JPS5910755A - Variable compression ratio internal-combustion engine - Google Patents

Variable compression ratio internal-combustion engine

Info

Publication number
JPS5910755A
JPS5910755A JP11910282A JP11910282A JPS5910755A JP S5910755 A JPS5910755 A JP S5910755A JP 11910282 A JP11910282 A JP 11910282A JP 11910282 A JP11910282 A JP 11910282A JP S5910755 A JPS5910755 A JP S5910755A
Authority
JP
Japan
Prior art keywords
spill
sub
engine
stem
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11910282A
Other languages
Japanese (ja)
Other versions
JPH0116976B2 (en
Inventor
Mitsuharu Nakahara
中原 光治
Tomio Ishida
石田 富雄
Norifumi Honjo
本荘 典史
Yoshitaka Yoshida
吉田 吉孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Daihatsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Daihatsu Kogyo KK filed Critical Daihatsu Motor Co Ltd
Priority to JP11910282A priority Critical patent/JPS5910755A/en
Publication of JPS5910755A publication Critical patent/JPS5910755A/en
Publication of JPH0116976B2 publication Critical patent/JPH0116976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To correct the compression ratio automatically in accordance to the temperature by moving a sub-piston inserted into a sub-cylinder conducting to the combustion chamber while providing a mechanism for displacing the sub- piston in accordance to the engine temperature on an internal-combustion engine having variable compression ratio. CONSTITUTION:A sub-piston 9 is inserted into a sub-cylinder 7 conducted to a combustion chamber 5 then the operating oil is fed through a check valve into a hydraulic chamber 12 on the rear face and flowed out through a spill port 16 of the stem 11a. An actuator 23 will slide a spill ring 17a on the stem 11a through a lever 27 in accordance to the load thus to stop the sub-piston at the position where the pressure oil flow through the spill port 16 will balance with the oil supply. The stem 11a is splitted into two and connected through a bimetal and constructed such that the entire length will be shortened as the engine temperature rise, then the compression ratio is corrected automatically to the lower level resulting in prevention of knocking under high temperature.

Description

【発明の詳細な説明】 本発明(」、圧縮比を機関の負荷及び/又は運転状態に
合せて変更するようにした圧縮比可変式の内燃機関に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable compression ratio internal combustion engine in which the compression ratio is changed in accordance with the load and/or operating condition of the engine.

内燃機関において出力を向ヒし、燃費を低減するには1
工縮比を高めれば良いか、圧縮比を高めると高負荷域及
び/又は低回転域においてノツキンクか発生ずる。この
ため従来の圧縮比一定の内燃機関では、圧縮比を高負荷
及び/叉は低回転域においてノソキノクか発生しない値
に設定しなけれはならないから、低負荷及び/又は高回
転域において上方な出力を出すことができないと共に、
燃費を十分に低減することかできない。
1 To increase output and reduce fuel consumption in internal combustion engines
Should I just increase the compression ratio? If I increase the compression ratio, knocking will occur in the high load range and/or low rotation range. For this reason, in a conventional internal combustion engine with a constant compression ratio, the compression ratio must be set to a value that does not cause sagging in the high load and/or low rotation range, so the output is higher in the low load and/or high rotation range. In addition to being unable to produce
It is not possible to sufficiently reduce fuel consumption.

そこで先行技術としての特開昭56−88926号公報
は、圧縮比を低回転・低負荷域では高く、低回転・高負
荷域では低くし、また高回転域では高くすることを提案
しているか、このものは、燃焼室に連通ずる副シリンタ
内に嵌挿した副ピストンを、前後動することにより圧縮
比を変更するに際して、前記副ビス1〜ンから副シリン
ク外に突出したロノ1−の先端を、これと同一軸線」二
に設けた油1」ンリンタ内のプラノツヤに接当し、機関
における吸気負圧がある値より大きい低負荷域て目つ回
転数がある値より高い高回転のとき、前記油圧ンリンタ
に油圧を送って圧縮比を高め、吸気負圧かある値より小
さい高負荷域で且つ回転数かある値より低い低回転のと
き、油圧シリツタの油圧を放出して圧縮比を低下するも
のであるから、その圧縮比の制御は、ある負荷値及び回
転数を境として圧縮比か高から低に又は低から高に急変
する0N−OFF的な制御であって、圧縮比を負荷及び
/又は回転数に比例して滑らかに制御することができず
、この圧縮比の急変時において機関の1ヘルク変動か大
きくなってトライバーヒリティーか悪化するのである。
Therefore, Japanese Patent Application Laid-open No. 56-88926 as a prior art proposes to increase the compression ratio in the low rotation/low load range, lower it in the low rotation/high load range, and increase it in the high rotation range. When changing the compression ratio by moving the sub-piston inserted into the sub-cylinder communicating with the combustion chamber back and forth, the cylindrical cylinder protrudes from the sub-screw 1 to the outside of the sub-syringe. The tip is in contact with the planar gloss in the oil linter installed on the same axis as this, and the intake negative pressure in the engine is greater than a certain value in the low load range. At this time, hydraulic pressure is sent to the hydraulic syringe to increase the compression ratio, and when the intake negative pressure is lower than a certain value in the high load range and the rotation speed is lower than a certain value at low rotations, the hydraulic pressure of the hydraulic syringe is released to increase the compression ratio. Therefore, the control of the compression ratio is an ON-OFF type control in which the compression ratio suddenly changes from high to low or from low to high after a certain load value and rotation speed. cannot be controlled smoothly in proportion to the load and/or rotational speed, and when the compression ratio suddenly changes, the engine's one-herk fluctuation becomes large and the triverility deteriorates.

