JPS59107650A - Drift compensating circuit of photoelectric converter - Google Patents

Drift compensating circuit of photoelectric converter

Info

Publication number
JPS59107650A
JPS59107650A JP57217398A JP21739882A JPS59107650A JP S59107650 A JPS59107650 A JP S59107650A JP 57217398 A JP57217398 A JP 57217398A JP 21739882 A JP21739882 A JP 21739882A JP S59107650 A JPS59107650 A JP S59107650A
Authority
JP
Japan
Prior art keywords
signal
circuit
photoelectric converter
output
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57217398A
Other languages
Japanese (ja)
Inventor
Takatoshi Shibata
柴田 剛利
Yasuyuki Kosugi
小杉 恭之
Masamitsu Tokuda
正満 徳田
Tsuneo Horiguchi
常雄 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Anritsu Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Nippon Telegraph and Telephone Corp filed Critical Anritsu Corp
Priority to JP57217398A priority Critical patent/JPS59107650A/en
Publication of JPS59107650A publication Critical patent/JPS59107650A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To quicken the response speed of signal conversion and to improve the S/N by varying a bias voltage of a photoelectric converter in response to temperature, and feeding back an output of an operational amplifier of a signal converting circuit to make the amplification degree of a photoelectric converter constant. CONSTITUTION:A bias circuit 12 varies a bias voltage based on a signal detected by a temperature sensor 14 so as to control th amplification factor of the photoelectric converter 11 to a constant value at all times independently of temperature change. A signal converting circuit 15 quickens the response speed by feeding back an output of an operational amplifier 15a via a feedback resistor 15b to an input terminal side to increase the signal amplification degree and the S/N.

Description

【発明の詳細な説明】 本発明は、例えば光パルス試験装置等に適用される光電
変換装置のドリフト補償回路に係り、1− 特に温度変化に応じて変化する光電変換器の暗電流およ
び光電変換器を含む増幅器等の温度ドリフトを補償する
光電変換装置のドリフト補償回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drift compensation circuit for a photoelectric conversion device applied to, for example, an optical pulse testing device, etc. The present invention relates to a drift compensation circuit for a photoelectric conversion device that compensates for temperature drift in an amplifier including a photoelectric conversion device.

光電変換装置は種々の用途に使用されるが、その1つと
して例えば光・やルス試験装置が上げられる。この試験
装置は、レーザダイオードがら発生される光パルスを方
向性結合器を介して被試験用光ファイバに入射するとと
もに、その光フアイバ内で反射され、かつ方向性結合器
を経由して戻ってくる後方散乱光を光電変換器で受光し
、更に増幅器で増幅した後、適宜信号処理を行なってC
RT又は記録装置に表示又は記録することにより、被試
験用光ファイバの損失、コネクタ接続損失、破断点位置
等を測定するものである。
Photoelectric conversion devices are used for various purposes, one of which is, for example, a light/luminus test device. This test equipment inputs a light pulse generated by a laser diode into the optical fiber under test via a directional coupler, reflects it within the optical fiber, and returns it via the directional coupler. After receiving the backscattered light with a photoelectric converter and amplifying it with an amplifier, appropriate signal processing is performed to convert the backscattered light into C.
By displaying or recording on an RT or recording device, the loss of the optical fiber under test, connector connection loss, break point position, etc. are measured.

ところで、従来、方向性結合器を経由して入射される後
方散乱光は第1図に示すような光電変換装置を用いて電
気信号に変換し所要の信号を得ている。この装置につい
て具体的に述べる一つ− と、バイアス電源1によって増幅度が一定とされている
アバランシェ・ Jjフイオードなどの光電変換器2に
光信号3が入射すると、光電流が流れて抵抗4の両端に
光信号3の強度番こ応した電圧が発生する。この抵抗両
端に発生した電圧は増幅器5により図示しない後続の信
号処理に必要な信号レベルまで増幅した後、コンデンサ
6および抵抗7よりなる微分回路により直流成分をカッ
トしドリフト成分を除去している。
By the way, conventionally, backscattered light incident through a directional coupler is converted into an electrical signal using a photoelectric conversion device as shown in FIG. 1 to obtain a desired signal. One specific example of this device is that when an optical signal 3 is incident on a photoelectric converter 2 such as an avalanche JJ field whose amplification is kept constant by a bias power supply 1, a photocurrent flows and the resistor 4 A voltage corresponding to the intensity of the optical signal 3 is generated at both ends. The voltage generated across this resistor is amplified by an amplifier 5 to a signal level necessary for subsequent signal processing (not shown), and then a differentiating circuit consisting of a capacitor 6 and a resistor 7 cuts the DC component and removes the drift component.

