JPS59107630A - Adpcm decoding circuit - Google Patents

Adpcm decoding circuit

Info

Publication number
JPS59107630A
JPS59107630A JP21671082A JP21671082A JPS59107630A JP S59107630 A JPS59107630 A JP S59107630A JP 21671082 A JP21671082 A JP 21671082A JP 21671082 A JP21671082 A JP 21671082A JP S59107630 A JPS59107630 A JP S59107630A
Authority
JP
Japan
Prior art keywords
signal
circuit
pcm
adpcm
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21671082A
Other languages
Japanese (ja)
Other versions
JPS6356727B2 (en
Inventor
Takao Nishitani
隆夫 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP21671082A priority Critical patent/JPS59107630A/en
Priority to US06/558,236 priority patent/US4571737A/en
Priority to AU22175/83A priority patent/AU556155B2/en
Priority to CA000442934A priority patent/CA1219373A/en
Priority to FR8319785A priority patent/FR2542147B1/en
Publication of JPS59107630A publication Critical patent/JPS59107630A/en
Publication of JPS6356727B2 publication Critical patent/JPS6356727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/04Differential modulation with several bits, e.g. differential pulse code modulation [DPCM]
    • H03M3/042Differential modulation with several bits, e.g. differential pulse code modulation [DPCM] with adaptable step size, e.g. adaptive differential pulse code modulation [ADPCM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding

Abstract

PURPOSE:To prevent deterioration of characteristics from being accumulated even with the titled circuits connected in cascade by outputting a representative residual value signal and a high/low both-limit residual value signal to an output of an adaptive inverse quantizing circuit and forming a nonlinear PCM decoding signal by these values. CONSTITUTION:When an ADPCM code nj is inputted to a terminal 8, an inverse adaptive quantizing circuit 91 outputs a representative residual signal corresponding to a residual signal ej at a coder side and ThU and ThL representing both limits of a section. A representative decoding signal, a lower-limit decoding signal XLj and a higher-limit decoding signal XUj are obtained by passing these values through adders 105, 106, an adaptive filter 111 and a fixed filter 112. The representative decoding signal is converted into a PCM quantizing signal X by a linear-nonlinear PCM converter 120, and the X is converted into a PCM quantizing signal XRj by a nonlinear-linear PCM converter 121. When the XRj exists in sections XLj, XUj, the XRj is used for a linear input to an ADPCM code circuit of the next stage. If the XR exists at the outside of the said sections, an output adding 1 to the XRj or subtracting 1 therefrom is obtained at a selecting circuit 124.

Description

【発明の詳細な説明】 本発明はPCM符号化とADPCM符号化を交互にくり
返す場合のADPCM回路、特に量子化ノイズを累積し
ないADPCM復号回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ADPCM circuit that alternately repeats PCM encoding and ADPCM encoding, and particularly to an ADPCM decoding circuit that does not accumulate quantization noise.

ADPCMに関しては1980年4月 IEEE発行の
’ Proceedings of IEEE ” 4
88頁〜525頁に詳しく、また、伝送路ビット誤りに
対して強い特性を持たせた改良形ADPCMに関しては
1982年5月IEEE発行の” Proceedin
gs of ICASSP’82’  960頁〜96
3頁に詳しい。以下、本発明の説明に必要となる範囲で
、前記第2の文献に基づいてADPCMを説明する。
Regarding ADPCM, see 'Proceedings of IEEE' 4 published by IEEE in April 1980.
For details on pages 88 to 525, and regarding the improved ADPCM with characteristics that are strong against transmission line bit errors, see "Proceedin" published by IEEE in May 1982.
gs of ICASSP'82' pages 960-96
Details on page 3. Hereinafter, ADPCM will be explained based on the second document to the extent necessary for explaining the present invention.

第1図は従来のADPCM符号及び復号回路を示したも
ので、入力信号端子1、減算器2、量子化回路3、逆適
応量子化回路4、加算器5、適応予測回路6および符号
出力端子7からなるADPCM符号回路と、符号入力端
子8、逆適応量子化回路9、加算器10、適応予測回路
11および出力端子12からなるADPCM復号回路を
示している。
FIG. 1 shows a conventional ADPCM code and decoding circuit, including an input signal terminal 1, a subtracter 2, a quantization circuit 3, an inverse adaptive quantization circuit 4, an adder 5, an adaptive prediction circuit 6, and a code output terminal. 7, and an ADPCM decoding circuit including a code input terminal 8, an inverse adaptive quantization circuit 9, an adder 10, an adaptive prediction circuit 11, and an output terminal 12.

適応量子化回路3は入力信号がMビット長で表示されて
いる場合、出力信号としてMより小さいNビット長出力
信号を得る回路で、入力信号を2N=1個の閾値を用い
て判5屁し、判冗結果をNビットこの時の入力信号X 
が であれば、出力信号はn、であシ、次の標本時刻(j+
1)での量子化幅△、+1は量子化器入力信号レベルに
応じて次式を用いて圧伸させる。
The adaptive quantization circuit 3 is a circuit that obtains an output signal with a length of N bits smaller than M when the input signal is expressed with a length of M bits. Then, the redundancy result is expressed as N bits of the input signal X at this time.
, then the output signal is n, and the next sample time (j+
The quantization width Δ, +1 in 1) is companded using the following equation according to the quantizer input signal level.