これに対し本発明者達は、先願の特許出願(特願昭57
−48295号)において、燃焼室に連通ずる副シリン
タ内に嵌挿した副ピストンを機関の負荷及び/又は回転
数に応じてMiJ後摺動するにあたり、前記副ビス1−
ノの右′面室を曲11室としてこれに作動油を連続的に
供給する一方、nii記副ビフ、(・ンから副ンリノタ
タ)に突出するようにステトヲ設け、該ステムには、目
1」記油即室内の作動油を逃かずようにしたスピルボー
トを穿設し、月つステトの突出部には、そのスピルボー
1・を当該スピルボー1〜からの流出歌を+il!d 
WI”J rるように開閉すると共に、その開閉位置を
ステムの軸方向に沿って変位するように作動するスピル
体を設け、該スピル体を機関の負荷及び/又は回転数に
、負荷及び/又は回転数の変化に応して作動するように
関連することにより、圧縮比の自動制御が機関の負荷及
び/又は回転数の変化に応じて無段階的に滑らかにてき
るようにした発明を提案した。
In contrast, the present inventors filed an earlier patent application (Japanese Patent Application No. 57
-48295), when the sub-piston inserted into the sub-cylinder communicating with the combustion chamber is slid after MiJ according to the engine load and/or rotation speed, the sub-screw 1-
The right side chamber of the stem is the curved chamber 11, and hydraulic oil is continuously supplied to this chamber. A spill boat is installed to prevent the hydraulic oil from escaping in the oil storage chamber, and the spill boat from the spill boat 1 is placed in the protruding part of the housing. d
A spill body is provided that operates to open and close in a manner such that the load and/or rotation speed of the engine changes, and to displace the opening and closing position along the axial direction of the stem. Alternatively, the present invention relates to a system that operates in response to changes in engine speed, so that the automatic control of the compression ratio can be performed steplessly and smoothly in response to changes in engine load and/or engine speed. Proposed.

本発明は、前記した本発明者達による先願発明において
、その自動制御による圧縮比に、機関の温度に対する補
正を追加したものである。
The present invention is based on the prior invention by the present inventors, in which correction for engine temperature is added to the automatically controlled compression ratio.

すなわち、機関に8けるノッキングは機、関の温度が高
くなると発生し易くなるもので、前記先願発明の自動制
御による圧縮比の値を、機関の温度か高いときにノッキ
ングを牛しないように設定すると、機関の温度か低いと
きにおいてノッキングに対して余裕あり過きることにな
り、また、機関の温度か低いときに合せて設定°すると
、機関の温度か高くなったときにノッキングか発生する
ことに鑑み、本発明は、niJ記スピル体によるスピル
ボー1〜の開閉位INか機関のM度か上昇することに応
して副ピストンを後退する方向に変位するように構成す
ることにより、重囲自動制御による圧縮比の値か、機関
の温度の上昇につれて次第に低くなるように修正したも
のである。
In other words, engine knocking is more likely to occur as engine and engine temperatures rise, so the compression ratio value by the automatic control of the prior invention is adjusted to prevent knocking when the engine temperature is high. If you set this, there will be too much margin for knocking when the engine temperature is low, and if you set it according to when the engine temperature is low, knocking will occur when the engine temperature becomes high. In view of this, the present invention is configured to displace the secondary piston in the backward direction in response to the opening/closing position IN of the spill bow 1 to the opening/closing position IN of the engine by the spill body rising by M degrees. The compression ratio is automatically controlled or adjusted so that it gradually decreases as the engine temperature rises.

以[S本発明を第1図〜第3図の第1の実施例について
説明すると、図において(1)はシリンタフロック、(
2)はノリツタヘッドく(3)はシリンタフロック(1
)のシリツタポア(4)内を往復摺動するビス1−ン、
(5)は前記ノリツタヘッド(2)の下面を凹ませて形
成した燃焼室を各々示し、該燃焼室(5)にはその略中
心位置にノリツタヘッド(2)に螺着した点火柱(6)
がのそむ吉共に、図示しない吸気ボート及び排気ボート
か開口している。
Hereinafter, the present invention will be explained with reference to the first embodiment shown in FIGS. 1 to 3. In the figures, (1) is a cylinder block, (
2) is the Noritsuta head (3) is the cylinder block (1)
), a screw 1 that slides back and forth within the pore (4) of the
(5) indicates a combustion chamber formed by recessing the lower surface of the Noritsuta head (2), and the combustion chamber (5) has an ignition column (6) screwed onto the Noritsuta head (2) approximately in the center thereof.
At the same time, the intake boat and exhaust boat (not shown) are open.