しかし、以上のような光電変換装置の場合には次のよう
な問題がある。
However, the photoelectric conversion device as described above has the following problems.

■ その1つは、光電流の増幅作用を行う光電変換器2
は第2図および第3図に示すようなノマイアス電圧−暗
電流特性及び・々イアスミ圧−増幅度特性をもっている
が、これらの特性は周囲温度T1 z T2 、・・・
の変化によって変化することである。この場合、コンデ
ンサ6および抵抗7よりなる微分回路は直流成分を除去
することができるが、温度変化によって変化する暗電流
および増幅度のように緩慢な変化を呈する低周波成分の
場合には除去することができない。特に、後方散乱光は
微弱な光信号であるので、その影響を受けて測定誤差と
なる欠点がある。
■ One of them is the photoelectric converter 2 that amplifies the photocurrent.
has nominal voltage-dark current characteristics and negative voltage-amplification characteristics as shown in Figs. 2 and 3, but these characteristics differ depending on the ambient temperature T1 z T2 ,...
It means that it changes depending on the change in. In this case, the differentiating circuit consisting of the capacitor 6 and the resistor 7 can remove the direct current component, but in the case of dark current that changes with temperature changes and low frequency components that change slowly, such as the amplification degree, it is removed. I can't. In particular, since backscattered light is a weak optical signal, it has the disadvantage of being influenced by backscattered light and causing measurement errors.

■ また、光電変換器2の応答速度は光電変換器2の内
部容置、増幅器5の人力容量および抵抗4の抵抗値によ
って決まるため、その応答速度が遅くなる欠点がある。
(2) Furthermore, since the response speed of the photoelectric converter 2 is determined by the internal space of the photoelectric converter 2, the human power capacity of the amplifier 5, and the resistance value of the resistor 4, there is a drawback that the response speed is slow.

■ また、増幅器5は、微弱な光信号を電気信号として
増幅するとともに温度変化によって生ずる自身の温度ド
リフトも同時に増幅してしまうが、この温度ドリフトは
緩慢な変化を有する低周波成分であるので、前述と同様
に微分回路で除去することができない欠点がある。
(2) In addition, the amplifier 5 amplifies a weak optical signal as an electrical signal and simultaneously amplifies its own temperature drift caused by temperature changes, but since this temperature drift is a low frequency component that changes slowly, Similar to the above, there is a drawback that cannot be removed by a differentiating circuit.

■ 光・ぞルス試験器のように、信号波形の減衰率から
光ファイバの損失を測定する場合には、直流成分をカッ
トする微分回路は、波形ひずみを招き測定誤差を生じさ
せる。測定誤差を少なくする為に微分回路の時定数を大
きくする必要がある。しかし微分回路の時定数を大きく
すればサージ電流が増大する為、回路に悪影響をおよぼ
ず欠点がある。
■ When measuring the loss of an optical fiber from the attenuation rate of the signal waveform, as in the optical ZOLS tester, the differentiating circuit that cuts the DC component causes waveform distortion and measurement errors. In order to reduce measurement errors, it is necessary to increase the time constant of the differentiator circuit. However, if the time constant of the differentiator circuit is increased, the surge current will increase, so this has the disadvantage that it does not have an adverse effect on the circuit.