△1+、−べ・M(nρ        (2)ただし
、ここでM(n)はn、によシー意向に定まる乗数であ
シ、8kHzで標本化された音声信号を4ビツト(N=
4 )に符号化する場合に用いられ表    1 式(2)においてβは1よシ小さい正定数に定めておけ
ば、適応予測回路が時不変フィルタである限シはべ の
演算が過去の量子化幅をリークさせる作用があるため伝
送路ビット誤シに対して強くなる事が知られておシ、詳
しくは1975年IEEE発行及び9は前記適応量子化
回路3ONビツト出力信号及び伝送されて来たNピット
適応量子化回路出力信号が入力されると、前記闇値に対
応してMビー5= ットの再生入力信号を出力するもので △ +jr               (3)x=n 
 △十05△1 によシ伝送信号を逆量子化する。このX、の事は代表値
と呼ばれている。式(1)1式(3)で示される量子化
の特性は闇値間の幅が常に一定であるため、代表値間も
同じ幅で一定となっておシ、線形量子化特性と呼ばれて
いる。一般には闇値間の幅、代表値間の幅も一定とはな
らず、量子化すべき信号の統計的な分布関数に依存した
幅を持たせるのが常であるが詳しくは後述する。適応予
測回路6および11の伝達関数は同一で、これをp (
z)とすると、 となる。ここで(a)口=1.・・・、k)は時刻jの
予測係数と呼ばれておシ時刻jにおける予測器入力△ 信号をxl、逆量子化器出力信号をe、とすれば、礼2
を最小とする様に各係数を変化させる。つまり、各係数
は a171 == (1−δ) ”I+g”I・Xl−1
(5)として時々刻々変化させるとよい事が知られてい
6一 る。ここでδ及びgは1より小の正定数である。
△1+, -be・M(nρ (2) Here, M(n) is a multiplier determined by the intention of n, and the audio signal sampled at 8kHz is converted into 4 bits (N=
If β is set as a positive constant smaller than 1 in Equation (2) of Table 1, then as long as the adaptive prediction circuit is a time-invariant filter, the calculation of It is known that it is resistant to bit errors on the transmission line because it has the effect of leaking the quantization width. When the output signal of the N-pit adaptive quantization circuit is input, it outputs the reproduced input signal of M bits corresponding to the dark value, and △ +jr (3)x=n
The transmission signal is dequantized by △105△1. This X is called a representative value. The quantization characteristics shown by equations (1) and (3) are such that the width between the dark values is always constant, so the width between the representative values is also constant, and is called the linear quantization characteristic. ing. In general, the width between the dark values and the width between the representative values are not constant, and are usually set to have widths depending on the statistical distribution function of the signal to be quantized, which will be described in detail later. The transfer functions of the adaptive prediction circuits 6 and 11 are the same and are expressed as p (
z), it becomes . Here, (a) mouth=1. ..., k) is called the prediction coefficient at time j, and if the predictor input △ signal at time j is xl and the inverse quantizer output signal is e, then
Change each coefficient so as to minimize. In other words, each coefficient is a171 == (1-δ) "I+g"I・Xl-1
It is known that it is good to change (5) from time to time61. Here, δ and g are positive constants smaller than 1.

以下第1図に従って従来のADPCM符号回路/復号回
路について述べる。時刻jにおける入力信号標本値X、
が端子1からADPCM符号化回路に入力されると、減
算器2により入力信号X、と適応量子化回路3は前述し
た様にe、をNビットの符号n1に変換し、端子7から
出力されると同時に逆適応量子化回路4へ入力される。
A conventional ADPCM encoding circuit/decoding circuit will be described below with reference to FIG. Input signal sample value X at time j,
is input to the ADPCM encoding circuit from terminal 1, the subtracter 2 converts the input signal At the same time, the signal is input to the inverse adaptive quantization circuit 4.

逆適応量子△ 化回路4ではn よ#)Mビットの誤差信号e、を△ 再生する。再生された誤差信号e、と適応予測回路6の
出カフ、は加算器5によシ加え合せられ量子化入力信号
X、を再生する。この後、適応量子化回路3、逆適応量
子化回路4の量子化幅及び適応予測回路6の係数は前述
した様に式(2)および式(5)に従って次の入力信号
の符号化を行なうために修正される。前述したように適
応予測回路の係数修正は誤差信号e のパワー、つまり
◇2を最小+                   
   1化する様に修正されるため、e 信号はXI信
号に比ベダイナミック・レンジが小さくなシ、同一ビッ
トで符号化する事を考えれば小さくなった分だけ適応量
子化回路3によって発生する誤差も小さくなシ、精度よ
く符号化できる事になる。
The inverse adaptive quantum △ conversion circuit 4 △ reproduces the M-bit error signal e. The reproduced error signal e and the output of the adaptive prediction circuit 6 are added to the adder 5 to reproduce the quantized input signal X. Thereafter, the quantization widths of the adaptive quantization circuit 3 and the inverse adaptive quantization circuit 4 and the coefficients of the adaptive prediction circuit 6 are used to encode the next input signal according to equations (2) and (5) as described above. amended for. As mentioned above, the coefficient correction of the adaptive prediction circuit is performed by minimizing the power of the error signal e, that is, ◇2 +
Since the e signal is modified to become 1, the dynamic range of the e signal is smaller than that of the This means that the code is small and can be encoded with high precision.

一方従来形のADPCM復号回路では、受信された量子
化符号n、が端子8から入力され、逆適応量子化回路9
により再生誤差信号eI を発生する。
On the other hand, in the conventional ADPCM decoding circuit, the received quantization code n is input from the terminal 8, and the inverse adaptive quantization circuit 9
A reproduction error signal eI is generated.

このe と適応予測回路」1の出カン、は加算器△ 10により加算されX、を合成して、出力端子12へ出
力し、かつ適応予測回路11へ次の標本時刻の予測を行
なうために加える。ADPCM復号回路側でも適応量子
化符号n、もしくは誤差信号孔 より、逆適応量子化回
路の量子化幅を式(2)に従って時々刻々変化させ、か
つXlとX、の差、つまり、e、のパワーを最小化する
様に適応予測回路11の係数を式(5)に従って変化さ
せる。
This e and the output of the adaptive prediction circuit 1 are added by the adder △ 10, and the sum of Add. On the ADPCM decoding circuit side, the quantization width of the inverse adaptive quantization circuit is changed moment by moment according to equation (2) using the adaptive quantization code n or the error signal hole, and the difference between Xl and X, that is, e, is The coefficients of the adaptive prediction circuit 11 are changed according to equation (5) so as to minimize the power.

ADPCM符号器と復号器では、逆適応量子化回路4,
9および適応予測回路6.11の内部状態が一致してお
れば、ADPCM符号回路/復号回路△  △  〜 でのe + + X+ * X、の値は一致する。この
ためADPCM符号回路と復号回路が距離的に離れて設
けられていても端子1に加わる入力信号X と端子12
から出力されるXl はほとんど同一の1直を取ること
になる。ところで、符号器の端子7から復号器の端子8
までの間は伝送路となるが、伝送路には熱雑音等により
ビット誤りが発生する可能性がある。
In the ADPCM encoder and decoder, an inverse adaptive quantization circuit 4,
If the internal states of 9 and the adaptive prediction circuit 6.11 match, the values of e + + X+ * Therefore, even if the ADPCM encoding circuit and decoding circuit are provided at a distance, the input signal X applied to terminal 1 and terminal 12
The Xl output from will take almost the same 1st shift. By the way, from the encoder terminal 7 to the decoder terminal 8
Until then, it becomes a transmission path, but there is a possibility that bit errors may occur in the transmission path due to thermal noise, etc.

この場合、ADPCM復号回路が不安定状態に陥って復
帰できない事が多い。これは以下の様に説明できる。
In this case, the ADPCM decoding circuit often falls into an unstable state and cannot recover. This can be explained as follows.