(7)は前記ノリンクヘノ1〜(2)に穿設した副プリ
ンタで、該副シリンタ(7)は下側か燃焼室(5)に、
l二(Illかノリツタヘッド(2)の上面におけるノ
リツタヘッド」二基に各々開1」シ、該副シリツタ(7
)のシリンタヘツ1−」二基への開口部にはこれを塞く
蓋板(8)か設けられている。(9)はnl」記副シリ
ンタ(7)内に摺動自在に嵌挿した副ビスI〜ンて、該
副ピストン(9)が燃焼室(5)の方向にO1j進する
と燃焼室の容債か減少して圧縮比か高くなり、副ビス1
−ノ(9)か燃焼室から離れる方向に後退すると燃焼室
の育種が増大して圧縮比か低くなるようになっており、
目、つこの副ピストン(9)ははね(10にて後退方向
に伺勢さil、また、副ビス1−ン(Cりの背面(燃焼
室(5)に対して裏側の面)には、当該副ビス1〜ン(
9)の中心から軸方向に延ひるステl−(+1)か一体
的に設けられ、該ステム(lυを前記蓋板(8)を摺動
自在に貫通して外方に突出する一方、副ピストン(9)
の背面と蓋板(8)との間に油田室(121を形成して
、この油圧室θりに機関における潤滑油を逆止弁(13
付き油圧供給ポーh (14)を介して連続的に供給す
る。更に前記ステム(1])にはMt FJ室(噛に連
通ずる通路Q5)を備え、月つステム(1])か蓋板(
8)より夕1方に突出する部分には、MiJ記油圧室a
つ内の潤滑油をシリンタヘソ1−上室に放出するための
溝状スピルボー1〜(16)か穿設され、この溝状スピ
ルボー1・0fi)はステム(1υの軸線に対して右」
ニリの適宜角度(0)に傾斜している。
(7) is a sub-printer installed in the cylinder cylinders 1 to (2), and the sub-cylinder (7) is located on the lower side or in the combustion chamber (5).
1" open each on the two Noritsuta heads (2) on the upper surface of the Noritsuta head (2), and the sub-slicers (7)
) is provided with a cover plate (8) for closing the opening to the two cylinder heads 1-''. (9) is a sub-screw that is slidably inserted into the sub-cylinder (7). When the sub-piston (9) moves in the direction of the combustion chamber (5), the combustion chamber volume The bond decreases, the compression ratio increases, and the secondary screw 1
-No (9) When moving back in the direction away from the combustion chamber, the breeding of the combustion chamber increases and the compression ratio becomes lower.
The auxiliary piston (9) at the center of the eye is pushed in the backward direction at 10, and the auxiliary piston (9) is attached to the rear side of the auxiliary piston (on the back side of the combustion chamber (5)). The relevant sub-screws 1 to 1 (
A stem l-(+1) extending in the axial direction from the center of the stem l-(+1) is integrally provided, and the stem l-(+1) extends slidably through the cover plate (8) and protrudes outward. Piston (9)
An oil well chamber (121) is formed between the back surface of the engine and the cover plate (8), and a check valve (13
Continuously supplied via the hydraulic pressure supply port h (14). Furthermore, the stem (1]) is equipped with an Mt FJ chamber (passage Q5 communicating with the stem), and the stem (1]) or lid plate (
8) In the part that protrudes in the opposite direction, there is a hydraulic chamber a marked MiJ.
Grooved spill holes 1 to (16) are drilled to release the lubricating oil inside the cylinder into the upper chamber of the cylinder head 1, and these grooved spill holes 1 and 0fi) are located on the right side of the stem (1υ).
It is tilted at an appropriate angle (0).

(I乃は前記ステム(11)の突出端に回転及び摺動自
在に被嵌したスビ体としての一つの実施例である所のス
ピルリンクで、該スピルリンク(171には、ステ1、
(11)か燃焼室(5)の方向に前進動するときスビル
ポ=1−叫に連通し、ステム(1わが燃焼室(5)から
離れる方向に後退勤するスピルポート(Jeに対して閉
しるようにした逃しポート08)か穿設されている。
(I) is a spill link which is an example of a slot body rotatably and slidably fitted on the protruding end of the stem (11), and the spill link (171 includes the stem 1,
(11) When moving forward in the direction of the combustion chamber (5), it communicates with the spill port (Je) and the stem (1) is connected to the spill port (Je) that moves backward in the direction away from the combustion chamber (5). A relief port 08) is provided so that the

そして、前記スピルリンク(lηの外側には、外周面に
歯車(241を有するリング体0坤を、スピルリングθ
りの外周面との間に環状隙間い)を隔てて同芯状に配設
し、該リンク体0窃を前記蓋板(8)から一体内に造形
した軸受フラケノトQυにて回転自在に軸支し、このリ
ンク体θ鳴とスピルリングOηとをその間の環状隙間(
イ)内に円周方向に延びるようにして設けたバイメタル
板(21)によって連結するにおいて、バイメタル板I
21)か温度の−に昇に伴ってN周方向に旌°膨張する
とスピルリンク0乃かリンク体(15)に対して矢印(
A)方向に右回転するように構成する−・方、前記軸受
7ラケソl−(2+)にはリンク体(1!1)外周の歯
車c!4に噛合スるラック杆(、!jを、ステi−(I
l+の軸線と直角方向に摺動自在に設け、該ラック杆(
2うに機関の負荷に関連するアクチェータ(23を連結
して、機関の負荷の増大に伴ってリンク体θ9)を矢印
(B)方向に右回転し、機関の負荷の低Fに伴ってリン
ク体(1つを矢印(C)方向に左回転するように構成し
7て成るものである。
Then, on the outside of the spill link (lη), a ring body having a gear (241) on the outer peripheral surface, and a spill ring θ
The link bodies are arranged concentrically with an annular gap between them and the outer circumferential surface of the cover plate (8), and the link bodies are rotatably connected to the shaft by a bearing frame Qυ formed integrally with the cover plate (8). The link body θ and the spill ring Oη are supported by an annular gap between them (
b) Connected by a bimetal plate (21) provided so as to extend in the circumferential direction within the bimetal plate I
21) When the temperature expands in the N circumferential direction as the temperature rises to -, the spill link 0 or the arrow (
In the case where the bearing 7 is configured to rotate clockwise in the A) direction, the bearing 7 has a gear c! on the outer periphery of the link body (1!1). The rack rod (,!j) that meshes with 4, the rack rod (!
The rack rod (
2 Connect the actuator (23) related to the engine load, and as the engine load increases, rotate the link body θ9 clockwise in the direction of arrow (B), and as the engine load decreases, the link body (One is configured to rotate counterclockwise in the direction of arrow (C).