本発明は上記実情にかんがみてなされたもので、温度変
化によって生ずる光電変換器の暗電流および増幅度の変
化、更には増幅器の温度ドリフト等を面単な構成で補償
し、かつ応答速度をJ: lth0Mi変換装置のドリ
フト補償回路を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it compensates for changes in the dark current and amplification degree of the photoelectric converter caused by temperature changes, as well as the temperature drift of the amplifier, etc. with a simple configuration, and increases the response speed to J : An object of the present invention is to provide a drift compensation circuit for an lth0Mi conversion device.

以下、本発明の一実施例について第4図を参照して説明
する。同図において11は例えばアバランシェ・ホトダ
イオード等のような光電変換器であって、これはバイア
ス回路12によってバイアスされ、例えば後方散乱光の
ような微弱な光信号13が入射するとその光信号13を
光重、流に変換するとともに光電流の増幅作用を行なう
。この光電変換器1ノの近傍又は同変換器11と同一周
囲条件を満たす個所には周囲温度を検出する温度センサ
14が配置され、同センサJ4で検出した信号は/<イ
アス回路12に供給されるようになっている。温度セン
サ14とバイアス回路12は光電変換器11の・々イア
ス制御回路を構成するものであり、具体的には温度セン
サ14で検出した信号に基づいてバイアス回路12がバ
イアス電圧を可変して光電変換器1ノに供給することに
より、光電変換器11の増幅度を温度変化に拘らず常に
一定に制御するものである。15は光電変換器1ノで変
換された光電流を所要の電圧信号に変換する信号変換回
路である。この信号変換回路15は、演算増幅器15t
hとフィードバック抵抗15bとからなり、演算増幅器
15mの出力をフィードバック抵抗15bを介して入力
端側にフィードバックすることにより、第1に応答速度
を速めることができる。第2に信号増幅度を高め、S/
Nを良くすることが出来るものである。さらに、信号変
換回路15の出力側には光電変換器11の暗電流および
光電変換器11を含む演算増幅器15aの温度ドリフト
等を除去する信号補正回路16が接続されている。この
信号補正回路16は、2つの信号の差の信号を増幅する
増幅器16aと、無信号時にタイミング信号を発生ずる
タイミング信号発生回路16bと、サンf/l/ホール
ド回路16Cとを備えている。タイミング信号発生回路
16bは例えば前記レーザダイオードから光パルスを発
生する所定時間前にタイミング信号を発生するようにな
っている。また、サンプルホールド回路16cは、タイ
ミング信号を受けて増幅器16aの出力をす行なう一対
のスイッチ部とを備えている。なお、信号補正回路16
の出力側にはタイミング信号の発生時に図示しない接続
回路の入力端を接地し、タイミング信号の非発生時には
後続回路を信号補正回路16に接続するスイッチ回路1
7が設けられている。
An embodiment of the present invention will be described below with reference to FIG. In the figure, reference numeral 11 denotes a photoelectric converter such as an avalanche photodiode, which is biased by a bias circuit 12, and when a weak optical signal 13 such as backscattered light is incident, it converts the optical signal 13 into an optical signal. It not only converts photocurrent into photocurrent, but also amplifies photocurrent. A temperature sensor 14 for detecting the ambient temperature is placed near the photoelectric converter 1 or at a location that satisfies the same ambient conditions as the photoelectric converter 11, and the signal detected by the sensor J4 is supplied to the IAS circuit 12. It has become so. The temperature sensor 14 and the bias circuit 12 constitute the bias control circuit of the photoelectric converter 11. Specifically, the bias circuit 12 varies the bias voltage based on the signal detected by the temperature sensor 14 to control the photoelectric converter 11. By supplying it to the converter 1, the amplification degree of the photoelectric converter 11 is always controlled to be constant regardless of temperature changes. 15 is a signal conversion circuit that converts the photocurrent converted by the photoelectric converter 1 into a required voltage signal. This signal conversion circuit 15 includes an operational amplifier 15t
First, the response speed can be increased by feeding back the output of the operational amplifier 15m to the input end side via the feedback resistor 15b. Second, by increasing the signal amplification degree, S/
It is possible to improve N. Furthermore, a signal correction circuit 16 is connected to the output side of the signal conversion circuit 15 to remove dark current of the photoelectric converter 11 and temperature drift of the operational amplifier 15a including the photoelectric converter 11. The signal correction circuit 16 includes an amplifier 16a that amplifies the difference between two signals, a timing signal generation circuit 16b that generates a timing signal when there is no signal, and a sun f/l/hold circuit 16C. The timing signal generating circuit 16b is configured to generate a timing signal, for example, a predetermined time before the optical pulse is generated from the laser diode. Further, the sample and hold circuit 16c includes a pair of switch sections that receive a timing signal and output the output of the amplifier 16a. Note that the signal correction circuit 16
On the output side of the switch circuit 1, the input end of a connection circuit (not shown) is grounded when a timing signal is generated, and the subsequent circuit is connected to the signal correction circuit 16 when a timing signal is not generated.
7 is provided.