ADPCM復号回路の逆適応量子化回路9の出力△ e、よ多出力端子12までの伝達関数D (Z)を、適
応予測回路11の伝達関数として式(4)を用いて求め
ると、 となる。5 は前述した様にe、より計算される値であ
り、伝送路ビット誤シが発生する。!: ADPCM復
号回路の適応予測回路の予測係数の修正値はADPCM
符号回路の適応予測回路の予測係数とは異なる値となる
。式(6)は予測係数によシ決定され9− る極をに個持っており、上記の伝送路ビット誤シの結果
ADPCM復号回路側では極の位置がZ平面上で単位円
外に出てしまうことがある。この様な状況になるとAD
PCMYJ(号回路は発振状態となり、再び正しい動作
にはもどれない。(前記第2の文献参照) 前記第2の文献ではこの不安定状態を除くため、式(6
)を以下の様に式展開して、適応的に動く極を除いた伝
達関数を持つADPCM符号回路及び復号回路を実現し
ている。
If the transfer function D (Z) from the output △ e of the inverse adaptive quantization circuit 9 of the ADPCM decoding circuit to the multi-output terminal 12 is determined as the transfer function of the adaptive prediction circuit 11 using equation (4), the following is obtained. . 5 is a value calculated from e as described above, and a transmission path bit error occurs. ! : The correction value of the prediction coefficient of the adaptive prediction circuit of the ADPCM decoding circuit is ADPCM
This value is different from the prediction coefficient of the adaptive prediction circuit of the encoding circuit. Equation (6) has 9-poles determined by the prediction coefficients, and as a result of the above transmission line bit error, the pole position on the ADPCM decoding circuit side moves outside the unit circle on the Z plane. Sometimes it happens. In this situation, AD
The PCMYJ circuit enters an oscillation state and cannot return to normal operation again.
) is expanded as follows to realize an ADPCM encoding circuit and decoding circuit having a transfer function excluding poles that move adaptively.

ここで係数(allは固定定数であり(b:Jが適応っ
たものである。固定係数(al)を音声の平均的な性質
にあった値に選べば上記のうち切シ誤差も小さく、符号
化品質の劣化はほとんどない。ここで、音声の平均的な
性質にあった固定係数(al)の求め方は、前記第1の
文献の498頁に詳しい。
Here, the coefficient (all) is a fixed constant (b: J is applied to it.If the fixed coefficient (al) is selected to a value that matches the average nature of the voice, the above-mentioned cutting error will be small, There is almost no deterioration in the encoding quality.Here, the method of determining the fixed coefficient (al) suitable for the average nature of speech is detailed on page 498 of the above-mentioned first document.

10− 式(7)に基すいた従来方式のADPCM符号回路およ
び復号回路を第2図に示す。第2図は入力端子1、減算
器21..22、適応量子化回路3、逆適応量子化回路
4、加W器51.52 、適応フィルタ61、固定フィ
ルタ62、出力端子7からなるADPCM符号回路と、
入力端子8、逆適応量子化回路9、加算器101,10
2、適応フィルタ111、固定フィルタ112、出力端
子12からなるADPCM復号回路からなる。固定フィ
ルタ62および112は、式(4)で使用された固定予
測係数(al)を用いて以下の伝送関数を持つ。
10- FIG. 2 shows a conventional ADPCM encoding circuit and decoding circuit based on equation (7). FIG. 2 shows input terminal 1, subtractor 21. .. 22, an ADPCM code circuit consisting of an adaptive quantization circuit 3, an inverse adaptive quantization circuit 4, a W adder 51, 52, an adaptive filter 61, a fixed filter 62, and an output terminal 7;
Input terminal 8, inverse adaptive quantization circuit 9, adders 101, 10
2, an ADPCM decoding circuit consisting of an adaptive filter 111, a fixed filter 112, and an output terminal 12. Fixed filters 62 and 112 have the following transfer functions with the fixed prediction coefficients (al) used in equation (4).

P2(Z)=ハ、z−’        (s)1=1 また、適応フィルタ61,111 は以下の伝送関数を
持つ。
P2(Z)=ha,z-'(s)1=1 Furthermore, the adaptive filters 61 and 111 have the following transmission function.

PI(Z)=Σb ’、 Z−’          
  (9)直=ま ただし、適応係数は各々以下の様に修正され、これはe
、信号のパワーを最小化する方向に修正される事が第2
の文献に述べられている。
PI(Z)=Σb', Z-'
(9) Direct=Correct, but the adaptation coefficients are modified as follows, which is e
, the second thing is to be modified in the direction of minimizing the signal power.
It is stated in the literature.

bj+’=(1−δ)b:+ge、−、e、     
       (+o)いま、端子1から入力信号X、
が入力されると、減算器21で固定フィルタ62の出力
”;Cr と差が取られy、となシ、減算器22へ入力
される。減算器22ではy から適応フィルタの出力y
、を減算し、適応量子化回路3に加えられる。適応量子
化回路3はe を量子化し、符号n、を出力端子7から
出力するとともに逆適応量子化回路4に加えられ、量子
化された誤差信号e、を得る。
bj+'=(1-δ)b:+ge,-,e,
(+o) Now, input signal X from terminal 1,
When is input, the subtracter 21 takes the difference from the output ``;Cr'' of the fixed filter 62 and inputs y to the subtracter 22.The subtracter 22 converts y to the output y of the adaptive filter.
, and is added to the adaptive quantization circuit 3. The adaptive quantization circuit 3 quantizes e, and outputs the code n from the output terminal 7, which is also applied to the inverse adaptive quantization circuit 4 to obtain a quantized error signal e.

△ e、は適応フィルタ61に入力され、次の標本時刻での
フィルタ演算に使用されるとともに、適応フィルタ61
の出力y、を加算器51によシ加えられ、y、として加
算器52へ伝えられる。加算器52ではy、とX、が加
算され入力信号X、の△ 量子化信号X、を再生し、次の標本時刻でのフィルタ演
算に使用される。このため、固定フィルタ62の出力が
入力信号の平均的なふるまいに適したものであれば第1
の誤差信号y、の振幅レベルが減少し、この信号から適
応フィルタ61の出力を減じられた第2の誤差信号e、
はさらにレベルの低い信号となる。一般的に言って第1
図の適応予測回路6は再生量子化入力値から次の入力信
号値を予測するのに対して、第2図の適応フィルタ61
、は誤差1N号から次の入力信号を予測することになシ
能力的には第2図の適応フィルタ61の方が低いが、固
定フィルタ62が平均的な入力信号の性質に関する信号
を発生しているため、第2図の符号化器も全体としては
第1図の符号器と比べ遜色ない符号化が可能となってい
る。
Δe is input to the adaptive filter 61 and used for filter calculation at the next sample time, and the adaptive filter 61
The output y, is added to the adder 51 and transmitted to the adder 52 as y. The adder 52 adds y and Therefore, if the output of the fixed filter 62 is suitable for the average behavior of the input signal, the first
The amplitude level of the error signal y, is decreased, and the output of the adaptive filter 61 is subtracted from this signal, resulting in a second error signal e,
becomes an even lower level signal. Generally speaking, the first
The adaptive prediction circuit 6 shown in the figure predicts the next input signal value from the reproduced quantized input value, while the adaptive filter 61 shown in FIG.
, does not predict the next input signal from the error 1N. Although the adaptive filter 61 shown in FIG. Therefore, the encoder shown in FIG. 2 can perform encoding comparable to that of the encoder shown in FIG. 1 as a whole.