この構成において、リンク体0窃ヲ図に実線て示t−<
<t 両から矢印(C)方向に左回転すると、リンク体
09にバイメタル板Qυによって連結されたスピルリン
ク(17)も左回転して、その逃しボー1−081が(
1)位置になってスピルポー1へ叫に対する逃しポート
θ8)の開閉位置か副ビス1ヘンから離れる方向に移行
し、スピルボート(IQは逃しポート08)に不連通の
状態に閉じ当該スピルボーt−aSからの潤滑油の流出
か止まり、逆1(−弁(1:() (=JきポートQ4
)から絶えず潤滑油か(其給されている油圧室aカの圧
力カ司二昇するから、副ビス1−ン(9)は燃焼室(5
)に向ってOiJ進し、コノ前進かスピルボー1−Oe
か(1)位置の逃しポート08)に一部連通ずる所まで
進行すると、油圧室θつの潤滑油はスピルポー1−〇〇
及び逃しボー1−08)から流出を始め、この流出はと
油圧室(功への供給量とか)〈ランスした時点て副ピス
トン(9)の前進か停止する。またリンク体01)を図
の実線の位置から矢印(B)方向に右回転すると、この
リング体θつにバイメタル板(21)を介して連結した
スピルリンク0乃の逃しポート08)か(It) 位i
fdになってスピルポー1− (lfiに対する逃しボ
ー1− (1g)の開閉位置が副ビスl−ンに近つくよ
うに移j丁シスビルポー1− (161は全開状態に連
通してスピルポー1− (161からの流出量が増加す
るので油圧室α力のLI力か低下するから、副ピストン
(9)は燃焼室(5)のT1力及び/又ははね01によ
って燃焼室(5)から離れるように後退し、この後退が
スピルボート(If)と(II)位置の逃しポート0灼
との一部連通の所まで進行すると、これらからの流出量
か織少し、その流出量と供給量とかハラノスした時点て
、副ビス;・ン((1)の後退勤か停止することになる
。この場合、リング体(+iを機関の負荷に関連するア
クチェータ(ハ)により、機関の負荷の増加につれて右
回転し、負荷の1川下に伴って左回転するように構成し
たから、圧縮比を機関の負荷の増加につれて次第に低く
、負荷の減、少につれて次第に高くなるように自動制御
することかてきるのてあり、この負荷への関連に代えて
、機関の回転数に関連して;−1:縮化を回転数の増加
につれて次第に高くなるように自動制御したり、或いは
負荷及び回転数の両方に関連して圧縮比を自動制御する
こともてきるの−Cある。
In this configuration, the link body 0 is shown as a solid line in the diagram t-<
<t When both sides rotate to the left in the direction of arrow (C), the spill link (17) connected to the link body 09 by the bimetal plate Qυ also rotates to the left, and the escape ball 1-081 becomes (
1) The opening/closing position of the relief port θ8) to the spill port 1 is moved in the direction away from the auxiliary screw 1, and the spill boat (IQ is the relief port 08) is closed in a disconnected state. The lubricating oil leaks out or stops, reverse 1 (-valve (1: () (= J port Q4
) The pressure in the hydraulic chamber (a), which is supplied with lubricating oil (
) towards OiJ and Kono forward or Spielbo 1-Oe
When the lubricating oil from the hydraulic chamber θ begins to flow out from the spill port 1-00 and the relief port 1-08), this outflow flows into the hydraulic chamber. (Amount of supply to gong, etc.) <At the moment of lancing, the sub-piston (9) moves forward or stops. Also, when the link body 01) is rotated clockwise in the direction of the arrow (B) from the position of the solid line in the figure, the escape port 08) of the spill link 0 connected to this ring body θ via the bimetal plate (21) or (It ) position i
When the fd is reached, the opening/closing position of the spill port 1- (relative to lfi) is moved so that the opening/closing position of the relief bow 1- (1g) approaches the secondary screw line. Since the outflow amount from 161 increases, the LI force of the hydraulic chamber α force decreases, so the secondary piston (9) is moved away from the combustion chamber (5) by the T1 force and/or spring 01 of the combustion chamber (5). When this retreat progresses to a point where there is partial communication between the spill boat (If) and the relief port 0 at position (II), it is difficult to determine the amount of outflow from these, and the amount of outflow and supply is different. At this point, the secondary screw ((1) will either move backward or stop. In this case, the ring body (+i) will be rotated clockwise by the actuator (c) related to the engine load as the engine load increases. Since the engine is configured to rotate to the left as the load decreases, it is possible to automatically control the compression ratio so that it gradually decreases as the engine load increases, and gradually increases as the load decreases. Yes, and instead of being related to this load, it is related to the engine speed; -1: The compression is automatically controlled to become gradually higher as the rotation speed increases, or it is related to both the load and the rotation speed. It is also possible to automatically control the compression ratio.