次に、以上のように構成された装置の作用について第5
図を参照しながら説明する。今、レーザダイオードから
被試験用光ファイ・々に対して第5図(A)のような光
A?ルスが出力されているものとし、かつ第41M+に
示す装置には既に電源が投入されて被試験用光ファイ・
々からの後方散乱光を光電変換器11で受光し電気的な
光電流に変換しうる状態にあるものとする。従って、こ
の状態にあっては、光電変換器11の暗電流および増幅
度は周囲温間の変化によって変化している。ここで、本
装置は温度センサ14を用いて周囲温度を検出するとと
もに、この温度センサ14からの検出信号に基づいてバ
イアス回路12が・ぐイアスミ圧を可変するようにして
いるので、光電変換器1ノの増幅度を温度変化に拘らず
常に一定とすることができる。
Next, we will discuss the operation of the device configured as described above in the fifth section.
This will be explained with reference to the figures. Now, light A as shown in Fig. 5 (A) is emitted from the laser diode to the optical fiber under test. It is assumed that the optical fiber under test has already been powered on and that the device shown in No. 41M+ is
It is assumed that the photoelectric converter 11 is in a state where it can receive backscattered light from various sources and convert it into an electrical photocurrent. Therefore, in this state, the dark current and amplification degree of the photoelectric converter 11 change due to changes in ambient temperature. Here, this device detects the ambient temperature using the temperature sensor 14, and the bias circuit 12 varies the Guiasmi pressure based on the detection signal from the temperature sensor 14, so the photoelectric converter The amplification degree of 1 can be kept constant regardless of temperature changes.

しかし、この段階では光電変換器11の暗電流および演
算増幅器15aの温度ドリフトは温度変化によって変化
し、信号変換回路15の出力端からは第5図(B)に示
す〆L差成分信号v1  が出力されている。そこで、
上記誤差成分信号を信号補正回路16で補償するもので
ある。即ち、レーザダイオードから第5 II (A)
に示す光・やルスが発生する所定時間前にタイミング信
号発生回路16bから第5図(C)に示すタイミング信
号を発生する。そうすると、このタイミング信号によっ
て、スイッチ回路17が接地側に接続され状態となる。
However, at this stage, the dark current of the photoelectric converter 11 and the temperature drift of the operational amplifier 15a change due to temperature changes, and the 〆L difference component signal v1 shown in FIG. 5(B) is output from the output terminal of the signal conversion circuit 15. It is being output. Therefore,
The error component signal mentioned above is compensated by the signal correction circuit 16. That is, from the laser diode to the fifth II (A)
A timing signal shown in FIG. 5(C) is generated from the timing signal generating circuit 16b a predetermined time before the light/yellow pulse shown in FIG. 5C is generated. Then, this timing signal causes the switch circuit 17 to be connected to the ground side.

ここで、AJスイッチ部が閉成す□ると、増幅器16a
の出力端に現われている第5図の)に示す誤差成分信号
イがサンプルホールド回路16cによってサンプルホー
ルドされる。
Here, when the AJ switch section is closed □, the amplifier 16a
The error component signal A shown in ) in FIG. 5 appearing at the output terminal of is sampled and held by the sample and hold circuit 16c.

