JPS59107204A - Radiographic thickness gauge - Google Patents

Radiographic thickness gauge

Info

Publication number
JPS59107204A
JPS59107204A JP21759182A JP21759182A JPS59107204A JP S59107204 A JPS59107204 A JP S59107204A JP 21759182 A JP21759182 A JP 21759182A JP 21759182 A JP21759182 A JP 21759182A JP S59107204 A JPS59107204 A JP S59107204A
Authority
JP
Japan
Prior art keywords
radiation
scintillator
thickness
simultaneity
multipliers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21759182A
Other languages
Japanese (ja)
Inventor
Shoichi Horiuchi
堀内 昭一
Yukio Ouchi
大内 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21759182A priority Critical patent/JPS59107204A/en
Publication of JPS59107204A publication Critical patent/JPS59107204A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To prevent the malfunction due to noise by using plural photoelectron multipliers to detect the quantity of transmitted radiation and discriminating the simultaneity of output pulses. CONSTITUTION:gamma rays generated from a radiation source 1 stored in a ray source vessel 2 are made incident to a scintillator 4. Photoelectron multipliers 6a and 6b are arranged in parallel in the scintillator 4, and their detection signals are inputted to preamplifiers 7a and 7b. When gamma rays transmitted through an object 3 to be measured are made incident to the scintillator 4 in this manner, signals are outputted simultaneously from multipliers 6a and 6b, and a signal is outputted from a simultaneity counting circuit 15 also. Noise pulses of multipliers 6a and 6b have not simultaneity, and the signal is not outputted from the circuit 15. Consequently, all outputs of the circuit 15 are handled as effective counts.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は放射線の透過率によって被検物の厚さを測定す
る放射線厚さ計に係り、特に、シンチレータと光電子増
倍管とを用いた放射線厚さ計に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a radiation thickness meter that measures the thickness of a specimen based on radiation transmittance, and particularly relates to a radiation thickness meter that measures the thickness of a specimen using a radiation transmittance. This relates to thickness gauges.

〔従来技術〕[Prior art]

放射線の透過率を利用して被検物の厚さを測定する放射
線厚さ計は、非接触で物体の厚さを測定することができ
るので、鋼板製造工程蜂における厚さの測定等に広く利
用されている。この放射線厚さ計は最近益々高性能化が
要求され、これに対応するためにその検出器は従来の電
離箱よりも高感度である7ンテレーシヨノ検出器の利用
に移行している。
Radiation thickness gauges, which measure the thickness of objects to be inspected using radiation transmittance, can measure the thickness of objects without contact, so they are widely used for thickness measurements in steel plate manufacturing processes, etc. It's being used. Recently, there has been a demand for higher performance of this radiation thickness meter, and in order to meet this demand, the detector has shifted to the use of a 7-terrestrial detector, which has higher sensitivity than the conventional ionization chamber.

このようなシンチレーション検出器は高感度で用するこ
とはできない。それで現在は次のような対策が講じられ
ている。
Such scintillation detectors cannot be used with high sensitivity. Therefore, the following measures are currently being taken:

第1図は従来の放射線厚さ計のブロック図である。放射
線源1が線源容器2内に収容されており、これより放出
された放射線が被測定物3を透過してシンチレータ4に
入射して検出される。即ち、シンチレータ4に入射した
放射線は光に変換され、ライトガイド5によって集光さ
れて光電子増倍管6に入り増幅される。その出力信号は
同調フィルタを備えたプリアンプ7でパルス増幅され、
下限のディスクリレベルを決めるディスクリミネータ8
を通り、分周器9で適当な値に分周されて演算処理装置
10に送られ演算される。
FIG. 1 is a block diagram of a conventional radiation thickness meter. A radiation source 1 is housed in a radiation source container 2, and radiation emitted from the radiation source passes through an object to be measured 3, enters a scintillator 4, and is detected. That is, the radiation incident on the scintillator 4 is converted into light, which is focused by the light guide 5, enters the photomultiplier tube 6, and is amplified. The output signal is pulse amplified by a preamplifier 7 equipped with a tuned filter,
Discriminator 8 that determines the lower limit discriminant level
The signal is divided into an appropriate value by a frequency divider 9, and sent to an arithmetic processing unit 10 for calculation.