次に第2図のADPCM復号回路の動作を説明する。入
力端子8から量子化符号が入力されると逆適応量子化回
路9は量子化された誤差信号e、を1与生じ、適応フィ
ルタ111に入力し、次の標本時刻の適応フィルタ演算
に用い、かつ、加算器101によシ適応フィルタ111
の出力y、と加算され鞘を再生する。y、は同定フィル
fi 112の出力X、と加算器102によシ加算され
量子化された符号器側入力信号X、を再生し、出力端子
12及び固定フィルタ112へ供給される。適応フィル
タ111と固定フィルタ112の伝達関数PI(Z)及
びP2(Z)は式(8)および式(9)に示す通シであ
り、逆適応量子化回路9の出力から出力端13− 子12までの伝達関数D (Z)は となるため、式(7)と一致し、適応的に動く極をZ平
面上で持たないため、伝送路ピッhpbが発生しても安
定な動作を期待できる。
Next, the operation of the ADPCM decoding circuit shown in FIG. 2 will be explained. When the quantization code is input from the input terminal 8, the inverse adaptive quantization circuit 9 generates a quantized error signal e, inputs it to the adaptive filter 111, and uses it for the adaptive filter calculation at the next sample time. And the adaptive filter 111 for the adder 101
The output y is added to reproduce the sheath. y reproduces the output X of the identification filter fi 112 and the encoder side input signal X which has been added and quantized by the adder 102, and is supplied to the output terminal 12 and the fixed filter 112. The transfer functions PI(Z) and P2(Z) of the adaptive filter 111 and the fixed filter 112 are as shown in equations (8) and (9), and the transfer functions from the output of the inverse adaptive quantization circuit 9 to the output terminal 13- Since the transfer function D (Z) up to 12 is, it matches Equation (7) and does not have an adaptively moving pole on the Z plane, so stable operation is expected even if transmission line pitch hpb occurs. can.

以上のADPCM以外にも、ADPCM符号/復号回路
としては第2図の固定フィルタ62,112 を極の動
きうる範囲を制限して使用する適応零点/適応極形の予
測フィルタを持つADPCM回路もあるが、同様に説明
できるため、詳細は省略する。
In addition to the above-mentioned ADPCM, there is also an ADPCM circuit having an adaptive zero/adaptive pole type prediction filter that uses the fixed filters 62, 112 shown in Fig. 2 by limiting the range in which the poles can move. However, since it can be explained in the same way, the details will be omitted.

以上、ADPCM符号/復号回路について見て来たが、
とのADPCM回路を既存PCM網に導入する事を考え
ると、PCMで符号化された信号はADPCM符号化さ
れ、再びPCM符号化され伝送される形態が生ずる。こ
の結果、PCM符号化とADPCM符号化が交互に行な
われる状況が発生する。
We have looked at the ADPCM encoding/decoding circuit above, but
Considering the introduction of an ADPCM circuit with an existing PCM network into an existing PCM network, a signal encoded by PCM will be ADPCM encoded, and then PCM encoded again and transmitted. As a result, a situation occurs in which PCM encoding and ADPCM encoding are performed alternately.

一般にADPCM符号/復号回路内部の演算は、8ビッ
ト非線形PCMを線形化すると14ビツト相当となるた
め、PCM並の符号化を行なう必要14− 性から14ビット以上の線形符号を用いて演算されてい
る。このだめ、ADPCM符号/復号回路と他のADP
CM符号/復号回路との間が、ADPCM内部演算ビッ
ト数と等しいがそれより多い線形符号ビットで接続でき
るとすればADPCM符号/復号回路を縦続接続させて
も接続自体による劣化はない。このため、最初のADP
CM符号/復号回路とそれに続<ADPCM符号/復号
回路の内部状態が全て一致しておればADPCM符号/
復号回路を縦続接続させても内部状態は各ADPCM符
号/復号回路で同様に変化し、何段に亘って縦続接続さ
せても、1段分のADPCM回路の劣化に留まる。
In general, operations inside the ADPCM encoding/decoding circuit are performed using linear codes of 14 bits or more because 8-bit nonlinear PCM becomes equivalent to 14 bits when linearized, so it is necessary to perform encoding comparable to PCM. There is. In this case, ADPCM encoding/decoding circuit and other ADP
If the CM code/decoding circuit can be connected with linear code bits equal to but greater than the number of ADPCM internal calculation bits, there will be no deterioration due to the connection itself even if the ADPCM code/decoder circuits are connected in cascade. For this reason, the first ADP
If the internal states of the CM code/decoding circuit and the subsequent ADPCM code/decoding circuit all match, the ADPCM code/
Even if the decoding circuits are connected in cascade, the internal state changes in the same way in each ADPCM code/decoding circuit, and no matter how many stages are connected in cascade, the deterioration of the ADPCM circuit for one stage remains.

しかしながら、前述した様にADPCM符号/復号回路
とそれに絖(ADPCM符号/復号回路間は非線形8ビ
ツトPCM符号で接続される。とのため、縦続接続する
と、使用可能ビット数が少くなる事および使用可能ビッ
ト数の各ビットの重み付けが非線形である事に起因した
接続自体の劣化を伴う。とのPCM信号による接続自体
に起因する劣化は、最初のADPCM符号/復号回路と
それにだけ異なる事に起因して選択ADPCM符号が異
なって来る。選択ADPCM符号が異なると、適応量子
化の式(2)で与えられる表1に示された乗数が異なる
事、また、式(5)2式四の適応予測係数が異なって来
る事よシ、内部状態の一致がくずれる事となる。このた
め縦続接続を行なった場合の劣化は、上記PCM接続の
劣化分に加え、ADPCM符号/復号回路による劣化分
が縦続接続段数分だけ累積する事となり、全体として非
常に大きな劣化が発生する。
However, as mentioned above, the ADPCM code/decoder circuit and its wires (ADPCM code/decoder circuits are connected by a non-linear 8-bit PCM code), so if they are connected in cascade, the number of usable bits will decrease and the number of bits used will decrease. This is accompanied by deterioration of the connection itself due to the non-linear weighting of each bit of the possible number of bits.The deterioration due to the connection itself by the PCM signal is due to the fact that it is different from the initial ADPCM encoding/decoding circuit. When the selected ADPCM codes are different, the multipliers shown in Table 1 given by the adaptive quantization equation (2) will be different, and the adaptation of equations (5), 2, and 4 will be different. As the prediction coefficients become different, the coincidence of the internal states breaks down.For this reason, the deterioration caused by cascade connection is due to the deterioration due to the ADPCM encoding/decoding circuit in addition to the deterioration due to the PCM connection described above. This will accumulate by the number of cascade-connected stages, resulting in very large deterioration as a whole.