しかし、後続回路にはスイッチ回路17のアース側に接
続されることによって誤差成分信号イは出力されない。
However, the error component signal A is not outputted to the subsequent circuit because it is connected to the ground side of the switch circuit 17.

次に、サンプリング信号の発生を停止させて光信号13
の測定状態に入ると、スイッチ回路供給される。このと
き、末だ光信号13が人力されていないとすると、信号
変換回路15から出力される誤差成分信号はサンプルホ
ールド値によって減算されて零となる。従って、信号補
正回路16からは誤差成分信号が消去されて第5図の)
に示すような零レベルの信号口が出力される。
Next, the generation of the sampling signal is stopped and the optical signal 13 is
When entering the measurement state, the switch circuit is supplied. At this time, assuming that the final optical signal 13 is not manually input, the error component signal output from the signal conversion circuit 15 is subtracted by the sample hold value and becomes zero. Therefore, the error component signal is deleted from the signal correction circuit 16 (as shown in FIG. 5).
A zero level signal as shown in is output.

その後、第5図(A)に示すレーザ・ぐルスの発生によ
り光電変換器11に光信号13が入射すると、ここで光
信号13は光′電流に変換された後、信号変換回路15
に送られる。この信号変換回路15は、演算増幅器15
thの出力を抵抗15bによってフィードバックしてい
るので、演算増幅器15aの増幅度A。とすると、従来
のものに比しA、倍の応答速度で電流信号を電圧信号に
変換し第5図CB)のハに示す信号を出力することにな
る。又は、この回路15の付加により、SN比を大幅に
改善できるとともに、後続の増幅器で更に高い増幅度で
増幅する必要がなくなる。
Thereafter, when the optical signal 13 enters the photoelectric converter 11 due to the generation of the laser beam shown in FIG.
sent to. This signal conversion circuit 15 includes an operational amplifier 15
Since the output of th is fed back through the resistor 15b, the amplification degree of the operational amplifier 15a is A. In this case, the current signal is converted into a voltage signal at a response speed A twice that of the conventional one, and the signal shown in C of FIG. 5 CB) is output. Alternatively, by adding this circuit 15, the S/N ratio can be significantly improved, and there is no need for amplification at a higher amplification degree in a subsequent amplifier.

そして、以上のように信号変換された信号は信号補正回
路16によりサンプルホールド値で誤差補正されるので
、同回路I6からは第5図(I))に示す二のような真
の光信号13の強度に応じた信号を出力することができ
る。
Then, since the signal converted as described above is error-corrected by the sample-and-hold value by the signal correction circuit 16, the true optical signal 13 as shown in FIG. It is possible to output a signal according to the strength of the signal.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

増II@器16aとしては、減算回路16a−1と演算
増幅器16a−2との組合せの外、例えば差動増幅器又
はコン・やレータの何れであってもよい。また、サンプ
ルホールド回路16c必らずしも必要としない。また、
上記実施例は光・ぐルス試験装置の適用例について述べ
たが、無信号か存在する光信号を電気信号に変換し増幅
する装置のすべてについて適用される。
In addition to the combination of the subtraction circuit 16a-1 and the operational amplifier 16a-2, the amplifier 16a may be a differential amplifier, a converter, or a converter. Further, the sample and hold circuit 16c is not necessarily required. Also,
Although the above-mentioned embodiment has been described with reference to an example of application to an optical/Grus test device, the present invention can be applied to any device that converts and amplifies an optical signal, which is present or absent, into an electrical signal.