この測定系のゲイン変動を補償するだめにプリアンプ7
の出力をもう1つのディスクリミネータ11に通し、分
周器12で分周し前記分周器9からの信号と共に制御回
路13に入力するようにしている。また、この状態でデ
ィスクリミネータ8のディスクリレベルをDlに設定し
てノイズ成分をカットし、第2図に示すとと<Dr以上
の波高のパルス信号ケ出力する。一方他のディスクリミ
ネータ11のディスクリレベルはDlに設定されており
、波高の高いパルスを出力する。第2図はパルス波高と
ディスクリレベルとを示すグラフである。
Preamplifier 7 is used to compensate for gain fluctuations in this measurement system.
The output is passed through another discriminator 11, divided by a frequency divider 12, and input to a control circuit 13 together with the signal from the frequency divider 9. In this state, the discriminator level of the discriminator 8 is set to Dl to cut the noise component, and a pulse signal having a wave height of <Dr or more is output as shown in FIG. On the other hand, the discrimination level of the other discriminator 11 is set to Dl, and outputs a pulse with a high wave height. FIG. 2 is a graph showing pulse height and discretization level.

第3図は高速計数用有機シンチレータを用いた場合のr
wのスペクトルを示す線図で、ディスクリレベルハ低レ
ベルのlet ト高レベルのDzK設定されている。こ
の状態で光電子増倍管6のゲインが下ると、第3図のス
ペクトルは左方ヘシフトし、ディスクリミネータ8の計
数が変化して誤差を発生させる。壕だ、ゲインが上った
ときケ第3図のスペクトルは右方へノットして同様に誤
差となる。このようなゲイン変動があっても補償をする
ため、制御回路13ではディスクリミネータ8゜11の
信号を比較し、その比が常に一定となるようにゲインの
変化分を高圧t#t14にフィードバックし、光電子増
倍管6の印加電圧を制御してゲイン変化を補償している
Figure 3 shows r when using an organic scintillator for high-speed counting.
In the diagram showing the spectrum of w, the discretization level is set at a low level, and the high level DzK is set. When the gain of the photomultiplier tube 6 decreases in this state, the spectrum in FIG. 3 shifts to the left, and the count of the discriminator 8 changes, causing an error. Unfortunately, when the gain increases, the spectrum in Figure 3 knots to the right, causing an error as well. In order to compensate for such gain fluctuations, the control circuit 13 compares the signals of the discriminator 8°11 and feeds back the change in gain to the high voltage t#t14 so that the ratio is always constant. However, the voltage applied to the photomultiplier tube 6 is controlled to compensate for the gain change.

このような制御方法が成立する条件は第3図に示すエネ
ルギースペクトルの形が変化しないことである。もし、
このエネルギースベクI・ルの形が変化すると、ゲイン
が変化しないにもかかわらずDlとDlで弁別された計
数が変化して両者の比が一定とならないため、制御回路
13はゲイン変化と見誤って印加電圧を変化させるので
、その制御特性は悪化する。
The condition for such a control method to be established is that the shape of the energy spectrum shown in FIG. 3 does not change. if,
When the shape of this energy vector I·le changes, the count discriminated between Dl and Dl changes even though the gain does not change, and the ratio of the two does not become constant, so the control circuit 13 mistakes it as a gain change. Since the applied voltage is changed by changing the applied voltage, the control characteristics deteriorate.

エネルギースペクトルが変化する原因は複雑であるが、
その1つはr線と被測定物質との相互作用に起因してい
る。銅板等の厚さ測定に一般的に使用される13tcs
線源は、そのエネルギーが663K e Vであるため
、物質との相互作用の殆んどはコンプトン散乱である。
The causes of changes in the energy spectrum are complex, but
One of them is due to the interaction between r-rays and the substance to be measured. 13tcs commonly used for thickness measurement of copper plates etc.
Since the radiation source has an energy of 663 K e V, most of its interactions with matter are Compton scattering.