上記の内部状態の一致が崩壊して行く機構に関しては、
ADPCM符号/復号回路で使用される量子化回路の閾
値と代表値の関係が式(1)と式(3)で示される線形
量子化特性を持っている限シにおいてはIEEE  1
979年発行の”Proceedings of 19
79I 5CAS ’  の969頁〜970頁に詳し
く述べられておシ、また、−変向部状態が一致すれば、
閾値間隔と代表値間隔が一致しているという線形量子化
特性の性質を利用してこの内部状態の一致を維持する手
法(同文献のTable 2参照)についても述べられ
ている。
Regarding the mechanism in which the coincidence of the internal states described above collapses,
IEEE 1 as long as the relationship between the threshold value and the representative value of the quantization circuit used in the ADPCM encoding/decoding circuit has the linear quantization characteristics shown by equations (1) and (3).
``Proceedings of 19'' published in 1979
79I 5CAS', pages 969 to 970, and if the states of the -direction parts match,
A method of maintaining the coincidence of internal states by utilizing the property of the linear quantization characteristic that the threshold interval and the representative value interval are coincident is also described (see Table 2 of the same document).

しかしながら、従来の内部状態維持手法は、量子化能力
′を向上させるために一般に行なわれている非線形童子
化特性を有するADPCM符号/復号回路には応用でき
ない。この非線形量子化特性とは、量子化回路へ入力さ
れる信号の統計的分布を調べて、この分布に適した閾値
と代表値を決定するもので、例えば分布関数がガウス分
布の場合で量子化符号ビット数が4の場合は衣2の様に
定められる事がIRE 1960年5月発行の’Tra
nsactionson Information T
heory ”の7頁〜12頁に詳しく述べられている
。表2よりも明らかな様に闇値間間隔及び代表値間隔は
式(1)及び式(3)で与えられる線形量子化特性とは
異なり一定幅ではなくなる。
However, the conventional internal state maintenance method cannot be applied to an ADPCM encoder/decoder circuit having a nonlinear Doji conversion characteristic, which is generally used to improve the quantization ability. This nonlinear quantization characteristic examines the statistical distribution of the signal input to the quantization circuit and determines the threshold and representative value suitable for this distribution. For example, when the distribution function is Gaussian distribution, quantization is performed. If the number of code bits is 4, it is defined as 2, according to IRE 'Tra' published in May 1960.
nsactionsonInformationT
theory”, pages 7 to 12.As is clear from Table 2, the interval between dark values and the interval between representative values are the linear quantization characteristics given by equations (1) and (3). The difference is that it is no longer a constant width.

このため、閾値間隔と代表値間隔が一定である事を利用
した従来の内部状態の一致を維持させる手法は適応でき
なくなシ、この様な量子化回路を有する符号/復号回路
を非線形PCM符号化を介し17− 表2 ガウス分布量子化%性 (正符号側のみ) で縦続接続させると特性劣化の累積が発生した。
For this reason, the conventional method of maintaining coincidence of internal states using the fact that the threshold interval and the representative value interval are constant cannot be applied, and the encoding/decoding circuit having such a quantization circuit can be used as a nonlinear PCM code. When cascade connections were made through 17- Table 2 Gaussian distribution quantization percentage (positive sign side only), accumulation of characteristic deterioration occurred.

本発明の目的は非線形量子化特性を有するADPCM符
号/復号回路を非線形PCM符号化を介して縦続接続し
ても特性劣化が累積しないADPCM狽号回路を提供す
る事にある。
An object of the present invention is to provide an ADPCM encoding circuit in which characteristic deterioration does not accumulate even when ADPCM encoding/decoding circuits having nonlinear quantization characteristics are connected in cascade via nonlinear PCM encoding.

本発明の他の目的は従来のADPCM符号回路の特性を
変える事なく、ADPCM復号回路に補助回路を付加す
るだけで縦続接続時の特性劣化が累積しない方法を提供
する事にある。
Another object of the present invention is to provide a method in which characteristic deterioration during cascade connection does not accumulate by simply adding an auxiliary circuit to the ADPCM decoding circuit without changing the characteristics of the conventional ADPCM code circuit.