機関の爆発行程において、副ピストン((りに大きな爆
発力を受けると、この爆発力にて当該副ビス1ヘン(9
)か若干後退し、これと同時にステム(11)も若干後
退し、そのスピルポー1− (lfilの逃しポート0
8)に対する連通が閉じる一方、油圧室(121内の圧
力か瞬間的に高くなって逆止弁(1艷が閉じて、油叩室
0の内の油は当該油圧室αり内に閉じ込められた状態に
なるから、これにより副ピストンに対する大きな爆発力
’e 支受するのてあり、この場合において、スピルボ
ート叫が逃しボート08)に対して閉じるまでの間にお
ける油の若干の流出及びその後の油圧の上管か、副ピス
トン(9)に対する爆発衝撃を吸収・緩和するのである
During the engine's explosion stroke, when the secondary piston (() receives a large explosive force, this explosive force causes the secondary piston (9) to explode.
) moves back a little, and at the same time, the stem (11) also moves back a little, and the spill port 1- (lfil's escape port 0
8) is closed, the pressure in the hydraulic chamber (121) momentarily increases, the check valve (1) closes, and the oil in the oil tapping chamber (0) is trapped within the hydraulic chamber (121). In this case, a small amount of oil spills until the spill boat closes against the escape boat 08), and the subsequent It absorbs and softens the explosion impact on the hydraulic upper pipe or the sub-piston (9).

一方、ノッキングの発生は、機関の温度が高くなるはと
増大するから、前記機関の負荷及び/又は回転数に関連
しての自動制御による圧縮比値を、機関の温1隻が低い
ときに合ゼで設定すると、機関の温度が高くなったとき
にノッキングが多発することになるか、本発明は前記の
ようにリンク体(11内周とスピルリンク(1力外周と
の間の環状隙間(4)に、両者を連結するバイメタル板
QI)を設けたもので、このバイメタル板(21)は逃
しポー1−08)より流出する潤滑油によって暖められ
る一方、潤滑油は機関のシリンダフロック及びシリンダ
△、ソトの油通路等を通るときにおいて機関の温度と略
比例した温度になっていることにより、機関の温度が高
くなるにつれてバイメタル板Qυが円周方向に熱膨張し
て、スピルリング07)をリング体(]!Jに及びステ
ム0υに対して矢印(A)方向、つまりステム(11)
のスピルポー1〜(It’sに対する逃しポー1〜(1
81の連i1面積か増大する方向に回転するから、これ
によりスピルボート(10からの流出量が多くなり、副
ピストン(9)はスピルボ=1(1枠からの流出量が(
J(給量とツバランスする所まで後退することになって
圧縮比は低下する。
On the other hand, the occurrence of knocking increases as the engine temperature rises, so the compression ratio value is automatically controlled in relation to the engine load and/or rotational speed when the engine temperature is low. If the engine temperature is set to 1, knocking will occur frequently when the engine temperature becomes high. (4) is provided with a bimetal plate (QI) that connects the two, and this bimetal plate (21) is warmed by the lubricating oil flowing out from the relief port 1-08), while the lubricating oil is heated by the engine's cylinder flock and Since the temperature is approximately proportional to the engine temperature when passing through the oil passages of the cylinder △ and soto, the bimetal plate Qυ thermally expands in the circumferential direction as the engine temperature increases, and the spill ring 07 ) to the ring body (]!J and in the direction of arrow (A) with respect to stem 0υ, that is, stem (11)
Spill Poe 1~(It's Spill Poe 1~(1
Since the area of the column i1 of 81 rotates in the direction of increasing, the amount of outflow from the spill boat (10) increases, and the sub-piston (9) rotates in the direction of increasing the area of the column i1 (the amount of outflow from one frame is (
J (the compression ratio decreases as it retreats to the point where it balances with the feed amount).

すなわち、圧縮比はバイメタル板(21)により機関の
温度か高くなるにつれて次第に但1くなるように自動的
に調整されることになって、機関の温度が高いときにお
けるノッキングの発生を防止できるのであり、また、機
関の負荷及び/又は回転数に関連しての自動制御よる圧
縮比値を、機関の温度が高いときに合せて設定したとき
には、機関の温度が低いときにおける圧縮比をそのとき
に適合するように畠く調整することができるのである。
In other words, the compression ratio is automatically adjusted by the bimetal plate (21) so that it gradually becomes 1 as the engine temperature rises, thereby preventing the occurrence of knocking when the engine temperature is high. Yes, and when the compression ratio value by automatic control in relation to the engine load and/or rotation speed is set to match when the engine temperature is high, the compression ratio when the engine temperature is low is set at that time. It can be easily adjusted to suit.

なお、前記実施例は、油H−室(12への作動油として
機関における潤滑油を用いた場合であったか、油圧室a
bへの作動油としては自動車のパワーステアリンク機構
又は自動車のオートマチック変速装置における作動油を
用いることかできる。このパワー−ステアリンク機構又
はオー1〜マチツク変速装間におりる作動油を用いると
きには、油圧室0りに入った作動油を副ビス1−ン(9
)内の空刺室(ハ)に導いたのち、スピルボー1− (
16)から流出することにより、(’[:jflr簡の
温度を機関の温度に略比例させるようにずれは良い1−
また、傾斜状スピルボー1− (+6)及び逃しポー1
−08)を設ける位置を、前記実施例とは逆にして、ス
テム(11)に逃しポー1−08)を、スピルリンク(
17)に傾斜状スピルポー1・(16Jを設けるように
しても良く、更にスピルボートoQの形状は必要に応し
て第2図に二点鎖線で示すように任意形状にしても良い
In addition, in the above embodiment, the lubricating oil in the engine was used as the hydraulic oil to the oil H-chamber (12), or the hydraulic oil in the hydraulic chamber a
As the hydraulic oil for b, it is possible to use the hydraulic oil in the power steering link mechanism of the automobile or the automatic transmission of the automobile. When using this power-steering link mechanism or the hydraulic oil that flows between O1 and the automatic transmission, the hydraulic oil that has entered the hydraulic chamber
), then lead them to the empty stabbing room (c) inside Spielbo 1- (
16), the deviation is good enough to make the temperature of ('
In addition, inclined spill bow 1- (+6) and relief port 1
-08) is provided in the opposite position to that of the previous embodiment, and the spill link (1-08) is attached to the stem (11).
17) may be provided with an inclined spill port 1 (16J), and if necessary, the shape of the spill port oQ may be made into an arbitrary shape as shown by the two-dot chain line in FIG.