このために板厚が変化するに伴なって被測定物を透過す
る散乱r線のエネルギーとその量が変化し、エネルギー
スペクトルの変化として表われてくる。一般にこの散乱
r線は被測定物の厚さが増すと共に増加し、透過r線よ
りもエネルギーが低いためにディスクリレベルDl付近
のエネルギースペクトルの変化として現われるという欠
点をもっている。
For this reason, as the plate thickness changes, the energy and amount of scattered r-rays that pass through the object to be measured changes, which appears as a change in the energy spectrum. In general, the scattered r-rays increase as the thickness of the object to be measured increases, and since they have lower energy than the transmitted r-rays, they have the drawback of appearing as a change in the energy spectrum near the discretization level Dl.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点を解消し、高精度で安定な
測定値が得られる放射線厚さ計を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a radiation thickness meter that eliminates the drawbacks of the prior art and provides highly accurate and stable measurement values.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、被測定物の透過放射線量をシンチレー
タ及び複数個の光電子増倍管を用いて検出し、これら光
電子増倍管から発生する出力パルスの同時性を判定し、
同時の信号のみ厚さの演算に有効として計測するごとく
構成したことにある。
The present invention is characterized by detecting the amount of radiation transmitted through the object to be measured using a scintillator and a plurality of photomultiplier tubes, determining the simultaneity of output pulses generated from these photomultiplier tubes,
The reason is that it is configured so that only simultaneous signals are effective for thickness calculation.

即ち、厚さ計の測定原理は次に示す(1)式で示される
ごとく検出されるクロスの計数から散乱線を含めて実効
吸収係数を決定して厚さを求めるもので、検出されるエ
ネルギーの相違は問題とされない。
In other words, the measurement principle of a thickness meter is to determine the thickness by determining the effective absorption coefficient including scattered radiation from the number of detected crosses, as shown in equation (1) below, and the detected energy The difference between them is not considered a problem.

■=工0eXp(−μm・ρ・【)   ・・・・・・
・・・・・(1)ここで、I:被測定物を透過した放射
線の検出係数 ■o:被測定物がない時の恢出計数 μm=実効吸収係数(Cnt/g) ρ:被測定物の密度(g/cm3) t:被測定物の厚さく on ) 故にtは次式で求められる。
■=Equation 0eXp (-μm・ρ・[) ・・・・・・
・・・・・・(1) Here, I: Detection coefficient of radiation transmitted through the object to be measured ■ o: Calculated count when there is no object to be measured μm = Effective absorption coefficient (Cnt/g) ρ: Measured object Density of object (g/cm3) t: Thickness of object to be measured (on) Therefore, t is determined by the following formula.

したがって、厚さによって変化するエネルギースペクト
ルの違いは演算上は問題とならず、検出器自身から発生
するノイズを測定信号といかに分離し除去するかである
Therefore, the difference in the energy spectrum that changes depending on the thickness is not a problem in calculations, but the problem is how to separate and remove the noise generated from the detector itself from the measurement signal.

本発明はこの点に着目してなされたもので、スペクトル
変化によってクロス計数に変化を与える要因であるディ
スクリミネータを用いないで検出器から発生するノイズ
成分を除去するものである。
The present invention has been made with this point in mind, and is intended to remove noise components generated from a detector without using a discriminator, which is a factor that causes a change in cross counting due to a change in spectrum.

第4図は本発明の一実施例である放射線厚さ計のブロッ
ク図、第5図は第4図の要部拡大図であり、第1図と同
じ部分には同一符号を付しである。
Fig. 4 is a block diagram of a radiation thickness meter that is an embodiment of the present invention, and Fig. 5 is an enlarged view of the main parts of Fig. 4, where the same parts as in Fig. 1 are given the same reference numerals. .

線源容器2に収納されている放射線源lが発生したr線
はシンチレータ4に入射する。このシンチレータ4には
光電子増倍管6a、6bが並置されており、その検知信
号はプリアンプ7a、7bに入力される。このようにシ
ンチレータ4に被測定物3を透過したr線(散乱r線も
含む)が入射すると、光電子増倍管6a及び6bより同
時に信号が出力され、同時計数回路15からも信号が出
力される。
R-rays generated by a radiation source l housed in a radiation source container 2 enter a scintillator 4 . Photomultiplier tubes 6a and 6b are juxtaposed to this scintillator 4, and their detection signals are input to preamplifiers 7a and 7b. When the r-rays (including scattered r-rays) transmitted through the object to be measured 3 enter the scintillator 4 in this way, the photomultiplier tubes 6a and 6b simultaneously output signals, and the coincidence circuit 15 also outputs a signal. Ru.