18− 本発明のADPCM復号回路の構成は、標本時刻毎に入
力非線形符号化PCM信号を線型化した信号とI適応的
に予測された予測信号との差である残差信号を、V適応
的に量子化するADPCM符号器から出力される符号信
号を受信し、非線形PCM復号信号を出力するADPC
M復号回路において、前記ADPCM符号器からの量子
化符号信号より、符号器側でのAil記残差信号に対応
して、代表残差値信号、低極限残差信号および高極限残
差信号を発生し、かつ、前記量子化符号信号により次の
標本時刻での量子化特性を決定する逆適応量子化回路と
、前記逆適応量子化回路からの前記代表残差値信号、前
記低極限残差信号、および高極限残差信号の各々に、後
述する適応予測信号を加え、代表復号類信号、低極限復
号値信号、および高極限復号類信号を発生する加算手段
と、前記代表復号信号を非線形符号化PCMに変換し、
準出力非線形PCM信号とする非線形PCM変換回路と
、前記準出力非線形PCM信号を線形化し、卓出力線形
PGM信号とする線形PCM変換回路と、前記準出力線
形PCM信号と、前記低極限復号値信号および前記萬極
限復号値信号の比較によシ、前記準出力非線形PCM信
号をそのまま、あるいは+1./−1加算して非線形P
CM復号信号とする手段と、前記代表復号類信号、もし
くは前記代表復号類信号と前記代表残差値信号を入力し
、現時刻での適応予測信号を発生し、かつ、次の標本時
刻での予測特性を決定する適応予測回路とから少なくと
も構成され、適応逆量子化回路の出力に代表残差値信号
のみでなく高低両極限残差値信号をも出力させ、これ等
の値によシ代表復号値信号の非以下図面を参照しながら
本発明の詳細な説明する。第3図は本発明の第2図に示
すADPCM回路に対する一実施例であり、入力端子8
、逆計子化回路91、加算器101〜109、適応フィ
ルタ111、固定フィルタ112、線形−非線形PCM
変換回路120、非線形−線形PCM変換回路121、
比較回路123、選択回路124、出力端子126から
なっておシ、適応フィルタ111、固定フィルタ11.
21.IJII算器101,102は第2図のADPC
M復号回路と同一のものである。また、線形−非線形P
CM変換回路120、非線形−線形PCIV[変換回路
121の詳細は1970年9月Be1l System
  Laboratories発行の”BSTJ” 1
555頁〜1588頁に説明されているものが利用でき
る。逆適応量子化器91は入力ADPCM符号nを入力
されると、表2に示されたnに対応する代表値、閾値及
びn+1の閾値の各々に量子化幅△、を乗じた値を出力
するもので、この様にすると代表値は両闇値で示される
区間を代表した形を取る。nが8の場合、n+1の閾値
として充分大きな数値(例えは10000 )を仮想的
に設けて利用する。
18- The configuration of the ADPCM decoding circuit of the present invention is such that the residual signal, which is the difference between the signal obtained by linearizing the input nonlinear encoded PCM signal and the prediction signal predicted in the I-adaptive manner, is An ADPC that receives a code signal output from an ADPCM encoder and outputs a nonlinear PCM decoded signal.
In the M decoding circuit, from the quantization code signal from the ADPCM encoder, a representative residual value signal, a low limit residual signal, and a high limit residual signal are generated in accordance with the Ail residual signal on the encoder side. an inverse adaptive quantization circuit that determines the quantization characteristic at the next sampling time based on the quantization code signal; the representative residual value signal from the inverse adaptive quantization circuit; and the low limit residual. addition means for adding an adaptive prediction signal to be described later to each of the signal and the high limit residual signal to generate a representative decoded class signal, a low limit decoded value signal, and a high limit decoded class signal; Convert to encoded PCM,
a nonlinear PCM conversion circuit that generates a quasi-output nonlinear PCM signal, a linear PCM conversion circuit that linearizes the quasi-output nonlinear PCM signal and generates a console output linear PGM signal, the quasi-output linear PCM signal, and the low limit decoded value signal. By comparing the maximum decoded value signals, the quasi-output nonlinear PCM signal can be used as it is or +1. /-1 addition and nonlinear P
means for generating a CM decoded signal, and inputting the representative decoded type signal, or the representative decoded type signal and the representative residual value signal, generates an adaptive prediction signal at the current time, and generates an adaptive prediction signal at the next sample time. It is composed of at least an adaptive prediction circuit that determines prediction characteristics, and outputs not only a representative residual value signal but also high and low extreme residual value signals as the output of the adaptive inverse quantization circuit. The invention will now be described in detail with reference to the following figures of decoded value signals. FIG. 3 is an embodiment of the ADPCM circuit shown in FIG. 2 of the present invention, and the input terminal 8
, inverse metering circuit 91, adders 101 to 109, adaptive filter 111, fixed filter 112, linear-nonlinear PCM
conversion circuit 120, nonlinear-linear PCM conversion circuit 121,
It consists of a comparison circuit 123, a selection circuit 124, an output terminal 126, an adaptive filter 111, a fixed filter 11.
21. IJII calculators 101 and 102 are ADPCs in FIG.
This is the same as the M decoding circuit. Also, linear-nonlinear P
CM conversion circuit 120, nonlinear-linear PCIV [Details of conversion circuit 121 are provided in September 1970 Be1l System
"BSTJ" published by Laboratories 1
Those described on pages 555 to 1588 are available. When the inverse adaptive quantizer 91 receives the input ADPCM code n, it outputs a value obtained by multiplying each of the representative value, threshold, and n+1 threshold corresponding to n shown in Table 2 by the quantization width Δ. In this way, the representative value takes a form that represents the interval indicated by the Ryoya value. When n is 8, a sufficiently large value (for example, 10000) is virtually set and used as the threshold for n+1.

いま端子8にADPCM符号n、が入力されたとすると
、逆適応量子化回路91はADPCM符号n、に対応し
て表2に示された代表値と闇値の各々に現在の量子化幅
△、を乗ぜられた値を出力する。この出力信号は、符号
器側の残差信号e、に対応した代表残差信号e1 と、
この代表残差信号21− をThLとする。適応フィルター11と固定フィルタ1
12では現時刻での予測値を出力中であるのに対しては
加算器105と106によシ適応フィルタ111と固定
フィルター12の出力予測値を各々加算する事によシ、
各々代表復号信号X、、低極限復号信号xL1高極限復
号信号xrを得る。
Assuming that an ADPCM code n is now input to the terminal 8, the inverse adaptive quantization circuit 91 sets the current quantization width Δ, Outputs the value multiplied by . This output signal includes a representative residual signal e1 corresponding to the residual signal e on the encoder side,
Let this representative residual signal 21- be ThL. Adaptive filter 11 and fixed filter 1
12, while the predicted value at the current time is being output, adders 105 and 106 add the output predicted values of the adaptive filter 111 and the fixed filter 12, respectively.
A representative decoded signal X, a low limit decoded signal xL1, and a high limit decoded signal xr are obtained, respectively.

ここでも代表復号信号X は区間CX”r’ + X 
+ )を代表する値となっている。
Here again, the representative decoded signal X is in the section CX"r' + X
+ ) is a representative value.

代表復号信号X、は線形−非線形PCM変換器120に
よシ通常の8ピツ) PCM符号Xに変換され、Xは再
び非線形−線形PCM変換器121によfiPcMiH
子化信号x?へ変換される。
The representative decoded signal X is converted into a normal 8-bit PCM code
Childification signal x? is converted to

いま、xRが区間Cx”;+’x’:)内に存在する時
を考える。比較器123はこの状況では選択回路124
によシPCM符号Xを次段でのADPCM符号回路の内
部状態が現役の内部状態と同一である22− とすれば、次段のADPCM符号回路ではxl が線形
人力として用いられ、かつ、区間〔x7.xT)内にあ
る信号は現役と同じADPCM符号が割当てられる。こ
のだめ、現役と次段のADPCM符号/復号回路の内部
状態は同一となる。
Now, consider the case where xR exists within the interval Cx";+'x':). In this situation, the comparator 123 is the selection circuit 124
If we assume that the internal state of the ADPCM code circuit in the next stage is the same as the current internal state of the PCM code X, xl is used as a linear force in the next stage ADPCM code circuit, and [x7. xT) is assigned the same ADPCM code as the active one. Unfortunately, the internal states of the active and next-stage ADPCM encoding/decoding circuits are the same.

次に、XRが区間(x”、x’)になく、Xり〉X〒の
場合を考える。現役ADPCM符号回路の入力信号も非
線形PCM信号であるから、区間〔XL;。
Next, consider the case where XR is not in the interval (x'',

X〒)に少くとも1個PCMの代表値が入っているはず
である。(PCM代表値がこの区間になければ、この区
間を生成したADPCM符号は選択されない筈である。
X〒) should contain at least one representative value of PCM. (If the PCM representative value is not in this section, the ADPCM code that generated this section should not be selected.