第4図及び第5図は第2の実施例を示し、この第2の実
施例は、副ンリツタ(7)内の副ピストン(9)からの
ステム(1,1a)の突出端に、当該突出端に芽設した
スピル、+4−l−(16a)を開閉するためのスピル
リング(17a)を回転及び摺動自在に被嵌し、該スピ
ルリング(17a)を中途部を軸(イ)にて揺動自在に
枢着したレバーQυを介してアクチェータ(ハ)に連動
し、01J記スピルリング(17a)を機関の負荷の減
少及び/又は回1iム数の増1j11につれて矢印(D
)方向に′摺動して1]−縮化を高くし、機関の負荷の
増加及び/又は回転数の減少につれて矢印(動方向に摺
動して圧縮比を低Fすることにより、圧縮比を負荷及び
/又は回転数に積、して自動制御するものであり、この
第2の実施例による場合、ステム(Ila)はその内部
を通る作動油の温度、つまり機関の温度が高くなると軸
方向に熱膨張して、スピルボー1−(16a)の開]二
1而槓か減少して当該スピルボート(16a)からの流
出量が少なくなることにより、副ビストノ(9)か油圧
室への流出量と供給量とがバランスする所まで前進して
圧縮比か高くなるから、機関の温度か高くなるとノッキ
ングは11記第1の実施例の場合よりより発生し易くな
る。
4 and 5 show a second embodiment, in which the stem (1, 1a) projects from the sub-piston (9) in the sub-ribber (7). A spill ring (17a) for opening and closing the spill, +4-l- (16a), which is provided at the protruding end, is rotatably and slidably fitted, and the spill ring (17a) is pivoted at the midpoint (A). The 01J spill ring (17a) is moved by the arrow (D
) direction to increase the compression ratio, and as the load of the engine increases and/or the rotational speed decreases, the compression ratio decreases by sliding in the direction of the arrow In this second embodiment, when the temperature of the hydraulic oil passing through the stem (Ila), that is, the temperature of the engine, increases, the shaft temperature increases. Thermal expansion occurs in the direction of the opening of the spill boat (16a), and the amount of flow from the spill boat (16a) decreases, resulting in a flow from the sub-viston (9) to the hydraulic chamber. Since the compression ratio increases as the engine advances to a point where the amount and supply amount are balanced, knocking becomes more likely to occur as the engine temperature increases than in the case of the first embodiment described in Section 11.

そこでこの実施例に対しては、ステム(+−1a)を第
5図に示すように上下2つのステム(lla’)(Il
a′勺に分断し、上下両ステム(I la’ ) (1
,1a″)を1111 M自在に嵌合する一方、」二上
両ステム(11a’ )(l la″)の軸方向間をパ
イプ状のバイメタル(21a) ヲ介して、当該バイメ
タル(21a)の軸方向の熱膨張によ−)でステノ・(
lla)の軸方向の長さか収縮するように連結すれは良
く、この構成により、機関の負荷及び、/又は回転数に
関連しての自動制御による圧縮比値を、機関の温度゛の
」1昇につれて低くなるように補正することができるの
である。
Therefore, for this embodiment, the stem (+-1a) is replaced with two upper and lower stems (lla') (Il) as shown in FIG.
Divided into a′ stem, with both upper and lower stems (I la′) (1
, 1a'') 1111M freely, while the bimetal (21a) is inserted between the two upper stems (11a') (lla'') in the axial direction via the pipe-shaped bimetal (21a). Due to axial thermal expansion, the steno-(
The axial length of lla) may be compressed, and with this configuration, the compression ratio value can be automatically controlled in relation to the engine load and/or rotation speed, depending on the engine temperature. It is possible to correct the value so that it decreases as the value increases.

なお、スピル体としては前記2つの実施例のリンク状の
ものに限らず、第6図に示すように棒状のスピル体(+
、7b)にし、このスピル体(1,7b)を中空軸状ス
テム(I]、b)内にスピルポー1−(16b)を開閉
するように摺動自在に嵌挿し、月つこのスピル体(+7
b)を機関の負荷及び/又は回転数に応じて摺動作動す
るように構成しても良いのである。
Incidentally, the spill body is not limited to the link-shaped one in the above two embodiments, but also a rod-shaped spill body (+
, 7b), and this spill body (1, 7b) is slidably inserted into the hollow shaft-like stem (I], b) so as to open and close the spill port 1- (16b), and the spill body ( +7
b) may be configured to slide in response to the load and/or rotational speed of the engine.