しかるに、光電子増倍管6a、6bのノイズパルス(暗
電流等に伴うノイズ)は、ランダムパルスであるため、
両者のパルスに同時性がなく同時計数回路15からその
分の信号は出力されない。
However, since the noise pulses (noise accompanying dark current, etc.) of the photomultiplier tubes 6a and 6b are random pulses,
Since there is no simultaneity between the two pulses, the coincidence circuit 15 does not output a corresponding signal.

したがって、従来方式で存在したノイズパルスをカント
するだのの下限ディスクリミネータD!は不要となり、
同時計数回路15の出力はすべて有効な計数として扱う
ことができる。したがって高感度となる。また、スペク
トルの変動があっても全く影響を受けないし、更に、光
電子増倍管6のゲイン変動があっても影響を受けること
がない。
Therefore, the lower limit discriminator D! cant the noise pulses present in the conventional method. is no longer needed,
All outputs of the coincidence counting circuit 15 can be treated as valid counts. Therefore, the sensitivity is high. Further, even if there is a change in the spectrum, it is not affected at all, and furthermore, even if there is a change in the gain of the photomultiplier tube 6, it is not affected at all.

このことは従来技術では不可能であったエネルギースペ
クトルの変動やゲイン変動による不安定さを一挙に解決
したことになり、従来の欠点である不安定さが解決され
て高性能な厚さ計を得ることができだ。
This means that the instability caused by energy spectrum fluctuations and gain fluctuations, which was impossible with the conventional technology, has been solved all at once, and the instability that was the drawback of the conventional technology has been solved, making it possible to create a high-performance thickness gauge. You can get it.

本実施例の放射線厚さ計は、シンチレータに一対の光電
子増倍管を接続し、この夫々の光電子増倍管の出力を夫
々のプリアンプでパルス増幅して同時計数回路で同時発
生パルスのみを計数することによって、エネルギースペ
クトルやゲインの変動に関係なく安定であり、かつ、高
感度である等の効果が得られる。
The radiation thickness meter of this example has a pair of photomultiplier tubes connected to a scintillator, the output of each photomultiplier tube is pulse amplified by each preamplifier, and only the simultaneously occurring pulses are counted by a coincidence counting circuit. By doing so, effects such as stability and high sensitivity can be obtained regardless of fluctuations in the energy spectrum and gain.

上記実施例は放射線厚さ計のみならず、一対の光電子増
倍管でノイズの混合した信号を測定するのに有用であり
、工業的応用範囲が広い。
The above embodiment is useful not only for measuring radiation thickness meters but also for measuring signals mixed with noise using a pair of photomultiplier tubes, and has a wide range of industrial applications.

〔発明の効果〕〔Effect of the invention〕

水元゛Φ」の放射線厚さ計は、高性能で安定な測定値が
得られるという効果をもっている。
Mizumoto Φ's radiation thickness meter has the advantage of providing high performance and stable measurement values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放射線厚さ計のブロック図、第2図はパ
ルス波高とディスクリレベルとを示すグラフ、第3図は
高速計数用有機シンチレータを用いた場合のr、1ll
jlのスペクトルを示す線図、第4図は本発明の一実施
例である放射線厚さ計のブロック図、第5図は第4図の
要部拡大図である。 1・・・放射線源、2・・・線源容器、3・・・被測定
物、4・・・シンチレータ、6・・・光電子増倍管、7
・・・プリアンプ、8.11・・・ディスクリミネータ
、9.12・・・分周器、IO・・・演算処理装置、1
3・・・制御回路、(ほか1名) 第 1 圀 第 2 図       第30 ′If)4図
Figure 1 is a block diagram of a conventional radiation thickness meter, Figure 2 is a graph showing pulse height and discretization level, and Figure 3 is r, 1ll when using an organic scintillator for high-speed counting.
FIG. 4 is a block diagram of a radiation thickness meter which is an embodiment of the present invention, and FIG. 5 is an enlarged view of the main part of FIG. 4. DESCRIPTION OF SYMBOLS 1...Radiation source, 2...Radiation source container, 3...Measurement object, 4...Scintillator, 6...Photomultiplier tube, 7
...Preamplifier, 8.11... Discriminator, 9.12... Frequency divider, IO... Arithmetic processing unit, 1
3...Control circuit, (1 other person) 1st area 2nd figure 30'If) 4th figure

