufacturing a composite material, characterized in that the inner member is tightened and integrated by the metal cylindrical material whose diameter has been reduced.
(2)前記金属筒状素材の加熱が、前記内側部材の配置
前若しくは配置後に実施される特許請求の範囲第1項記
載の製造方法。
(2) The manufacturing method according to claim 1, wherein the heating of the metal cylindrical material is performed before or after placing the inner member.
(3)前記内側部材が、ロッド若しくはパイプである特
許請求の範囲第1項まだは第2項記載の製造方法。
(3) The manufacturing method according to claim 1 or 2, wherein the inner member is a rod or a pipe.
(4)前記引張せしめられる金属筒状素材が、その軸方
向において、温度の低い部分を部分的に有する特許請求
の範囲第1項記載の製造方法。
(4) The manufacturing method according to claim 1, wherein the metal cylindrical material to be stretched partially has a low-temperature portion in its axial direction.
JP21579982A 1982-12-09 1982-12-09 Production of composite material Pending JPS59107728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21579982A JPS59107728A (en) 1982-12-09 1982-12-09 Production of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21579982A JPS59107728A (en) 1982-12-09 1982-12-09 Production of composite material

Publications (1)

Publication Number Publication Date
JPS59107728A true JPS59107728A (en) 1984-06-22

Family

ID=16678434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21579982A Pending JPS59107728A (en) 1982-12-09 1982-12-09 Production of composite material

Country Status (1)

Country Link
JP (1) JPS59107728A (en)

Similar Documents

Publication Publication Date Title
US6452139B1 (en) Method of joining metal components
US5988484A (en) Clad tubular product and method of manufacturing same
US3863328A (en) Method of making a Composite steel tubing
KR930002866B1 (en) Method of manufacturing high pressure fluid supply pipe
JP5402988B2 (en) Liquid phase diffusion bonded pipe joint and manufacturing method thereof
US20200408336A1 (en) A method for manufacturing a composite tube
JP2019521859A (en) Double pipe manufacturing method
EP3558554B1 (en) A connection tube and its method of manufacturing
US6401509B1 (en) Method for producing a hollow body made of metal
US5713408A (en) Method for making a multicast roll
JPS59107728A (en) Production of composite material
CN116221509A (en) High-strength corrosion-resistant alloy composite oil pipe and manufacturing method thereof
JP2707852B2 (en) Manufacturing method of double metal tube
US4873127A (en) Method of making heat transfer tube
JPH0144408B2 (en)
JPS58167089A (en) Manufacture of clad pipe
JP2000271639A (en) Plated steel tube and its manufacture
JPH06142948A (en) Production of metallic double pipe
JPH04315524A (en) Member for bonding together copper material and aluminum material and manufacture thereof
JPH01139740A (en) Corrosion-resisting duplex tube
JPS6076290A (en) Production of clad steel pipe
JPS6161915B2 (en)
JPS59202117A (en) Production of double pipe
JPS6076291A (en) Production of clad steel pipe
JPH01107912A (en) Composite roll