)さらに区間[XF、X〒)内にある代表値X、をPC
M量子化した値がx?であるから、PCMの量子化閾値
は(x”; +41 )に存在し、xR>Xu である
からPCMの量子化幅は2 (XR−II      
                         
        1△ X)〜2(xクーX;′)となシ、この様な状況はPC
M」 の量子化幅がADPCMの量子化幅の1倍から高々2倍
程度となった時に発生する事が理解されよう。
) Furthermore, the representative value X, which is within the interval [XF,
Is the M quantized value x? Therefore, the quantization threshold of PCM exists at (x''; +41), and since xR>Xu, the quantization width of PCM is 2 (XR-II

1△
It will be understood that this occurs when the quantization width of ``M'' becomes from one to at most twice the quantization width of ADPCM.

この様な場合、X? を発生した非線形PCMコードX
と、現役ADPCM符号回路の入力非線形PCMコード
との差はX、が〔xL 、 、1,1 )にあり、xり
 はない事よりxの方が1だけ高いPCMコードでちる
事は明らかである。非線形PCM符号は特殊な極性振幅
表現であるため、比較回路123はこの状況で選択回路
124を働らかせX7が正の時はXに加算器107で+
1、負の時はXに加算器108で−1したものを出力と
して選択させるため現役ADPCM符号回路の入力PC
M信号と次段ADPCM符号回路の入力PCM信号が完
全に等しくなり内部状態の一致が維持される事が理解さ
れよう。
In this case, X? Nonlinear PCM code X that generated
The difference between the input nonlinear PCM code of the current ADPCM code circuit and the input nonlinear PCM code of the current ADPCM code circuit is that be. Since the nonlinear PCM code is a special polarity amplitude expression, the comparison circuit 123 activates the selection circuit 124 in this situation, and when X7 is positive, the adder 107 adds + to X.
1. When the value is negative, the input PC of the active ADPCM code circuit is used to select the value obtained by adding 1 to X by the adder 108 as the output.
It will be understood that the M signal and the input PCM signal of the next stage ADPCM code circuit are completely equal, and the coincidence of internal states is maintained.

さらにxRが区間(xL; 、 xT )になく、x 
7 (x”;の場合について考える。この場合も少くと
も1個のPCM代表値が区間〔xL、X+、+)に入っ
ているはずである。まだ、この区間内の代表値X、をP
CM量子化した値がx?であるから、PCMの量子化へ
   U 閾値は(X、、!、)に存在する。このためPCMのt
it子化幅ハ2 (/;C−xR)〜2 (xu−x″
) トナリ、II           II この場合もPCMの量子化幅がADPCMの量子化幅の
1倍から高々2倍程度となった時に発生する事が理解さ
れよう。この様な場合、X を発生した非線形PCMコ
ードXと、現役AI)PCM符号回路の入力非線形PC
Mコードとの差はXの方が1だけ小さいPCMコードと
なっている事は明白であろう。このため、比較回路12
3はこの状況で選択回路124を働らかせ、X? が正
の時はXに加算器108で−1、負の時は加算器107
で+1したものを出力として選択させるため、現役AD
PCM符号回路の入力PCM信号と次段ADPCM符号
回路の入力PCM信号が完全に等しくなシ内定フィルタ
の動作は従来のADPCMの説明として第2図を用いて
説明した通りである。
Furthermore, xR is not in the interval (xL; , xT ), and x
7 Consider the case of (x”;. In this case as well, at least one PCM representative value should be in the interval [xL, X+, +).
Is the CM quantized value x? Therefore, the U threshold for PCM quantization exists at (X,,!,). For this reason, t of PCM
It child width C2 (/;C-xR) ~2 (xu-x''
) Tonari, II II It will be understood that this also occurs when the quantization width of PCM becomes from one to at most twice the quantization width of ADPCM. In such a case, the nonlinear PCM code X that generated X and the input nonlinear PC of the active AI) PCM code circuit
It is obvious that the difference from the M code is that X is a PCM code that is smaller by 1. Therefore, the comparison circuit 12
3 operates the selection circuit 124 in this situation and selects X? When is positive, adder 108 adds -1 to X, and when it is negative, adder 107
In order to select the +1 value as the output, the active AD
The operation of the filter in which the input PCM signal of the PCM code circuit and the input PCM signal of the next-stage ADPCM code circuit are completely equal is as explained using FIG. 2 as an explanation of the conventional ADPCM.

以上の様に本発明に従えばADPCM符号/復号回路を
PCM符号/復号回路を介して多段に亘って接続しても
、ADPCM符号/復号回路の各内部状態が一致すれば
ADPCM符号/榎号回路1段分の特性劣化のみとなる
性質を有するADPCM復号回路が実現できる。
As described above, according to the present invention, even if ADPCM code/decoding circuits are connected in multiple stages via PCM code/decoding circuits, if the internal states of the ADPCM code/decoding circuits match, the ADPCM code/Enoki code It is possible to realize an ADPCM decoding circuit which has a property that the characteristics deteriorate only by one stage of the circuit.

25− また、第3因は第2図のADPCM回路に対する本発明
の説明を行なったが、第1図のADPCM回路に対して
も容易に応用可能である。さらに、第2図のADPCM
回路における予測フィルタ112は固定フィルタであっ
たが、適応フィルタであっても本発明の本質を変えるも
のではない。
25- Also, although the third factor has been explained with respect to the ADPCM circuit of FIG. 2, the present invention can be easily applied to the ADPCM circuit of FIG. Furthermore, the ADPCM in Figure 2
Although the prediction filter 112 in the circuit is a fixed filter, the essence of the present invention does not change even if it is an adaptive filter.

さらに、容易に類推できる様に、逆適応重子化h′ Δ 器91の出力をe、 、 (ThL−e、 ) 、 (
Th)−e 、)のと(ThL e r )を各々加算
して得る方法も本発明のうちである。
Furthermore, as can be easily inferred, the output of the inverse adaptive multipletization h' Δ unit 91 is expressed as e, , (ThL−e, ), (
The present invention also includes a method of obtaining by adding Th)-e, ) and (ThLer), respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のADPCM符号/復号回路を示すブロッ
ク図、第2図は他の従来のADPCM符号/復号回路を
示すブロック図、第3図は本発明のADPCM復号回路
を示すブロック図である。 図において、91・−逆適応重子化+i、l、111・
・・適応フィルタ、112−・固定フィルタ、101〜
10826一 ・・・加算器、120 ・・線形−非線形PCM変換器
、121 ・・・非線形−線形PCM変換器、123・
・・比I咬回路、124 ・・・選択回路、である。 11− 六コ
FIG. 1 is a block diagram showing a conventional ADPCM encoding/decoding circuit, FIG. 2 is a block diagram showing another conventional ADPCM encoding/decoding circuit, and FIG. 3 is a block diagram showing an ADPCM decoding circuit of the present invention. . In the figure, 91・−inverse adaptive multiplierization+i, l, 111・
...Adaptive filter, 112--Fixed filter, 101-
10826-...Adder, 120...Linear-nonlinear PCM converter, 121...Nonlinear-linear PCM converter, 123...
. . ratio I bite circuit, 124 . . . selection circuit. 11- Rokuko