以上詳記したように本発明によれば、湿度変化を検出し
て光電変換器のバイアス電圧を可変するようにしたので
、温度変化によって変化する光電変換器の増幅度を常に
一定にすることがきる。また、光電変換器から出力され
る光電流を電圧に変換する信号変換回路は演算増幅器の
出力を抵抗によってフィードバックする構成としたので
、速い応答速度で信号変換することができ、ひいてはS
N比の向上および回路設計にンプルホールドし、光信号
の測定時にフィードバックするようにしたので、誤竣成
分信号を完全に除去でき、しかも繰返し光信号が入力さ
れる場合でも常に無信号にサンプルするので、時間によ
って誤差成分信号が変化する場合でも確実に補償し得る
光電変換装置のドリフト補償回路を提供できる。
As detailed above, according to the present invention, the bias voltage of the photoelectric converter is varied by detecting changes in humidity, so that the amplification degree of the photoelectric converter, which changes due to temperature changes, can be kept constant at all times. Wear. In addition, the signal conversion circuit that converts the photocurrent output from the photoelectric converter into voltage is configured to feed back the output of the operational amplifier through a resistor, so it is possible to convert the signal at a fast response speed, and as a result, the S
By improving the N ratio and using a sample hold in the circuit design to provide feedback when measuring optical signals, it is possible to completely remove erroneous component signals, and even when optical signals are repeatedly input, samples are always taken as no signal. Therefore, it is possible to provide a drift compensation circuit for a photoelectric conversion device that can reliably compensate even when the error component signal changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来回路の構成図、第2図および第3図はそれ
ぞれ光電変換器の湿度変化に対する暗電流および増幅度
の変化状態を示す図、第4図は本発明に係る回路の一実
施例を示す構成図、第5図は回路動作を説明するタイミ
ング図である。 1ノ・・・光電変換器、12・・・バイアス回路、14
・・・温度センサ、15・・・信号変換回路、15a・
・・演算増幅器、15b・・・フィードバック抵抗、1
6・・・信号補正回路、16c・・・サンダルホールド
回路。 出願人代理人  弁理士 鈴 江 武 彦13− 茨城県那珂郡東海村大字白方字 白根162番地日本電信電話公社 茨城電策通信研究所内 ■出 願 人 日本電信電話公社
FIG. 1 is a configuration diagram of a conventional circuit, FIGS. 2 and 3 are diagrams showing changes in dark current and amplification degree with respect to humidity changes in a photoelectric converter, and FIG. 4 is an implementation of a circuit according to the present invention. A configuration diagram showing an example, and FIG. 5 are timing diagrams illustrating circuit operation. 1 No... Photoelectric converter, 12... Bias circuit, 14
...Temperature sensor, 15...Signal conversion circuit, 15a.
...Operation amplifier, 15b...Feedback resistor, 1
6... Signal correction circuit, 16c... Sandal hold circuit. Applicant's representative Patent attorney Takehiko Suzue 13 - Ibaraki Densaku Communication Research Institute, Nippon Telegraph and Telephone Public Corporation, 162 Shirane, Oaza Shirakata, Tokai-mura, Naka-gun, Ibaraki Prefecture Applicant: Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] 光信号を電流信号に変換する光電変換器と;この光電変
換器の周囲温度を検出し、この検出信号に基づいて前記
光電変換器の増幅度を一定にするためのバイアス制御回
路と;前記光電変換器の出力信号を増幅する増幅器の出
力を抵抗を介して該増幅器の入力端にフィードバックす
る信号変換回路と;前記光信号の無人力時に受領される
タイミング信号で前記電流−電圧変換回路の出力をサン
プルホールドし、前記光信号の測定時に前記電流−電圧
変換回路の出力から前記サンプルホールド値を減算する
信号補正回路とを具備したことを特徴とする光電変換装
置のドリフト補償回路。
a photoelectric converter that converts an optical signal into a current signal; a bias control circuit that detects the ambient temperature of the photoelectric converter and keeps the amplification degree of the photoelectric converter constant based on this detection signal; a signal conversion circuit that feeds back the output of an amplifier that amplifies the output signal of the converter to the input terminal of the amplifier via a resistor; an output of the current-to-voltage conversion circuit with a timing signal received when the optical signal is unattended; A drift compensation circuit for a photoelectric conversion device, comprising: a signal correction circuit that samples and holds the optical signal, and subtracts the sample and hold value from the output of the current-voltage conversion circuit when measuring the optical signal.
JP57217398A 1982-12-11 1982-12-11 Drift compensating circuit of photoelectric converter Pending JPS59107650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217398A JPS59107650A (en) 1982-12-11 1982-12-11 Drift compensating circuit of photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217398A JPS59107650A (en) 1982-12-11 1982-12-11 Drift compensating circuit of photoelectric converter