以」一実施例について説明したが本発明は、燃焼室に連
通ずる副シリツタ内に副ビス1ヘンを摺動自在に嵌挿し
、該副ビス1−ンの背面に油圧室を形成して該油圧室に
作動油を供給する一方、前記ビス1−ンから副シリツタ
外に突出するようにステムを副ビス1−ンの軸方向に設
け、該ステムの突出端には、前記油圧室の作動油が流出
するようにしたスピルボートを芽設し、且つステムの突
出端には、そのスピルポーI−を当該スピルポー1−か
らの流出量を調節するように開閉すると共にその開閉位
置をステノ・の軸り向に沿って変位するように作動する
スピル体を設け、該スピル体を機関の負荷及び/又は回
転数に応して作動するように機関の負荷及び7/又は回
転数に関連し、1つniI記スピル体又はステムには、
前記スピルポー1・の開閉位置ヲ、機関の温度に応して
ステムの軸方向に変位させるようした手段を設けて成る
もので、これにより圧縮比を機関の負荷及O・/又は回
転数に応して無段階的に滑らかに自動制御できるから、
圧縮比を自動可変した場合の急激なトルク変動がなく、
従って1〜ライバーヒリテイーを悪1bさせないのであ
り、しかも、本発明は副ノリツタ内におりる副ピストン
の背面を油圧室とし、これに作動油を送って副ビスI−
ンを前後動するもので、頭記した先行技術のように副シ
リツタの外方に油圧シリツタを別に設ける必要がないか
ら、構造の簡略化と機関の小型、軽量化を図ることがで
きるのである。
Although one embodiment has been described above, the present invention is such that a sub screw 1 is slidably inserted into a sub syringe that communicates with the combustion chamber, and a hydraulic chamber is formed on the back side of the sub screw 1. While supplying hydraulic oil to the hydraulic chamber, a stem is provided in the axial direction of the auxiliary screw 1-in so as to protrude from the auxiliary screw 1-n to the outside of the auxiliary cylinder, and a stem is provided at the protruding end of the stem to provide hydraulic oil for the operation of the hydraulic chamber. A spill boat is installed at the protruding end of the stem to allow oil to flow out, and the spill port I- is opened and closed to adjust the amount of oil flowing out from the spill port I-, and its opening and closing position is adjusted to the axis of the steno shaft. a spill body that is actuated to be displaced along the direction of the engine; In the niI spill body or stem,
The opening/closing position of the spill port 1 is provided with a means for displacing the opening/closing position of the spill port 1 in the axial direction of the stem according to the temperature of the engine, thereby adjusting the compression ratio according to the load and/or rotation speed of the engine. Because it can be automatically controlled steplessly and smoothly,
There is no sudden torque fluctuation when the compression ratio is automatically varied.
Therefore, the problem of 1 to 1b is avoided.Moreover, in the present invention, the rear surface of the auxiliary piston that falls in the auxiliary noritsuta is used as a hydraulic chamber, and hydraulic oil is sent to this chamber, so that the auxiliary screw I-
This system moves the engine back and forth, and there is no need to separately install a hydraulic syringe outside the sub-sleet as in the prior art mentioned above, making it possible to simplify the structure and make the engine smaller and lighter. .

その上本発明は、前記自動制御による圧縮比の値を、機
関の温IWに対して補正することかできるから、Ll:
縮化のN関負荷及び/又は回転数による自動制御に際し
て機関の温度か高いときにノノキ7りか発生したり、機
関の温度か低いときにノソへ′ンクに対して圧縮比が余
裕があり過きたりすることをpj止することがてきる効
県を有する。
Furthermore, in the present invention, the value of the compression ratio by the automatic control can be corrected with respect to the engine temperature IW, so Ll:
When the engine temperature is high when the engine is automatically controlled by the N-related load and/or rotational speed, the compression ratio may be too high. It has an effective prefecture that can prevent things from happening.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は第1の実施例を
示す機関要部の縦断iミ面図、第2図は第1図の要部拡
大断面図、第3図は第2図のIll −IV視視向面図
第4図は第2の実施例を示す機関要部の縮重面図、第5
図は第4図の要部拡大断面図、第6図はスピル体とスピ
ルポートとの別の実施例図である。 (1)・ ノリンタフロック、(2)・・ンリツタヘソ
l’、(5)・・燃焼室、(7)・・副ンリノタ、(9
)・・副ビス1−ン、(+2−・油圧室、(11) (
1la)(1lb)・  ステム、(+6)(16a)
(]、6b)−・・スピルボー1へ、θη(17a)(
17b)−スピル体、(ハ)・・・アクチェータ、02
1) (21a)・・・バイメタル。
The drawings show embodiments of the present invention; FIG. 1 is a vertical cross-sectional view of the main parts of the engine showing the first embodiment, FIG. 2 is an enlarged cross-sectional view of the main parts of FIG. 1, and FIG. FIG. 4 is a degenerate side view of the main parts of the engine showing the second embodiment; FIG.
The figure is an enlarged sectional view of the main part of FIG. 4, and FIG. 6 is a diagram of another embodiment of the spill body and spill port. (1)・Norinta block, (2)・・Nuritsutaheso l', (5)・・Combustion chamber, (7)・・Norinta heso l', (7)・・Norinta heso l', (7)・・Norinta heso l', (9)
)・・Subscrew 1-, (+2-・Hydraulic chamber, (11) (
1la) (1lb) Stem, (+6) (16a)
(], 6b) - ... to Spielbo 1, θη (17a) (
17b) - Spill body, (c)...actuator, 02
1) (21a)...Bimetal.