Claims (1)

【特許請求の範囲】 標本時刻毎に入力非線形符号化PCM信号を線形化した
信号と/適応的に予測された予測信号との差である残差
信号を、適応的に量子化するADPCM符号器から出力
される符号信号を受信し、非線形PCM復号信号を出力
するADPCM復号回路において、前記ADPCM符号
器からの量子化符号信号よシ、符号器側での前記残差信
号に対応して、代表残差値信号、低極限残差信号および
高極限残差信号を発生し、かつ、前記量子化符号信号に
よシ次の標本時刻での量子化特性を決定する逆適応量子
化回路と、前記逆適応量子化回路からの前記代表残差値
信号、前記低極限残差信号、および高極限残差信号の各
々に、後述する適応予測信号を加え、代表復号値信号、
低極限復号値信号。 および高極限復号値信号を発生する加算手段と、前記代
表復号信号を非線形符号化PCMに変換し、準出力非線
形PCM信号とする非線形PCM変換回路と、前記準出
力非線形PCM信号を線形化し、卓出力線形PCM信号
とする線形PCM変換回路と、前記卓出力線形PCM信
号と、前記低極限復号値信号および前記高極限復号値信
号の比較によする手段と、前記代表復号値信号、もしく
は前記代表復号値信号と前記代表残差値信号を入力し、
現時刻での適応予測信号を発生し、かつ、次の標本時刻
での予測特性を決定する適応予測回路とから少なくとも
構成され、PCM符号化/復号化とADPCM符号化/
復号化を交互にくり返す、タンデム接続の状態において
、各ADPCM符号/復号回路の内部状態が一度完全に
一致したら、それ以降の時刻においてはタンデム接続に
よる特性劣化がADPCM 1段分のみの場合と同じく
することができるADPCM復号回路。
[Claims] An ADPCM encoder that adaptively quantizes a residual signal that is the difference between a signal obtained by linearizing an input nonlinearly encoded PCM signal and/or an adaptively predicted prediction signal at each sample time. In an ADPCM decoding circuit that receives a code signal output from the ADPCM encoder and outputs a nonlinear PCM decoded signal, a representative an inverse adaptive quantization circuit that generates a residual value signal, a low limit residual signal, and a high limit residual signal, and determines a quantization characteristic at a next sampling time based on the quantization code signal; An adaptive prediction signal, which will be described later, is added to each of the representative residual value signal, the low limit residual signal, and the high limit residual signal from the inverse adaptive quantization circuit to obtain a representative decoded value signal,
Low limit decoded value signal. and an addition means for generating a high limit decoded value signal; a nonlinear PCM conversion circuit for converting the representative decoded signal into a nonlinear encoded PCM and generating a quasi-output nonlinear PCM signal; and a nonlinear PCM conversion circuit for linearizing the quasi-output nonlinear PCM signal and a linear PCM conversion circuit for outputting a linear PCM signal; a means for comparing the desk output linear PCM signal with the low limit decoded value signal and the high limit decoded value signal; inputting the decoded value signal and the representative residual value signal;
It is composed of at least an adaptive prediction circuit that generates an adaptive prediction signal at the current time and determines prediction characteristics at the next sample time, and performs PCM encoding/decoding and ADPCM encoding/
In a tandem connection state where decoding is repeated alternately, once the internal states of each ADPCM coder/decoder circuit completely match, from then on, it is assumed that the characteristic deterioration due to the tandem connection is only for one ADPCM stage. ADPCM decoding circuit that can do the same.
JP21671082A 1982-12-10 1982-12-10 Adpcm decoding circuit Granted JPS59107630A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21671082A JPS59107630A (en) 1982-12-10 1982-12-10 Adpcm decoding circuit
US06/558,236 US4571737A (en) 1982-12-10 1983-12-05 Adaptive differential pulse code modulation decoding circuit
AU22175/83A AU556155B2 (en) 1982-12-10 1983-12-07 Ad pcm decoder
CA000442934A CA1219373A (en) 1982-12-10 1983-12-09 Adaptive differential pulse code modulation decoding circuit
FR8319785A FR2542147B1 (en) 1982-12-10 1983-12-09 ADAPTIVE DIFFERENTIAL CODE PULSE DECODING CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21671082A JPS59107630A (en) 1982-12-10 1982-12-10 Adpcm decoding circuit

Publications (2)

Publication Number Publication Date
JPS59107630A true JPS59107630A (en) 1984-06-21
JPS6356727B2 JPS6356727B2 (en) 1988-11-09

Family

ID=16692702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21671082A Granted JPS59107630A (en) 1982-12-10 1982-12-10 Adpcm decoding circuit

Country Status (1)

Country Link
JP (1) JPS59107630A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103423A (en) * 1982-12-06 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> Adpcm-pcm converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103423A (en) * 1982-12-06 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> Adpcm-pcm converter

Also Published As

Publication number Publication date
JPS6356727B2 (en) 1988-11-09

Similar Documents

Publication Publication Date Title
US4468790A (en) System for the quantization of signals
US8068042B2 (en) Coding method, decoding method, and apparatuses, programs and recording media therefor
JPH0773218B2 (en) ADPCM encoder / decoder
JP3339335B2 (en) Compression encoding / decoding method
US4571737A (en) Adaptive differential pulse code modulation decoding circuit
JPS6031325A (en) System and circuit of forecast stop adpcm coding
US6366881B1 (en) Voice encoding method
US4542516A (en) ADPCM Encoder/decoder with zero code suppression
JPS59107630A (en) Adpcm decoding circuit
JPS6031326A (en) Method and apparatus for coding and decoding dpcm
JPH0414528B2 (en)
JP5057334B2 (en) Linear prediction coefficient calculation device, linear prediction coefficient calculation method, linear prediction coefficient calculation program, and storage medium
JPH043695B2 (en)
JPH043696B2 (en)
JPS59181838A (en) Adpcm decoding circuit with internal state holding circuit
JPS6058614B2 (en) DPCM-PCM converter
JPS5970329A (en) Method and circuit of time-unchanged forecasting combination type adpcm
JP2975764B2 (en) Signal encoding / decoding device
JP3013391B2 (en) ADPCM coding method
JPH0356022B2 (en)
JPS59181839A (en) Adpcm decoding circuit with internal state holding circuit
JPS6042480B2 (en) Adaptive predictive differential coding method
JPS635926B2 (en)
Kamamoto et al. Low-complexity PARCOR coder designed for entropy coding of prediction residuals
JPH0646805B2 (en) Amplitude adaptive vector quantizer