Publications (1)

Publication Number Publication Date
JPS59107650A true JPS59107650A (en) 1984-06-21

Family

ID=16703559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217398A Pending JPS59107650A (en) 1982-12-11 1982-12-11 Drift compensating circuit of photoelectric converter

Country Status (1)

Country Link
JP (1) JPS59107650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121937U (en) * 1984-07-12 1986-02-08 中島造機株式会社 Whiteness meter for grain processing
JPS6130731A (en) * 1984-07-24 1986-02-13 Chino Works Ltd Radiation energy detector
WO2019073705A1 (en) * 2017-10-12 2019-04-18 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123617A (en) * 1977-04-04 1978-10-28 Ricoh Co Ltd Correction method for dark current of solid image pickup element
JPS54121087A (en) * 1978-03-13 1979-09-19 Fujitsu Ltd Apd temperature compensating circuit
JPS5631742B2 (en) * 1975-05-16 1981-07-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631742B2 (en) * 1975-05-16 1981-07-23
JPS53123617A (en) * 1977-04-04 1978-10-28 Ricoh Co Ltd Correction method for dark current of solid image pickup element
JPS54121087A (en) * 1978-03-13 1979-09-19 Fujitsu Ltd Apd temperature compensating circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121937U (en) * 1984-07-12 1986-02-08 中島造機株式会社 Whiteness meter for grain processing
JPS6130731A (en) * 1984-07-24 1986-02-13 Chino Works Ltd Radiation energy detector
WO2019073705A1 (en) * 2017-10-12 2019-04-18 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic device
US11533445B2 (en) 2017-10-12 2022-12-20 Sony Semiconductor Solutions Corporation Solid-state image sensor and electronic device
US11818481B2 (en) 2017-10-12 2023-11-14 Sony Semiconductor Solutions Corporation Solid-state image sensor and electronic device

Similar Documents

Publication Publication Date Title
US4070572A (en) Linear signal isolator and calibration circuit for electronic current transformer
US8867929B2 (en) Optical receiver using single ended voltage offset measurement
US20040008984A1 (en) Automatic dark current compensation
EP1041750A3 (en) Optical receiving circuit and optical communication device
US8901475B1 (en) Avalanche photodiode biasing system including a current mirror, voltage-to-current converter circuit, and a feedback path sensing an avalanche photodiode voltage
KR830007003A (en) Optical receiver circuit
EP0609018B1 (en) Apparatus for measuring optical power in an optical receiver or the like
US7939790B1 (en) Method and apparatus for controlling the gain of an avalanche photodiode with fluctuations in temperature
DE69012982D1 (en) Signal level measuring arrangement with offset correction means.
US4139767A (en) Photodetector with improved signal-to-noise ratio
JP3999325B2 (en) Photodetection circuit
CA2115904A1 (en) Differential boxcar integrator with auto-zero function
JPS59107650A (en) Drift compensating circuit of photoelectric converter
CN108880693A (en) A method of relevant detection is realized using single photodiode
CA1145033A (en) Photo-feedback preamplifier circuit
JP3373246B2 (en) Optical amplifier
JPS6388871A (en) Optical hybrid integrated circuit device
CN112532327B (en) Method and system for improving received light power indication precision
JP2558691B2 (en) AC light component amplifier
CA1101515A (en) Photodetector with improved signal-to-noise ratio
JPS61264816A (en) Optical pulse reception circuit
US5280335A (en) Fiber-optical testing system having a detection circuit
JPH04337933A (en) Photodetecting amplifier
JPS6369336A (en) Optical reception circuit
CN112985586A (en) Polarization maintaining light source and optical power detection integrated equipment