Claims (1)

【特許請求の範囲】[Claims] 1、放射線を被測定物に照射してその透過量を検出し、
上記被測定物の厚さを計測する放射線厚さ計において、
上記透過放射線の量をシンチレータ及び複数個の光電子
増倍管を用いて検出し、これら光電子増倍管から発生す
る出力パルスの同時性を判定し、同時の信号のみ厚さの
演算に有効として開側するごとく構成したことを特徴と
する放射線厚さ計。
1. Irradiate the object to be measured with radiation and detect the amount of radiation transmitted,
In the radiation thickness meter that measures the thickness of the object to be measured,
The amount of transmitted radiation is detected using a scintillator and multiple photomultiplier tubes, and the simultaneity of the output pulses generated from these photomultiplier tubes is determined, and only the simultaneous signals are considered effective for thickness calculation. A radiation thickness meter characterized by being configured so as to be placed sideways.
JP21759182A 1982-12-10 1982-12-10 Radiographic thickness gauge Pending JPS59107204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21759182A JPS59107204A (en) 1982-12-10 1982-12-10 Radiographic thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21759182A JPS59107204A (en) 1982-12-10 1982-12-10 Radiographic thickness gauge

Publications (1)

Publication Number Publication Date
JPS59107204A true JPS59107204A (en) 1984-06-21

Family

ID=16706688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21759182A Pending JPS59107204A (en) 1982-12-10 1982-12-10 Radiographic thickness gauge

Country Status (1)

Country Link
JP (1) JPS59107204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885566B2 (en) 2014-07-24 2018-02-06 Johnson Matthey Public Limited Company Apparatus for determining thickness of lining layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885566B2 (en) 2014-07-24 2018-02-06 Johnson Matthey Public Limited Company Apparatus for determining thickness of lining layer

Similar Documents

Publication Publication Date Title
US4037105A (en) Radiation detector with array of different scintillators
US4228351A (en) Method for measuring the density of lightweight materials
US20020084420A1 (en) Radioactive gas measurement apparatus and failed fuel detection system
US8369480B2 (en) Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources
US2903590A (en) Nuclear radiation measuring instrument
JPH0274890A (en) Coupling type scintillator
US3412249A (en) Backscatter thickness measuring gauge utilizing different energy levels of bremsstrahlung and two ionization chambers
CA1160364A (en) Device for determining the proportions by volume of a multiple-component mixture by irradiation with several gamma lines
US3452192A (en) Multiple energy detection for mixture analysis
US2992331A (en) Three element triple coincidence compton spectrometer
Brody et al. Photoproduction of K+ mesons in hydrogen
Mitchell The Use of Coincidence Counting Methods in Determining Nuclear Disintegration Schemes
US3008045A (en) Neutron detection
US3193680A (en) Thickness measurement using alpha particles
JPS59107204A (en) Radiographic thickness gauge
US5412217A (en) Density-moisture measuring apparatus
US3467824A (en) Method and apparatus for x-ray analysis with compensation for an interfering element
US2900516A (en) Fast neutron spectrometer
US3046402A (en) Multiple thickness times density gamma gauge
US3004163A (en) Radiation gauging system
JPH06201361A (en) Apparatus and method for measuring thickness of metal on rolling mill
Bay et al. Upper Limit for the Lifetimes of Excited States of Ni 60
US4817122A (en) Apparatus for radiation analysis
JPS6171341A (en) Component analyzing method
JPS5977346A (en) Analyzing apparatus for element composition of substance