Claims (1)

【特許請求の範囲】[Claims] (1)燃焼室に連通ずる副ンリンタ内に副ピストンを摺
動自在に嵌挿し、該副ピストンの背面に油(1−室を形
成して該油圧室に作動油を供給する一方、前記ビス1−
ンから副ンリンタ外に突出するようにステムを副ビス1
へ)の軸方向に設け、該ステムの′突出端には曲記曲圧
室の作動油か流出するようにしたスピルボートを穿設し
、目、つステムの突出端には、そのスピルボートを当該
スピルボートからの流出1?t X−”、J!;1節す
るように開閉すると共に、その開閉位置をステムの軸方
向にFQって変位するように作動するスピル体を設け、
該スピル体を機関の負荷及び/又は回転数に応して作動
するように機関の負荷及び/又は回転数に関連し、且つ
前記スピル体又はステムには、前記スピルボートの開閉
II1. teaを、機関の温度に応してステムカ軸方
向に変位させるようにした手段を設けたことを特徴とす
る圧縮比oJ変変向内燃機関
(1) A sub-piston is slidably inserted into a sub-inverter communicating with the combustion chamber, and an oil (1-chamber is formed on the back side of the sub-piston to supply hydraulic oil to the hydraulic chamber, while the above-mentioned screw 1-
Attach the stem with the secondary screw 1 so that it protrudes from the
A spill boat is provided at the protruding end of the stem to allow the hydraulic oil of the curved pressure chamber to flow out, and the spill boat is provided at the protruding end of the stem. Spill boat spill 1? t
The spill body is connected to the load and/or rotation speed of the engine so that the spill body is operated in accordance with the load and/or rotation speed of the engine, and the spill body or stem is provided with a mechanism for opening and closing the spill boat II1. An internal combustion engine with variable compression ratio oJ, characterized in that it is provided with means for displacing the tea in the axial direction of the stem according to the temperature of the engine.
JP11910282A 1982-07-07 1982-07-07 Variable compression ratio internal-combustion engine Granted JPS5910755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11910282A JPS5910755A (en) 1982-07-07 1982-07-07 Variable compression ratio internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11910282A JPS5910755A (en) 1982-07-07 1982-07-07 Variable compression ratio internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS5910755A true JPS5910755A (en) 1984-01-20
JPH0116976B2 JPH0116976B2 (en) 1989-03-28

Family

ID=14752951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11910282A Granted JPS5910755A (en) 1982-07-07 1982-07-07 Variable compression ratio internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5910755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192541U (en) * 1985-05-24 1986-11-29
US4894533A (en) * 1985-10-07 1990-01-16 Hiraku Abe Optical rotary encoder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314308A (en) * 1976-07-23 1978-02-08 Aisin Seiki Sewing machine motor control device for controlling home position stopping of sewing machine
JPS53131323A (en) * 1977-04-21 1978-11-16 Kubota Ltd Compression-ratio variable device for internal combuston engine with supercharger
JPS5420220A (en) * 1977-07-11 1979-02-15 Peugeot Internal combustion engine that compression ratio can be varied
JPS55107030A (en) * 1979-02-07 1980-08-16 Hino Motors Ltd Engine of variable compression ratio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314308A (en) * 1976-07-23 1978-02-08 Aisin Seiki Sewing machine motor control device for controlling home position stopping of sewing machine
JPS53131323A (en) * 1977-04-21 1978-11-16 Kubota Ltd Compression-ratio variable device for internal combuston engine with supercharger
JPS5420220A (en) * 1977-07-11 1979-02-15 Peugeot Internal combustion engine that compression ratio can be varied
JPS55107030A (en) * 1979-02-07 1980-08-16 Hino Motors Ltd Engine of variable compression ratio

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192541U (en) * 1985-05-24 1986-11-29
JPH0426671Y2 (en) * 1985-05-24 1992-06-26
US4894533A (en) * 1985-10-07 1990-01-16 Hiraku Abe Optical rotary encoder

Also Published As

Publication number Publication date
JPH0116976B2 (en) 1989-03-28

Similar Documents

Publication Publication Date Title
NO862153L (en) PROCEDURE AND ENGINE BRAKE DEVICE.
IL34643A (en) Device for controlling the movement of doors
JPS60259732A (en) Injection timing control unit for fuel distribution type injection pump
JPS5910755A (en) Variable compression ratio internal-combustion engine
JPS58150051A (en) Compression ratio controller of engine
US5063883A (en) Detonation control device for an internal combustion engine
US7036470B2 (en) Four-cycle engine
JPS6016745Y2 (en) Diesel engine protection device
EP3236041B1 (en) Cooling system of an internal combustion engine
JPS5941635A (en) Internal-combustion engine with variable compression ratio
JPS5920540A (en) Compression ratio variable type internal combustion engine
JPS5941637A (en) Internal-combustion engine of variable compression ratio with supercharger
JPS5941632A (en) Internal-combustion engine with variable compression ratio
JPS5941633A (en) Internal-combustion engine with variable compression ratio
JPS6062658A (en) Injection start timing changer of jerk type fuel pump
JPS58126419A (en) Cooler for internal-combustion engine
JPH076418B2 (en) Variable compression ratio device for internal combustion engine
JPH0116973B2 (en)
JPS58176430A (en) Compression ratio varying device for internal-combustion engine
JPS6075728A (en) Compression ratio varying system for internal-combustion engine
JPS58176431A (en) Compression ratio varying device for internal-combustion engine
JPS58133459A (en) Acceleration pump device for carburettor
JPS6323551Y2 (en)
US1148657A (en) Internal-combustion engine.
JPS5910754A (en) Variable compression ratio internal-combustion engine